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Three-Dimensional Navier-Stokes Simulations of Turbine
Rotor-Stator Interaction; Part I — Methodology

Man Mohan Rai*
NASA Ames Research Center, Moffett Field, California

Fluid flows within turbomachinery tend to be extremely complex. Understanding such flows is crucial to
efforts to improve current turbomachinery designs, and the computational approach can be used to great
advantage in this regard. This study presents a finite-difference, unsteady, thin-layer Navier-Stokes approach to
calculating the flow within an axial turbine stage. The relative motion between the stator and rotor airfoils is
made possible with the use of patched grids that move relative to each other. The calculation includes end-wall
and tip-leakage effects. The numerical methodology is presented in detail in the present paper (Part I). The
computed results and comparisons of these results with experimental data are presented in a companion paper

(Part II).

Nomenclature

inviscid flux vector Jacobians

local speed of sound

= inviscid flux vectors

= transformed inviscid flux vectors

= total internal energy per unit volume

= Jacobian of transformation

viscous flux vector Jacobians

= Prandtl number

= pressure

= vector of dependent variables

transformed dependent variable vector

= magnitude of velocity

= viscous flux vectors

transformed viscous flux vectors

Reynolds number

radial location from center of hub

entropy

time

u,v,we = Cartesian velocity components in the x,y,z di-
rections, respectively

X, Y,% = Cartesian physical coordinates

% = ratio of specific heats

A = coefficient of bulk viscosity

U = dynamic viscosity

£, ¢ = coordinates in computational space

o = density

T = computational time

Tyxs Tays €LC. = ViSCOUS stresses
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Introduction

N accurate numerical analysis of the flows associated

with rotor-stator configurations can be very helpful in
optimizing the performance of turbomachinery. However,
such analyses tend to be computationally expensive and ex-
tremely complex because 1) the flow is inherently unsteady, 2)
the geometries involved are complicated, 3) the flow periodi-
cally transitions between laminar and turbulent flow, and 4)
there is relative motion between the stator and rotor rows.
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Nevertheless, a clear understanding of the aerodynamic pro-
cesses associated with turbomachinery can aid the design pro-
cess considerably; hence, the rather large computer costs of
simulating the three-dimensional unsteady flows associated
with turbomachinery are completely justified.

Several calculations of cascade flow have already been re-
ported in the literature. These studies include two- and three-
dimensional calculations using both the Euler and Navier-
Stokes equations. References 1-5 constitute a typical cross
section of the work done previously, but are by no means a
complete review of earlier efforts. Although analyses of flows
through isolated rows can be used to study many of the fluid
mechanical phenomena in turbomachinery, such analyses yield
no information regarding the unsteadiness arising out of the
interaction of moving and stationary rows of airfoils. These
interaction effects become increasingly important as the dis-
tance between successive rows is decreased. The experimental
results of Ref. 6 show that the temporal pressure fluctuation
near the leading edge of the rotor can be as much as 72% of
the exit dynamic pressure when the axial gap is reduced to 15%
of the chord length (for the operating conditions and geometry
chosen). Thus, the need for treating the rotor and stator air-
foils as a system when interaction effects are predominant is
obvious.

From a computational point of view, one major difficulty in
simulating rotor-stator flows arises because of the relative mo-
tion of the rotor and stator airfoils. A single grid that wraps
around both the rotor and stator would have to distort consid-
erably to accommodate the motion of the rotor and could
result in inaccurate calculations. For small values of the axial
gap between the rotor and stator airfoils, such an approach
may even be altogether impractical. The obvious solution to
this problem is to use several grids that move relative to each
other. Typically, one would use a set of stationary grids to
envelop the stator airfoils and a set of moving grids (stationary
with respect to the rotor) to envelop the rotor airfoils. Infor-
mation is then transferred between the several grids used, with
the help of specialized boundary conditions.

Reference 7 presents rotor-stator-interaction results ob-
tained using the Euler equations. The various natural bound-
ary conditions such as inlet, discharge, blade surface, and
periodicity boundary conditions that are required for rotor-
stator calculations are presented, and the unsteady flow
through a fan stage is calculated. However, there are several
areas that have not been addressed in Ref. 7: 1) a general
method of information transfer between the multiple grids
employed, 2) viscous effects, and 3) the three-dimensionality
of the flow. Viscous effects can contribute significantly toward
the unsteady component of the flow because of the passage of
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the second set of airfoils through the wakes of the first set.
End-wall and tip-leakage effects and the geometry of the air-
foils may contribute significantly to the three-dimensionality
of the flow. Hence, an accurate simulation of the flow within
turbomachinery requires the time-accurate solution of the un-
steady Navier-Stokes equations in three-dimensions.

In the multiple-grid approach, the calculation is performed
on several grids that are either patched together (Fig. 1a) or
overlaid (Fig. 1b). The boundary conditions used to transfer
information from one grid to another must satisfy several
requirements before they can be used effectively. The bound-
ary conditions must, for example, be 1) numerically stable, 2)
spatially and temporally accurate, 3) easily applicable in gener-
alized coordinates, and 4) conservative so that flow disconti-
nuities can move from one grid to another without any distor-
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b) Example of overlaid grids

Fig. 1 Use of multiple grids in finite-difference calculations.

J. PROPULSION

tion. The conservative property although desirable is not
required in the case of flows without discontinuities.

The boundary conditions required to transfer information
from patch to patch in the patched-grid approach (Fig. la) are
developed in detail in Refs. 8-10. In Ref. 8, a conservative
patch boundary condition is developed for first-order-accurate
explicit schemes. Results demonstrating the conservative prop-
erty of the new boundary condition and the quality of solu-
tions possible with patched grids are presented. In Refs. 9 and
10, this boundary condition is extended to work with implicit
second-order-accurate schemes. The modifications to the
boundary scheme that are required in order to transfer infor-
mation between two patches that are moving relative to each
other are also developed in Refs. 9 and 10. Preliminary results
for a rotor-stator configuration are presented in Ref. 10.

