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Miniaturization of optical cavities has numerous advantages for

enhancing light–matter interaction in quantum optical devices,

low-threshold lasers with minimal power consumption, and effi-

cient integration of optoelectronic devices at large scale. However,

the realization of a truly nanometer-scale optical cavity is hindered

by the diffraction limit of the nature materials. In addition, the

scaling of the photon life time with the cavity size significantly

reduces the quality factor of small cavities. Here we theoretically

present an approach to achieve ultrasmall optical cavities using

indefinite mediumwith hyperbolic dispersion, which allows propa-

gation of electromagnetic waves with wave vectors much larger

than those in vacuum enabling extremely small 3D cavity down

to ðλ∕20Þ3. These cavities exhibit size-independent resonance fre-

quencies and anomalous scaling of quality factors in contrast to

the conventional cavities, resulting in nanocavities with both high

Q∕Vm ratio and broad bandwidth.

metamaterials ∣ nanophotonics ∣ nanowires ∣ plasmonics

Optical microcavities and nanocavities having both high-
quality factor Q and small modal volume V are known to

enhance light–matter interaction, resulting in increased sponta-
neous emission (1–3), optical nonlinearity (4, 5), strong coupling
in quantum electrodynamics (6, 7), and optomechanic effects
(8, 9). Although dielectric microcavity designs such as microdisks
(10, 11), microposts (1), photonic crystals (12, 13), and metal
claddings (14–16) are pushing the cavities to smaller scales, their
physical sizes are larger than the wavelength in order to confine
photon effectively. Plasmonics offers new capabilities in confining
electromagnetic waves to a fraction of their free space wavelength
(17). Their unique dispersion relations enable propagation of
large wave vectors (ultrashort wavelengths) along the metal–
dielectric interfaces, providing the potential to realize nanocav-
ities with subwavelength mode volume. Although plasmonic
nanocavity designs have been recently proposed (18, 19), the
experimental demonstrations have so far exhibited physical sizes
larger than the cubed wavelength (20, 21).

The emergence of metamaterials brought new perspective
on how light can be manipulated by artificially designed nano-
structures and exhibited optical phenomena such as negative
refraction (22–25), cloaking (26–31), and ultrahigh refractive
index (32). A unique class of metamaterials is the indefinite med-
ium for which not all the principal elements of the permittivity
and/or permeability tensors have the same sign (33). The non-
magnetic design and the off-resonance operation of the indefinite
medium significantly reduce the energy loss of electromagnetic
waves commonly observed in metamaterials (34). The unique
dispersion of such materials allows the strong enhancement of
optical density of states (35–37) as well as the observation of
broadband negative refractions at indefinite/normal materials
interfaces (23).

In this letter, we theoretically propose a unique approach
based on indefinite metamaterials for deep subwavelength
photon confinement in truly nanoscale cavities in all three dimen-
sions. The indefinite media (for example, the metal nanowire
array system (23), as shown in Fig. 1A) allow propagation of

waves with very large momentum, introducing a strong mode
mismatch between the underlying metamaterial and the sur-
rounding medium (e.g., free space) which results in total internal
reflection (TIR). The unique photon confinement mechanism,
based on the high-k components in indefinite metamaterials,
breaks the limitation of cavity size and allows the realization of
nanocavities at deep subwavelength scale with both high Q∕V
ratio and broad bandwidth.

Consider a nonmagnetic uniaxial indefinite material with the
permittivity tensor along the principal axes as follows,

ε
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¼ ε0
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0 0 εz

0
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where the diagonal elements are not all with the same sign. As a
simplest example, we assign εx ¼ εy ¼ εv > 0 and εz ¼ εp < 0

(33). Without loss of generality, we first assume ideal lossless
metamaterial whose permittivity elements are all real-valued.
The dispersion relation of electromagnetic waves in such materi-
als, derived directly from Maxwell’s equations, can be written as

k2v
εp

þ
k2p

εv
¼

ω2

c2
; [2]

where kp is the wave vector component parallel to the optical axis,
which is equivalent to kz, and kv is the vector sum of kx and ky,
therefore perpendicular to the axis. At a fixed frequency, the
allowed propagating k vectors are expressed as an isofrequency
contour in the kv-kp plane, showing a hyperbolic curve, as a result
of the negative sign of εz. Fig. 1B shows a characteristic isofre-
quency contour of the propagating light inside materials with
indefinite permittivity. In contrast to a closed curve dispersion
(circular or elliptic in natural dielectrics) which imposes a trade-
off between kv and kp, the hyperbolic dispersion allows wave
vectors with simultaneously large components in all three dimen-
sions. Consequently, very large wave vectors which cannot propa-
gate in air and natural dielectrics can exist in indefinite materials
and strong wave confinement is viable. Ideal indefinite media
allow the wave vector to be infinitely large with no frequency
cutoff for the light propagating in it, though practically it might
be limited by the materials loss or the metamaterial characteristic
length scales.