The patched-grid technique as developed in Refs. 8-10 is
used in Ref. 11 to simulate the flow past the rotor-stator con-
figuration of an axial turbine. The airfoil geometry and flow
conditions used are the same as those in Ref. 6. The unsteady,
thin-layer Navier-Stokes equations are solved in a time-accu-
rate manner to obtain the unsteady flowfield associated with
this configuration. The numerically obtained results are com-
pared with the experimental results of Ref. 6. A good com-
parison of theory and experiment is obtained in the case of
time-averaged pressures on the rotor and stator. Pressure am-
plitudes (corresponding to the pressure variation in time) were
also found to compare well with experiment, thus indicating
the validity of the computed unsteady component of the flow.

More recently, a shearing-grid technique in which a single
gird wraps itself around the rotor and stator and shears in
order to effect the relative motion between stator and rotor
airfoils has been used to solve the flow in a compressor stage.'?
The data from the sheared grid are interpolated onto an undis-
torted initial grid at points in time when the distortion exceeds
a certain tolerance level. This approach seems to have the
advantage of requiring less computing time per step (since
zonal information transfer techniques are no longer required)
but may be difficult to use when the axial gap between airfoils
is small (less than 25% chord).

Two approximations were made in obtaining the results of
Ref. 11. The first was a rescaling of the rotor geometry. The
experimental turbine of Ref. 6 has 22 stator airfoils and 28
rotor airfoils. Therefore, an accurate calculation would re-
quire a minimum of 25 airfoils (11 in the stator row and 14 in
the rotor row). In order to avoid the computational expense
involved in simulating the flow associated with 25 airfoils, the
rotor airfoil was enlarged by a factor of 28/22, keeping the
pitch-to-chord ratio the same. It was then assumed that there
were 22 airfoils in the rotor row. This assumption makes it
possible to perform a calculation with only one rotor and one
stator, thus reducing computation time by more than an order
of magnitude. The second approximation was the assumption
of two-dimensional flow in the midspan region. The results of
Ref. 11 were then obtained by solving the thin-layer Navier-
Stokes equations in two dimensions.

In the present study the approximation of two-dimensional-
ity is removed, and three-dimensional airfoil geometries are
used. In addition, the hub, outer casing, and rotor-tip clear-
ance are all included in the calculation. A system of patched
and overlaid grids is used to discretize the rather complex
geometry of the three-dimensional configuration. An implicit,
upwind third-order-accurate method is used in all the patches
(the calculation of Ref. 11 used a hybrid upwind/central-
difference scheme near the surface boundaries, for reasons
mentioned later in the text). The equations solved are the
unsteady, thin-layer Navier-Stokes equations in three dimen-
sions, and the turbulence model is a modification of the
Baldwin-Lomax model'? that is developed in Ref. 14.

The following sections describe the grid-generation proce-
dure, the integration method, and the various boundary condi-
tions used, including the patch and overlay conditions. The
computed results and comparisons of these results with exper-
imental data are presented in a companion paper (Part II).
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Grid System for the Rotor-Stator Configuration

A combination of patched and overlaid grids is used to
discretize the regions surrounding the rotor-stator configura-
tion. The region can be discretized using only patched grids.
However, the number of zones required to solve the problem
accurately would be twice as many as that required when both
patched and overlaid grids are used in conjunction with each
other. Overlaid-grid calculations are difficult to make conser-
vative at the overlay boundaries. Since the current calculation
is entirely subsonic and free of discontinuities (the maximum
Mach number in the system is less than 0.35), physically mean-
ingful solutions can be obtained even with the use of the non-
conservative form of the equations. Therefore, nonconserva-
tive overlap boundary conditions can be expected to yield
accurate solutions.

The airfoil geometry used in the current study is the same as
that used in the experimental investigation of Ref. 6. The
geometry consists of 22 stator airfoils and 28 rotor airfoils. An
accurate simulation of this configuration would require at
least 11 stator airfoils and 14 rotor airfoils, thus making the
computation extremely expensive. Therefore, the rescaling
strategy of Ref. 11 was used to reduce the number of airfoils
to one stator and one rotor airfoil. This was done by enlarging
the rotor by the factor 28/22 and then assuming that there
were only 22 rotor airfoils. The pitch-to-chord ratio of the
rotor was not changed during the enlargement process. Figure
2 is a perspective view of the rotor-stator combination showing
the pressure side of the stator and the suction side of the rotor.
The rotor in this figure has been enlarged by the factor 28/22.
The outer casing has been removed to obtain the view shown
in Fig. 2.

The multizone grid used to discretize the region consists of
five zones. The three-dimensional grid consists of a sequence
of two-dimensional grids that are stacked together in the radial
direction (from hub to tip). Since the two-dimensional grids at
each radial location are similar (except in the tip clearance
area), only the grid at one radial location is considered. It
consists of the five two-dimensional zones shown in Fig. 3. The
first zone contains the stator and is discretized with an O-grid.
The second zone contains the rotor and is also discretized with
an O-grid. The grids in these two zones were generated using
an elliptic grid generator of the type developed in Ref. 15. Both
the zones lie on a cylinder of constant radius, the radius being
measured from the center of the hub. The radial locations of
the stacked two-dimensional grids are the same for the rotor
and stator zones. This leads to two-dimensional interface
boundaries and, thus, reduces interface logic by almost an
order of magnitude. Although the actual grids used for the

Fig. 2 Rotor-stator geometry of Ref. 6 (with enlarged rotor). A per-
spective view showing the pressure side of the stator and the suction
side of the rotor.
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calculation are very dense near the airfoil surfaces (to resolve
the viscous effects), for the purpose of clarity Fig. 3 shows
grids in which the points are equispaced in the direction nor-
mal to the airfoil surfaces.