Although conventional dielectric cavities are limited by their
closed isofrequency contour, the large wave vectors supported
in indefinite media with hyperbolic dispersion allow extremely
small cavity size for realizing truly nanoscale cavities with the
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ability to sustain optical modes with volumes much smaller than
the cube of their vacuum wavelength. Their ultrahigh wave vec-
tors, corresponding to large effective index of refraction, lead to
the formation of nanometers-scale standing wave, whereas the
strong momentum mismatch between the wave vectors inside
the cavity and those of free space (as apparent from Fig. 1) pro-
vides an efficient TIR feedback mechanism.

A cavity mode can be formed when the round-trip phase of
optical wave is an integer number of 2π,

k · dþ Δφ ¼ 2mπ; [3]

where k is the magnitude of the wave vector, d is the round-
trip propagation length, Δφ is the phase shift associated with
the reflection, and m is any integer that defines the mode order.
Due to the symmetry of the permittivity tensor, it is convenient to
consider a tetragonal shaped cavity for further study. Around
each vertex of the tetragonal cavity are three mutually perpendi-
cular facets forming a retroreflector that inverts the wave vector
of any incoming light. In general, a resonating mode is a super-
position of four pairs of oppositely propagating waves in the
tetragonal cavity as a result of the four different pairs of retro-
reflectors formed at the corners of the tetragonal cavity. The
magnetic and electric fields are hence expressed by

H
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where i is the index for four pairs of optical waves with different
orientations, and ϕi represents the phase associated with the ith
optical wave. Summing all the reflections yields the electric field
distribution. For example,
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where l, m, and n are integers for the mode orders in three direc-
tions, and kx, ky, and kz are wave vector components along the
principle axes of the Cardinal coordinate, which are dictated by
the hyperbolic isofrequency contour. Similar equations can also
be obtained for Ex and Ey components. Eq. 3 relates the physical
dimensions of the cavity with the resonating wave vector as
follows,

Lx ¼
lπ þ φx

kx
; Ly ¼

mπ þ φy

ky
; Lz ¼

nπ þ φz

kz
; [6]

where φx, φy, and φz represent the phase shift associated with the
TIR at interfaces perpendicular to x, y, and z axes, respectively
(38). The anisotropy of the indefinite medium leads to different
total internal reflection conditions for different directions of
propagation. As shown in Fig. 1B, there is no mode in air that
matches kp (the momentum along the optical axis) inside the in-
definite material, and hence the side walls of the tetragonal cavity
totally reflect the incidence with any allowed incident angles;
the critical angle of the top and bottom interfaces is given by

arctan θc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

εp
εvðεp−1Þ

q

from the condition of kv > k0. Here k0

is the free space wave vector, and εp and εv are the permittivity
tensor elements along and perpendicular to the optical axis of
indefinite medium, respectively.

The open curved hyperbolic dispersion gives rise to unlimited
magnitude of the wave vectors in an ideal indefinite medium,
making the physical size of the cavity arbitrarily small. Moreover,
the unbounded hyperbolic isofrequency contour results in differ-
ent effective indices for different modes. Cavities at different
sizes made of the same hyperbolic metamaterials could resonate
at the same frequency with the same cavity mode order, in con-
trast to all other photonic cavities, where a change in their size
results in a different frequency or different cavity mode.

The concept of hyperbolic medium nanocavity can be realized
in the indefinite materials demonstrated in metal nanowire sys-
tems (23), shown in Fig. 1A. Such nanowire based indefinite med-
ium is intrinsically low loss over a broad range of wavelength
because of its nonmagnetic and off-resonance design. The per-
mittivity tensor elements along (εp) and perpendicular to (εv) the
optical axis can be estimated from effective medium approxima-
tion by (39, 40)