The grids for zones 3 and 4 were generated using an alge-
braic grid generator. Zone 3 contains the inner stator zone,
and zone 4 contains the inner rotor zone. In fact, the inner
boundary of zone 3 corresponds to the outer boundary of zone
1 and, similarly, the inner boundary of zone 4 corresponds to
the outer boundary of zone 2. This positioning of the inner and
outer stator zones (and the inner and outer rotor zones) facil-
itates information transfer between these zones. As in the case
of the inner zones, the outer zones are also located at the same
radial locations. The outer zones abut each other along the
patch boundary ABCD and slip past each other as the rotor
airfoil rotates. It is advantageous to use a patch boundary (as
opposed to an area of overlay) where one system of grids
moves relative to another system of grids because both time
accuracy and conservation can be more easily controlled in
patched-grid calculations.

An interesting feature of zones 3 and 4 as seen in Fig. 3 is
that they do not align with each other. The segment AB of zone
4 does not seem to align with any part of the patch boundary
of zone 3; similarly, the segment CD of zone 3 does not seem
to align with any part of the patch boundary of zone 4. How-
ever, the periodicity boundary condition can be used to solve
this problem, the result being that the segment AB is matched
with the segment CD.

The rotor-tip clearance is about 0.4% of the span. There-
fore, the volume corresponding to the last 0.4% of the span (or
the first 0.4% of the span from the outer casing) does not
contain the rotor airfoil. The stator, on the other hand, ex-
tends all the way from the hub to the outer casing and is
attached at both ends. The grid system in the last 0.4% of the
span is chosen to reflect the absence of the rotor airfoil. The
rotor region is discretized using three grids: inner and outer
rotor-type grids, and a grid that would have been interior to
the rotor airfoil if that airfoil had been present.This interior
grid is shown in Fig. 3 and is essentially an O-grid with the
innermost O-grid line collapsing into a curve. The set of inner-
most O-grid lines form a surface along which the grid transfor-
mation is undefined and, therefore, requires special treatment
during the solution process. The innermost rotor grid will be
referred to as the interior rotor grid in the rest of the text. The
rotor interior grids exist only in the the last 0.4% of the span.
At lower radial locations the composite grid of Fig. 3 consists
of only the first four zones.

As indicated before, grid points are densely packed close to
the airfoil surfaces in zones 1 and 2 to resolve the viscous
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Fig. 3 Composite grid containing zones 1-5 at 100% span.
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effects. Viscous effects are also predominant in the boundary
layers associated with the hub and outer casing. The stacking
of the two-dimensional grids in the radial direction reflects the
presence of the these two boundary layers; the two-dimen-
sional grids are packed densely near the hub and outer casing.
At each radial location the inner grids contained 2121 points
each (101 x 21), and the two outer grids contained 1798
(58 x 31) and 1860 (60 x 31) grid points, respectively. The in-
terior rotor grid contained 1111 grid points (101 x 11). The
composite three-dimensional grid consisted of 25 two-dimen-
sional grids stacked together with the rotor-tip clearance area
corresponding to the last five two-dimensional grids in the
radial direction. The total number of grid points used for the
calculation was 203,055.

Integration Method

The integration method used in all the zones is a third-order-
accurate, iterative, implicit, upwind scheme. To describe the
scheme, the unsteady Navier-Stokes equations in three spatial
dimensions are considered:

O +E+F,+G, =R, +8,+ T, (1)
where
P ou pv ow
ou p + pu? puv puw
Q= |pv| E=| puv F=\p+pv? | G= puw
ow puw oow D+ pw?
e (e +plu (e + p)v (e + pyw
(2a)
0 0 0
Txx Tyx T
R= 74| S=|7, T= |1, (2b)
Txz Tye T2z
6){ By BZ
and where

Tre = 20Uy + Ny + Uy + W)

Tay = Uty + Ux)  Txp = p(Uy + Wy)
Ty = Tay Ty = 20y + Muy + 0, + W;)
Ty = MU + Wy) Toe = Typ Tz = Ty
T = 2uW, + Ny + v, + wy)

By =uTy + UTyy + W + yuPr~le,
By =uty + v71y + W, +yuPr-le,
B, = Uty + UTy + WTy + yuPrle,
A= —2u/3 e=p/lp(y— DI

3)
The independent variable transformation
T=1 £=§xyz21)

=051 {={xyz1) )

is then applied to Eq. (1). For high-Reynolds-number flows
with one of the coordinates in the transformed coordinate
system (£,7,{) corresponding to the body surface, one usually
makes the thin-layer assumption, i.e., the viscous terms evalu-
ated as derivatives in the directions tangent to the body surface
are assumed to be negligible in magnitude.!® This concept was
extended to thin layers in all three directions in Ref. 14. The
viscous terms in any given coordinate direction contain only
those terms that are derivatives in the same direction. The
cross derivatives are neglected. A detailed discussion of this
approach and its limitations can be found in Ref. 14. In the
present study the thin-layer viscous terms are retained in two
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directions: in the direction normal to the hub surface (the ¢
direction) and the direction normal to the airfoil surfaces (the
7 direction). The transformed equations now take the form

Q. +E +F,+G.=Re '(5,+ T) )
where
0=0/J
E(Q.8)=(¢Q + &E + £ F + £G)/J
FQ,m) =@ + 0k + nF +1.G)/J

G(Q. ) = (5@ + LE + HF + §:G)/J 6)

The formulas for the metrics of the transformation (¢, &,,

€5 £2), (06 My smps m2)s @nd (§ $ §s $) and the Jacobian of the
transformation are given in Ref. 16. The vector § is given by

0
Kiu, + Kymy
Kyv, + Kon, @
Kyw, + Ky,
Ki[Pr='(y—1)"(c?), + (g%/2),] + K:K;

U
1l

where
Ky = p(n; + 5 + n3)
Ky = p(ntay + my0y + nzw,)/3
Ky =uny +vny + wy,

g?=u?+ v+ w? (8)

The vector T can be obtained by replacing # with { in Egs. (7)
and (8).