εpðεzÞ ¼ pεm þ ð1 − pÞεd

εvðεx ¼ εyÞ ¼ εd
ð1þ pÞεm þ ð1 − pÞεd
ð1 − pÞεm þ ð1þ pÞεd

; [7]

where p is the volume filling ratio of metal, and εm and εd are the
permittivities of metal and dielectric, respectively. Fig. 1C shows
the dispersion relation obtained from full wave simulation of
the propagating modes inside a bulk metamaterial made of silver
nanowire array in alumina matrix (Computer Simulation Tech-
nology Microwave Studio) that naturally takes into account
the band-edge effects at high wave vectors close to the edge of the
Brillouin zone (BZ). The wave vector is limited by the structure
period where the dispersion curve is bent close to the edge of the

Fig. 1. (A) Schematic of the nanowire metamaterial which possesses indefinite permittivity. (B) Isofrequency contours of light with 1.5-μm vacuum wave-

length. The inner and outer circles are the contours in air and in silicon respectively. The hyperbola (black curves) is the contour in the indefinite material. (C)

Isofrequency contour of the nanowire metamaterial in x-z plane, which is parallel to the nanowires, inside the first BZ defined by the period of nanowire array.

Every point on the colorful curves represents an allowed propagating mode inside the bulk metamaterial. The red curve is one branch of the hyperbolic

isofrequency contours calculated from effective media approximation. The dotted lines are the theoretical asymptotes of the hyperbola and the yellow circle

in the center with radius of k0 represents the isofrequency contour of light in air. The curves from the simulation bend and become flatter close to the BZ

boundary due to Bragg diffraction effect. The data were obtained from full wave simulation of the silver nanowire array embedded in Al2O3 matrix at 1-μm

wavelength.
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first BZ. The red lines represent an ideal hyperbolic medium
(i.e., period → 0) where the hyperbolic curve accesses infinitely
high wave vectors. It is apparent from Fig. 1C that the effective
medium approximation is valid even for wave vectors an order of
magnitude larger than that in vacuum, as long as they are not too
close to �π∕a given the period a of the nanowires.

Fig. 2 A and C depict the Ez field distribution cross-sections of
the cavity mode of a 80 × 80 × 104 nm nanocavity made of 4 × 4

nanowire array. The silver nanowire array has a pitch of 20 nm
and the diameter of each wire is 8 nm. Al2O3 is chosen to be the
host dielectric material. Fig. 2 B and D are the field distributions
of (2,1,1) mode corresponding to the cross sections in A and C,
respectively. Higher order modes like (2,1,2) and (2,1,3) are also
shown in Fig. 2 E and F (mode order defined in SI Text). Modes
(2,1,1), (2,1,2), and (2,1,3) are resonating at vacuum wavelengths
of 1,500, 918, and 750 nm, respectively. The evanescent fields,
extended outside the cavity, can be observed.

The resonant modes inside the nanowire cavity do not emerge
from the local resonance effect of individual silver nanowire
(localized surface plasmon resonance), but are a result of the
underlying metamaterial properties, manifested by the fact that
the modes are determined by the filling ratio, not the detailed

configuration (arrangement) of the nanowires. It is evident that
cavities with different nanowire configurations but the same fill-
ing ratio show the same resonant modes and field profiles, given
that the size of the nanowire and interwire distance are smaller
than the wavelength and cavity size (SI Text).

Given the increasing trend in minimizing the size of an optical
cavity to enhance light–matter interactions, a variety of deep-
subwavelength resonators have been investigated, including nan-
ometer-sized metallic particles (41) and gap plasmon resonators
(42). However, the size of a resonator is intimately related to its
resonant conditions (resonance frequency and mode numbers).
As shown in Fig. 3, nanocavities made of hyperbolic-dispersion
metamaterials possess a unique property. Indefinite cavities
with substantially different sizes can be designed to resonate at
the same frequency and with the same mode order, utilizing the
extraordinary indefinite dispersion in such media to naturally
select the appropriate effective index of refraction. Distinctive
from the localized plasmon resonances in metal nanoparticles
much smaller than the exciting wavelength, the electromagnetic
oscillation in an indefinite cavity has rapid phase retardation and
possesses a verity of cavity modes, whereas, in the metal nanopar-
ticles, the charges move all in phase, which can be described
by quasi-static analysis (17). The examples given in Fig. 3 are all
resonating with mode order (2,2,2) and at a frequency corre-
sponding to 1.2-μmwavelength in vacuum. The size of the cavities
and cavity modes can be scaled down to λ∕20, ideally with no
limit. Such behavior has never been achieved in any other kind
of optical cavities, to our best knowledge, and should open up a
new degree of freedom in nanophotonic cavity design. The full
wave simulation results are also shown in Fig. 3 for comparison,
which are slightly deviated from the theoretical curve at large k
values, consistent with the bending of the isofrequency contour
close to the BZ boundary.