Although the viscous terms in the 5 and { directions are
included in the present formulation, the contribution from
these terms can be negligible in a particular region if the grid
resolution in this region is insufficient. For example, the T
term is negligible in regions away from the end walls because
of the lack of sufficient grid resolution in the { direction in
such regions. Similarly, the wake region is essentially calcu-
lated in an inviscid manner (although the airfoil boundary
layers that give rise to the wake are computed accurately be-
cause of the high grid resolution in the direction normal to the
airfoil). Computer speed and memory limitations preclude a
more accurate treatment of the wake at the present time.

The factored, iterative, implicit algorithm is developed for
the two-dimensional Euler equations in Ref. 17. The scheme as
developed in Ref. 17 is second-order accurate in space and
first-order accurate in time. The second-order accuracy in
space results in a third-order fourth derivative in the trunca-
tion error. The constants multiplying the error term (for the
second-order scheme presented in Ref. 17) are larger than
those that multiply the fourth-derivative smoothing terms that
are explicitly added to central-difference schemes. Hence, the
second-order-accurate scheme of Ref. 17 may be too dissipa-
tive for viscous calculations (in viscously dominated regions).
For this reason, Ref. 11 used a hybrid central-upwind differ-
ence scheme in the inner stator and rotor zones to simulate
more accurately the viscously dominated regions.

Reference 18 presents a low-truncation-error second-order
scheme and a third-order scheme that overcome this problem.
These methods are used in conjunction with a relaxation ap-
proach in Ref. 18. In this study, the factored, iterative, third-



MAY-JUNE 1989

order-accurate scheme is presented. The scheme is given by
AT - -
7+ AE (VeAD e + AAG P
AT = o .
x I + o (VnBi,j,k + AB; x — Re ™ '5,M))P

x [I + — (vfc,k + 8;C 6 — Re '8N x

At
~ . 0 — O
X (@ — 00 = < v
+E1p+‘/z,j,k _Elpfl/z,j,k_i_i:l[,)j-#-‘/z,k _ng-—‘/z,k
Ak An
Glj k+Vs ™ G{j,k—‘/z _S?l,,j-# Va,k _ng—‘/z,k
A ReAn
_ Tx‘jj,k+ v = Tfuj,k—‘/z ©)
ReA¢

where

= (QE/30Q0)* B* = @F/3Q)= C=* =(0G/00)*
M=(33/00) N=0T/00) (10)

and A, v, and & are forward, backward, and central-
difference operators, respectively. The quantities E;, Varjk s
Fijs ks Gy s, 8ijv vk, and Tk s are numerical fluxes
consistent with the physical fluxes E, F, G, S, and T, respec-
tively. In Eq. (9), @” is an approximation to Q"*!. When
p =0, 07 = 0", and when Eq. (9) is iterated to convergence at
a given time step, O = 0"+ !, It should be noted that because
the left-hand side of this equation can be driven to zero at each
time step (by iterating to convergence), linearization and fac-
torization errors can be driven to zero during the iteration
process.

For problems in which only the asymptotic steady state is of
interest, the iteration process need not be carried to conver-
gence at each time step. In fact, when the number of iterations
is restricted to one, the scheme reverts to a conventional, non-
iterative implicit scheme of the type in Ref. 19. When second-
order accuracy in time is required, the term (Q,/ K — Q}fj,k) on
the right-hand side of Eq (9) must be replaced by
(l.SQ ik — 2. OQ,Jk + 0. 5Q,/k) in addition to iterating to
convergence. Typically, three to four iterations per time step
are sufficient to reduce the residual by an order of magnitude
or more.

The numerical fluxes E, ¥, and G can be evaluated in many
different ways, the different choices leading to different
schemes. The fluxes in this study were evaluated using Roe’s
scheme.?® The numerical fluxes for the third-order scheme are
evaluated as

Ei i = Vo TEQ ko §iv i) + E(Qiv o £ 15,j0)]
+ V/6[AE *(Qi1jks Qijiks Eiv vaik)
—AE(Qi o Oiv 1 jikes Eiv i)
+ 1/6[AE~(Qijto Qiv 1k Eieakc)
—AE (@i 1)k Qi 2,400 Ein 14j,)] 11)

The flux differences AE * using the method of Roe are given
by

AE*(Qi 4 Qi+ 1y Eiv 2 k)
=A*(Qis vk Eiv i) X (Qivrjk — Qijik) (12)

The dependent variables necessary to evaluate A= at the
intermediate point (i + 2,/,k) are evaluated from the
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following:
iy, = ui\/;i + Ui 1V
i+ == = /=
Voi + Vi
Ui\/;i + Vi IVPis

Vivy, =
Voi +Voir

W _WiIND Wi iV
i+ v =
o NVoi + NPty

h _hi\/;i“‘hiHVPiH
v T T —
\/;i + Vi1

13)

The subscripts j and k have been left out of Eq. (13) for
convenience. The eigenvalues of the Jacobian matrix 4 need to
be calculated in the process of calculating the matrices 4*.
These eigenvalues are modified as outlined in Ref. 21 to pre-
vent expansion shocks. The numerical fluxes F,-,j+1/z,k and
G, jk+w, are evaluated in a similar manner.

The viscous flux vector S; j+ .k 18 evaluated using central
differences, i.e.,

Siivvik =S5 vk (@i v o Mijr va k]
Qijs vk 2(Qijr + Qis k)
@i+ vk = Qijrrh — Qijik (14)

The vector T} j.k+ 1 is evaluated using similar expressions.