The strong mode confinement associated with large wave
vectors in all three dimensions, along with the mode mismatch
between the cavity modes and those of free space, results in very
low radiation losses because the high-k components cannot cou-
ple from bulk indefinite material into air if the interfaces are
infinitely large. However, the sharp cavity edges will scatter the
optical waves with high k (≫k0) and generate additional k com-
ponents located in the light cone of air (<k0), which constitute
the main radiation loss mechanism. Coupling from plane waves

Fig. 2. Cross-sectional view of Ez field distribution from full wave simulation

results of different orders of modes inside a 3D subwavelength cavity made

of indefinite metamaterials. (A) Perspective view of the cavity containing

4 × 4 silver nanowire array. The gray plane across the center of the cavity

is where we obtain the field distribution of (2,1,1) mode in B. (C) The same

cavity as in A, but the gray plane is parallel to the nanowires and showing

where we obtain D)–(F. D–F are (2,1,1), (2,1,2), and (2,1,3) modes of the

same cavity, respectively. These modes resonate at different frequencies.

The field distributions are shown in false color, with red to blue colors repre-

senting positive to negative values.

Fig. 3. Resonating k values compared to the isofrequency contour of the

bulk nanowiremetamaterials. The red curve is the hyperbola calculated using

effective media approximation. The red squares represent the peak k values

obtained by Fourier transform of the field distribution inside cavities at

different sizes (lateral length of 360, 240, 180, and 120 nm, respectively).

All the cavities are made of the same metamaterials and all resonate at

1.2-μm wavelength. The wave vector in vacuum is represented by k0. (Inset)

Modes in cavities with different sizes correspond to the red data points.

Modes in smaller cavities correspond to data points with larger k values,

respectively. (Scale bar: 200 nm.)
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in free space to an indefinite cavity is limited due to the large
mismatch of wave vectors; however, evanescent coupling, (for
example, through total internal reflections or tapered optical
fibers) can significantly increase the coupling efficiency (6).

The quality factor of a cavity can be expressed as Q ¼ 2πneff
αλ

where α represents the energy loss per unit length and is com-
prised of intrinsic metal loss and radiation loss α ¼ αOhmþ
αrad, where αOhm and αrad are intensity attenuations based on
the material loss and radiation loss, respectively. Let us consider
first an ideal indefinite cavity with no metal losses where the
energy loss is only due to the radiation of the cavity mode by
the edges and can be estimated from k-space field distribution
as αrad ∝ k−3 (43). At the same time, the effective index for
high-k vectors scales linearly with k, under effective medium
approximation, in sharp contrast to natural materials. As a result,
the radiation quality factor increases for smaller cavities where
higher k modes resonate Qrad ∼ k4 ∼ L−4, where L ¼ V 1∕3 is
the characteristic length of the cavity. The radiation quality factor
Qrad of a typical indefinite cavity with a size less than 100 nm in
all three dimensions is shown to be greater than 104. For compar-
ison, a metal nanoparticle with the same size and shape can only
achieve Qrad of about a few hundred.

Fig. 4 shows the simulated Qrad values as a function of the
cavity size for the (2,1,1) modes resonating at 1.5-μm wavelength
for various cavity sizes. The simulation results are consistent
with the theoretical predictions of Qrad ∝ k4. Although enhanced
quality factor with decreasing device size are consistent with deep
subwavelength antennas for telecommunication applications
(44), it still stands in sharp contrast to dielectric cavities, where
the Q factor is typically proportional to the cavity size, due to the
increase in the cavity mode order and resonating frequencies.

Whereas ideal nanocavities can obtain highQrad, a cavity made
of actual metal–dielectric nanostructures exhibits nonnegligible
metal loss which restricts the overall quality factor. The total
Q is determined by both radiation loss and Ohmic loss αrad,
αOhm. As the imaginary part of the wave vector scales similarly
to its real part in indefinite medium, smaller cavities, while

suffering lower radiation loss, will undergo higher intrinsic losses.
Consequently, the quality factor remains nearly constant inside
the indefinite-medium cavities with different sizes and is limited
to about 30 (shown as red dots in Fig. 4A). Nevertheless, the qual-
ity factor to mode volume ratio, Q∕Vm still increases as the cavity
is shrunk, as shown in Fig. 4B, opening the way for applications
utilizing strong light–matter interactions. Metallic loss has been
one of the major issues that hinder the applications of metama-
terials. Gain media have been successfully applied to compensate
the metal loss at optical frequencies for a variety of systems
(41, 45, 46). By working at the low temperature, the reduction of
metal loss and the enhancement of metallic cavity quality factor
have been experimentally demonstrated (14, 47).

In conclusion, we have theoretically designed an optical cavity
with deep subwavelength size in all three dimensions by using
indefinite medium. The hyperbolic dispersion allows access to a
large effective index to form optical modes with volumes much
smaller than the cube of their vacuum wavelength. The open-
curve dispersion also allows the cavities at different sizes to reso-
nate at the same frequency and with the same mode order, which
is not observed in conventional photonic cavities. In addition,
the large wave vector at the cavity resonance results in strong
momentum mismatch between the cavity and free space modes
and hence greatly reduces the radiation loss of the cavity. The
radiation loss of such nanocavities decreases with the decrease
of the cavity size, in stark contrast to conventional photonic
cavities. Even when considering the material loss, the indefi-
nite-medium nanocavities provide highQ∕Vm ratio, together with
a relatively low Q, which indicates strong light–matter interaction
over a broad operation bandwidth, paving another avenue to
manipulate the light–matter interaction in metamaterials.
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SI Text

The full wave simulation of the indefinite cavities was performed
using commercial software package CST Microwave Studio,
which applies a finite integration technique (FIT). The FIT is an
approach based on the integral form of the Maxwell’s equations,
distinct from finite difference time domain methods. The transi-
ent response of the cavities was analyzed with a linear polarized
plane wave excitation. The quality factors are extracted from
the spectrum analysis with the software. Shown in Fig. S1 is the
typical modal profile at the cavity resonance.

The mode orders inside an indefinite nanocavity are defined as
N þ 1, where N is the number of nodes along a certain direction.
As an example, the mode shown in Fig. S1 is of the order (3,2,4).

The resonant modes inside the nanowire cavity are not because
of local resonance effect of individual silver nanowire (localized
surface plasmon resonance), but rather homogenized indefinite
properties, which is manifested by the fact that the modes are
determined by the filling ratio, not the detailed configuration
(arrangement) of nanowires. Fig. S2 shows the simulation results
for cavities with different arrangement of nanowires but the same
metal volume filling ratio. Modes (2,1,1) and (2,1,2) are shown
for 6 × 6 square arrays and a hexagonal array, which can also
be compared to the modes shown in Fig. 2 in the main text. It
is clear that the field distributions of the eigenmodes for different

arrangement of nanowires are almost identical, which indicates
that the cavity modes are dependent on the filling ratio of nano-
wires and the validity of effective media approximation.

The mode volume of the cavity modes are estimated based on
the data obtained from full wave simulation results. It is usually
defined in terms of the electromagnetic energy density in the
cavity as follows:

Vm ¼
W

maxfW ð r
⇀

Þg
¼

1

maxfW ð r
⇀

Þg

ZZZ
W ð r

⇀

Þd3r;

where

W ð r
⇀

Þ ¼
1

2
½Re½

dðωεÞ

dω
�jE
⇀

ð r
⇀

Þj2 þ μjH
⇀

ð r
⇀

Þj2�

is the electromagnetic energy density taking into account the
strongly dispersive property of some materials (1, 2), in our
case silver. The frequency dependence of silver permittivity is

estimated using Drude model εðωÞ ¼ ε∞ −
ω
2
p

ωðω−iγcÞ
, where

ε∞ ¼ 6.0, ωp ¼ 1.5 × 1016 rad∕s, and γc ¼ 7.73 × 1013 rad∕s are

obtained by fitting experimental data (3).
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Fig. S1. A typical resonant mode inside an indefinite nanocavity. Z component of the electric field is shown in cross-sections perpendicular to the z axis (A) and

y axis (B). The plane wave excitation is propagating along z direction.
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Fig. S2. Cross-sectional view of Ez field distribution in cavities containing rectangular (A–C) and hexagonal (D–F) lattices, respectively. (A) Perspective view of

the cavity containing 6 × 6 silver nanowire array in a rectangular lattice. B and C are (2,1,1) and (2,1,2) modes for 6 × 6 nanowire array. The gray plane across the

center of the cavity is the position where the cross-sectional views of the field distribution are obtained. (D) Perspective view of the cavity containing hexagonal

silver nanowire array. E and F are (2,1,1) and (2,1,2) modes for hexagonal nanowire array inside a tetragonal cavity. The field distribution is slightly asymmetric

because of the symmetry mismatch between the hexagonal lattice and the tetragonal cavity.
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