Boundary Conditions

The boundaries that contain the several grids that are used
in this study can be broadly classified as natural boundaries
and zonal boundaries. The natural boundaries include the sta-
tor inlet and the rotor exit; hub and outer casing surfaces; and
the stator and rotor airfoil surfaces. The zonal boundaries
comprise the various patch boundaries and overlay bound-
aries; for example, the patch boundary between the stator and
rotor outer zones along which the relative motion of these two
zones take place. Both the natural and zonal boundary condi-
tions are discussed in this section.

Natural Boundary Conditions

The inner boundaries of the two O-grids correspond to the
airfoil surfaces. Therefore, the no-slip boundary condition is
enforced at all the points on these surfaces. Additionally, an
adiabatic wall condition and a zero normal derivative of the
pressure are also imposed on these surfaces. In the case of the
rotor, the no-slip condition does not imply zero velocity; in-
stead, it means that the fluid velocity at the rotor surface is
equal to the rotor speed. The pressure derivative condition, the
adiabatic wall condition, and the equation of state together
yield

dp

Pl 0
de apu apv apw
an ~ an rv on tw “an

where n is the direction normal to the blade surface. These
boundary conditions are implemented in an implicit manner
by using the following equation instead of Eq. (9) to update
the grid points on the blade surfaces:

CQF} — 0% ) + D@3 — Qhi) =0 (15)
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where

10000 6 0 0 0 O
01000 00 0 0O
C={00100 D=0 0 0 0 O
00010 00 0 0O
0 ax B vy 1 0 of B0 ~0 6

Jizk

0= ——=

Jitk

o= — Uyl

B= — vya

Y= — Wwal

Equation (15) is an implicit, spatially first-order-accurate im-
plementation of the no-slip (adiabatic wall) condition (first-
order accurate because the zero normal derivative condition is
implemented using a two-point forward difference). A second-
order-accurate, three-point forward-difference corrector step
is also implemented after each time step. It should be noted
that Eq. (15) requires the grid to be orthogonal at the blade
surfaces and the Jacobians of the transformation J;, x and J;; «
to be independent of 7.

The no-slip boundary condition, the adiabatic wall condi-
tion, and the pressure derivative condition are also imposed on
the hub and outer casing surfaces. The boundary condition on
the outer casing is identical to the one used for the airfoil
surfaces, except that the outer casing is a constant { surface
(the airfoil surfaces are constant 5 surfaces). The hub, on the
other hand, consists of two sections: the portion of the hub to
which the stator airfoils are fixed is stationary, whereas the
portion of the hub on which the rotor airfoils are mounted
rotates along with the rotor airfoils. The two sections of the
hub come together at the patch boundary that separates the
outer stator and outer rotor grids. This presents a computa-
tional problem because the no-slip boundary condition implies
a velocity discontinuity on that part of the patch boundary
corresponding to the hub surface. The problem was overcome
by imposing an average no-slip boundary condition along the
set of grid points at the junction of the two hub sections.The
average no-slip velocity was taken to be one-half the rotor
speed.

The left boundary of the outer stator zone (zone 3) is a
subsonic inlet boundary. Four quantities must be specified at
this boundary. The four chosen for this study are a Riemann
invariant, the entropy, and the radial and tangential flow ve-
locities, i.e.,

Ri=u+Q2c/y—1)
s=(p/p")
Vinlet =0 Wigiet =0 (16)

The fifth quantity (which is necessary to update the points on
this boundary) is also a Riemann invariant:

Ry=u—Qc/y—1) (17)

and is extrapolated from the interior of zone 3. These condi-
tions are appropriate for inviscid flow. In reality, the incoming
flow contains two boundary layers: the hub boundary layer
and the outer casing boundary layer. This problem was over-
come by imposing the no-slip boundary condition only at those
grid points of the hub and outer casing that were a small
distance downstream of the inlet boundary (typically two grid
points downstream of the inlet boundary), thus making the
two boundary layers originate downstream of the inlet bound-
ary. The above approximation is justified by the fact that
the incoming boundary layers are extremely thin. However,
this approximation was made only as a first step to three-
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dimensional rotor-stator calculations and will be replaced in
the future by experimentally observed inlet distributions or by
an additional zone that comprises the entrance to the stage.

The right boundary of the outer rotor zone (zone 4) is a
subsonic exit boundary. In the absence of reverse flow (flow
into the stage) in this area, only one quantity has to be speci-
fied at the exit boundary; the other four quantities can be
extrapolated from the interior of zone 4. The quantity to be
specified can be picked either to reflect all pressure waves as in
the case of an open-end duct, or to transmit all pressure waves,
as in the case of open-end duct, or to transmit all pressure
waves, as in the case of an infinite duct. A detailed description
of these two approaches for two-dimensional problems can be
found in Ref. 7. For the purpose of pressure data comparison
with the experimental results of Ref. 6, the pressure-reflection
boundary condition was chosen.

In two dimensions, the pressure-reflection condition implies
specifying a constant pressure at the rotor exit. In the three-
dimensional case of this study, a constant pressure is imposed
at midspan. The pressure at all other radial locations at the
rotor exit are obtained from the radial equilibrium condition:

ap _ py;

ar r s
where v, is the tangential velocity and r the radius measured
from the center of the hub. All five dependent variables are
extrapolated implicitly from the interior of zone 4, using in-
stead of Eq. (9) the equation

~ ~ J; k= -
1 ax—1,/,k 1
(QFnrax,j,k - Qf,max J,k)_ f}n R ( f)r;ax - Qtpmax—l,j.k,) =0 (19)
imax, j,k

A postupdate correction is then made to the pressure, using
Eq. (18).

The calculation assumes that there are an equal number of
rotor and stator airfoils in the stage. Hence, a simple periodic-
ity boundary condition is employed on the constant » bound-
aries of the outer stator and rotor zones. The implicit imple-
mentation of this boundary condition is straightforward.

Zonal Boundary Conditions

There are several zonal boundaries that are used in the
present calculation. These boundaries serve to separate the
various zones. The requirements that zonal boundary condi-
tions must meet before they can be used effectively have been
outlined earlier. The various zonal boundary calculations can
be made conservative (both overlap and patch conditions).
However, since the flow in the entire region is in the low
subsonic regime, flow discontinuities such as shocks and slip
surfaces do not exist for the flow conditions of interest. Phys-
ically meaningful solutions to discontinuity-free flows can be
obtained with the nonconservation form of the Euler and
Navier-Stokes equations. Therefore, in the interest of simplic-
ity, the various zonal boundary calculations were not made
conservative. The zonal boundary conditions in the current
computer program may have to be modified for transonic and
supersonic flow conditions with the associated flow disconti-
nuities.

The zonal boundaries used in the present calculation are:

1) The patch-overlap boundary between the inner and outer
zones for the rotor and stator. Although Fig. 3 shows this
boundary to be a patch boundary, the grid of the outer zone
exists concurrently with the grid of the inner zone in the inner
zone area. Information transfer from the inner zone to the
outer zone takes place within the inner zone.

2) The patch boundary between the outer stator zone and the
outer rotor zone. A one-grid-point overlap exists at this
boundary, i.e., the outer stator zone penetrates the outer rotor
zone to the extent of one grid point (in the direction of the axis
of the hub) and vice versa.
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3) The patch boundary between the interior rotor grid and
the inner rotor grid. There is a one-to-one correspondence
between the grid lines of these two grids where they meet and,
hence, there is at most only a metric discontinuity along this
patch boundary.

All of the zonal boundaries are treated in the following
manner. The zonal boundary points are integrated by using the
equation

(@77~ 09,,=0 (20)

where z.b refers to the points on a zonal boundary. This is
followed by an explicit, corrective interpolation procedure at
the end of each iteration wherein the values of @7 *! along the
zonal boundary are obtained from interpolating the dependent
variables of the neighboring grid in which the zonal boundary
lies. For the inner boundaries of the outer grids, z.b. refers to
the first set of points of the outer grids that lie within the
corresponding inner grids. In the case of the outer boundaries
of the inner grids, z.b. refers to the patch-boundary points
seen in Fig. 3. For the patch boundary between the outer stator
and rotor grids, z.b. refers to those points that form the exten-
sion of these grids into each other (the extensions are as de-
scribed earlier).

Equation (20) has the property of decoupling the calcula-
tions in the different grids. A second iteration [Eq. (9)] for grid
points in the vicinity of the zonal boundary is a must for
stabilizing the scheme. It is important to note that Eq. (20) is
not the same as that given by the following equation:

@' = 0M,5=0 @1

Equation (20) [in addition to Eq. (9) in the interiors of zones]
together with the postupdate correction mentioned above al-
lows (Q"*! — 0™, , to assume its right value when the iteration
process is carried to convergence. Both time accuracy and a
spatial accuracy consistent with the order of the interpolation
scheme are maintained at the zonal boundaries by using Eq.
(20).

The solution procedure can now be summarized in the fol-
lowing three steps:

1) Integrate the dependent variables at all the grid points
of all the zones using Eq. (9) in conjunction with the implicit
boundary conditions, both natural and zonal (only one
iteration).

2) Perform the postupdate corrections to the dependent
variables at the zonal boundary points of all zones as described
above.

3) If the maximum value of the magnitudes of all
(QP*1 — QP) is less than a prescribed tolerance limit, go to the
next integration step; if not, go back to step 1 and iterate.

Additional details regarding the implementation of zonal
boundary conditions can be found in Refs. 8-10.

Summary

An unsteady, thin-layer Navier-Stokes code to study three-
dimehsional rotor-stator interaction problems has been devel-
oped. The hub, outer casing, and rotor-tip clearance are all an
integral part of the code. With minor modifications the code
can be used for a variety of geometries, for example, ge-
ometries with clearances at both ends or no clearances at all.
The code uses patched and overlaid grids that move relative to
each other to be able to simulate the motion of the rotor
airfoils with respect to the stator airfoils. The code was used to
simulate subsonic flow past a turbine stage for which consider-
able data exist.

The code uses a third-order-accurate upwind scheme to inte-
grate the unsteady, thin-layer Navier-Stokes equations. The
scheme is set in an iterative, implicit framework such that
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factorization and linearization errors can be driven to zero at
each time step. The integration scheme, the natural boundary
conditions of the problem, and the zonal boundary conditions
are all discussed in the paper. The computed results for the
turbine geometry presented in this paper and a comparison of
these results with experimental data may be found in the com-
panion paper (Part II).
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Three-Dimensional Navier-Stokes Simulations of Turbine
Rotor-Stator Interaction; Part II — Results

Man Mohan Rai*
NASA Ames Research Center, Moffett Field, California

Fluid flows within turbomachinery tend to bé extremely complex. Understanding such flows is crucial to
efforts to improve current turbomachinery designs, and the computational approach can be used to great
advantage in this regard. This study presents a finite-difference, unsteady, thin-layer Navier-Stokes solution to
the flow within an axial turbine stage. The computational methodology developed for this simulation is
presented in Part I of this paper. The calculation includes end-wall and tip-leakage effects. Results in the form
of time-averaged surface pressures, pressure amplitudes (corresponding to the pressure fluctuation in time),
near-surface velocity vectors, and pressure contours in the passage areas are presented. The numerical results are
compared with experimental data wherever possible and the agreement between the two is found to be good.

Introduction

N accurate numerical analysis of the flows associated

with rotor-stator configurations can be very helpful in
optimizing the performance of turbomachinery. However,
such analyses tend to be computationally expensive and ex-
tremely complex because 1) the flow is inherently unsteady, 2)
the geometries involved are complicated, 3) the flow periodi-
cally transitions between laminar and turbulent flow, and 4)
there is relative motion between the stator and rotor rows.
Nevertheless, a clear understanding of the aerodynamic pro-
cess associated with turbomachinery can aid the design process
considerably.

Several calculations of cascade flow have already been re-
ported in the literature. These studies include two- and three-
dimensional calculations using both the Euler and Navier-
Stokes equations. Although analyses of flows through isolated
rows can be used to study many of the fluid mechanical
phenomena in turbomachinery, such analyses yield no infor-
mation regarding the unsteadiness arising out of the interac-
tion of moving and stationary rows of airfoils. These interac-
tion effects become increasingly important as the distance
between successive rows is decreased. The experimental results
of Ref. 1 show that the temporal pressure fluctuation near the
leading edge of the rotor can be as much as 72% of the exit
dynamic pressure when the axial gap is reduced to 15% of the
chord length (for the operating conditions and geometry cho-
sen). Thus, the need for treating the rotor and stator airfoils as
a system when interaction effects are predominant is obvious.

In this study the unsteady, three-dimensional, thin-layer,
Navier-Stokes rotor-stator code developed in Part I of this
paper was used to simulate subsonic flow past a turbine stage
for which considerable experimental data exist.! Hub-to-tip
variations of time-averaged pressure and pressure amplitudes
(corresponding to the temporal fluctuation of pressure) and
velocity fields to show the various vortical structures (horse-
shoe vortices at the hub and tip for the stator and rotor) are
included. The numerically obtained predictions are compared
with the experimental data of Ref. 1. These comparisons in-
clude time-averaged pressures, pressure amplitudes, and limit-
ing streamlines on the rotor and stator surfaces.

Presented as Paper 87-2058 at AIAA/SAE/ASME/ASEE 23rd
Joint Propulsion Conference, San Diego, California, June 29-July 2,
1987; received Dec. 8, 1987; revision received June 22, 1988. This
paper is declared a work of the U.S. Government and therefore is in
the public domain.

*Research Scientist. Associate Fellow AIAA.

Results

In this section, results obtained for the rotor-stator configu-
ration shown in Fig. 1 are presented. These results were ob-
tained by integrating the governing equations and the
boundary conditions as described in Part I of this paper.
Three iterations were performed at each step. Approximately
five cycles [a cycle corresponds to the motion of the rotor
through an angle equal to (2«/N)rad, where N is the number
of stator or rotor airfoils] were required to eliminate the initial
transients and establish a solution that was periodic in time.
The calculation was performed at a constant time-step value
of about 0.04. (This translates into 2000 time steps/cycle.)

The dependent variables are nondimensionalized with re-
spect to the inlet pressure (p.) and density (o). This yields
Up = M N7Y, Ve =0, and we, =0 (inlet flow is axial), where
M, is the inlet Mach number. The inlet Mach number used for
this calculation was 0.07. The Riemann invariants that are
prescribed at the inlet are determined using the dependent
variables defined above. The rotor velocity is determined from
the desired flow coefficient (0.78 in this case) and the inlet
axial velocity (#.). Since the quantities that are prescribed at
the inlet boundary are the Riemann invariants and not the
dependent variables themselves, the values of u, v, w, p, and
p obtained at the inlet, when the solution becomes periodic in
time, are different from those used to determine the Riemann
invariants. Hence, the rotor velocity needs to be recomputed
and the calculation needs to be continued for a few more

Fig. 1 Rotor-stator geometry.!
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cycles (which then establishes a slightly different time-periodic
solution). This iterative process must be continued until the
calculated flow coefficient is equal to the required flow coeffi-
cient within certain limits of tolerance. The iterative process
was not carried out for the three-dimensional calculation pre-
sented in this study because the right value of the rotor veloc-
ity (to obtain a flow coefficient of 0.78) was known a priori
from the two-dimensional calculation of Ref. 2.

The Reynolds number used for this calculation was
100,000/in. This value of the Reynolds number is close to the
experimental value but not exactly so; the differences between
experiment and theory are discussed later in the text. A modi-
fied version of the Baldwin-Lomax model** was used to deter-
mine the eddy viscosity; the kinematic viscosity was calculated
using Sutherland’s law.

In the figures that follow, several comparisons are made
with experimental data. The following points must be kept in
mind when evaluating these comparisons:

1) The airfoil geometry used in the numerical calculation
only approximates that used in the experiment. The actual
configuration consisted of 22 stator airfoils and 28 rotor air-
foils. However, the calculation was performed with 22 of each
with an enlarged rotor geometry. In addition, because the
rotor airfoil was enlarged only in two directions (not in the
spanwise direction), the aspect ratio of the rotor airfoil used in
the calculation is smaller than the actual aspect ratio.

2) The enlargement of the rotor, together with the use of
the experimental value of the Reynolds number (100,000/in.),
results in a larger Reynolds number for the number for the
rotor (larger by a factor of 28/22). The rescaling of the rotor
geometry requires the modification of the Reynolds number to
simulate equivalent conditions in the calculation. It is not clear
how this modification should be effected.

3) The axial gap between the airfoils in the experiment was
15% of the chord length. It is difficult to estimate the equiva-
lent axial gap in the case of the modified rotor. The calcula-
tion was performed using an axial gap that was 15% of the
average chord length.

4) The tip clearance in the experiment was 1.4% of the
span, whereas the tip clearance used in the present calculation
was 0.4% of the span. A preliminary calculation with a clear-
ance of 1.4% resulted in separated flow on the suction side of
the rotor in the last 40% of the chord in the vicinity of the
clearance region. Experience indicates that the Baldwin-Lo-
max turbulence model does not predict eddy viscosities accu-
rately in separated regions. For this reason, the clearance was
reduced until the flow reattached. Accurate calculations for
large clearance cases will require a turbulence model that
performs well in separated regions.

Hub-to-Tip Variations of Time-Averaged Pressures

Figures 2a-2¢ and 3a-3c show tiime-averaged stator and
rotor surface pressure distributions. The experimental data
presented in these figures were obtained with an axial gap of
50% ,° whereas the numerical data were obtained with an axial
gap of 15%. However, the results of Ref. 1 indicate that the
axial gap has negligible effect on time-averaged stator surface
pressures and, at most, a weak effect on time-averaged rotor
surface pressures. Hence, the following comparisons between
theory and experiment, to a large extent, do indicate the
performance of the present computational approach (subject
to the geometrical and other approximations discussed ear-
lier).

Figures 2a-2c show experimental and numerical time-aver-
aged pressure coefficients C, on the stator at 2.0, 50.0, and
98.0% of the span, respectively (these pressure values are
plotted as a function of the axial distance along the stator).
The pressure coefficient is defined as

_ Pavg — (pt)inlet

P 1/ Zﬁ’inlet(’-’2

where p,,, is the static pressure averaged over one cycle,
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Fig. 2 Spanwise variation of time-averaged pressure distributions on
the stator: a) 2.0% span; b) 50.0% span; ¢) 98.0% span.

(P)inle: and pin are the average total pressure and density,
respectively, at midspan at the inlet, and w is the velocity of
the rotor at midspan. The dashed lines in all these figures
represent the numerical results at midspan. The midspan data
is provided to enable comparisons and to show the changes in
stator loads from hub to tip.

The comparison between theory and experiment is good all
the way from the hub to the tip. A small separation bubble
was found on the trailing edge circle of the stator in the
numerical results. This is seen as a spatial fluctuation in pres-
sure toward the trailing edge of the stator. The computed
two-dimensional results of Ref. 2 are almost identical to the
three-dimensional results presented here.

Figures 3a-3c show the time averaged C, distributions on
the rotor airfoil at 2.0, 50.0, and 87.5% of the span,
respectively. The dashed lines on these figures once again
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Fig. 3 Spanwise variation of time-averaged pressure distributions on
the rotor: a) 2.0% span; b) 50.0% span; ¢) 87.5% span.

represent the numerical data at midspan. Figures 3a-3c¢ show
a reasonably good agreement between theory and experiment.
The numerical results lie close to the range of experimental
data, except at the hub. The suction side of the rotor airfoil in
the region of the hub shows larger calculated values of pres-
sure than found experimentally. It is not yet clear whether the
geometrical approximations made to obtain the calculated
values of pressure or an accuracy problem, or an experimental
uncertainty causes this difference between theory and experi-
ment. However, on the pressure side of the airfoil, an excellent
agreement between the experimental and numerical data is
obtained from hub to 87.5% of the span. Comparisons at
larger values of the span cannot be expected to be good
because the tip-leakage vortex in the experiment is much
stronger than the one found in the calculation. (This is because
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of the larger clearance between the rotor and the casing in the
experiment.)

As in the case of the stator, a small separation bubble was
found on the trailing edge circle of the rotor. The bubble is
seen as a sharp dip and rise in the pressure curves of Figs.
3a-3c. Unlike the stator C, distribution, the three-dimensional
calculation yields midspan time-averaged pressures that are
better than the two-dimensional results of Ref. 2. The two-di-
mensional suction side pressure was lower than the experimen-
tal value by about 5% in the region (5.0 <x <6.0). The
three-dimensional calculation shows a smaller mismatch be-
tween theory and experiment.

3r — NUMERICAL RESULTS
O SUCTION SIDE, EXPERIMENT
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Fig. 4 Spanwise variation of pressure-amplitude distributions on the
stator: a) 2.0% span; b) 50.0% span; c¢) 98.0% span.
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Hub-to-Tip Variations of Pressure Amplitudes

The amplitude of the temporal pressure fluctuation is a
measure of the unsteadiness of the flow. Figures 4a-4c show
pressure amplitudes C, on the surface of the stator plotted as
a function of the axial distance. The quantity C, is defined as

C — Pmax — Pmin

P 1/ 201000

where puax and pyi, are the maximum and minimum pressures
that occur over a cycle at a given point. The symbols in all of
these figures represent the midspan experimental values of
Ref. 1. In general, all the curves are very similar to each other
and to the midspan experimental values.

The agreement between experiment and theory at midspan
is fairly good. The numerical data seem to form a wider large
amplitude region than that found experimentally. In addition,
the predicted peak is to the left of the experimental peak.
These distortions are because of a combination of reasons
discussed in the following.

The current calculation uses an equal number of stator and
rotor airfoils. A simple acoustic analysis tells us that in such a
situation every harmonic in time (if one were to perform a
Fourier decomposition of the unsteady pressures in the region
between the stator and rotor) results in a propagating wave in
the axial direction. In the experimental configuration there are
22 stator airfoils and 28 rotor airfoils. This results in only the
higher harmonics in time giving rise to propagating waves; the
lower harmonics give rise to decaying signals. Since the higher
harmonics are much smaller in magnitude, the unsteady pres-
sure that reach the exit boundary are much smaller in the case
of the experiment. The reflective exit boundary condition used
in the calculation reflects the relatively large calculated pres-
sure waves that reach the exit boundary back into the system,
thus distorting the unsteady pressures everywhere in the
system.

The problem can be cured only to a limited extent by
developing a nonreflective boundary condition. This is be-
cause the far-field pressure signals being generated by the
one-rotor/one-stator system are different from those that
would be generated by a multirotor/multistator system. The
right approach is to perform a multirotor/multistator calcula-
tion (the reflective properties of the exit boundary condition
will be relatively less important for more realistic rotor and
stator airfoil counts). Such a calculation for the two-dimen-
sional case, with additional details on the importance of exit
boundary conditions, is presented in Ref. 6. The multiple
airfoil results of Ref. 6 show a considerable improvement over
the one-rotor/one-stator results. Current computer speed and
memory limitations make a multirotor/multistator calculation
in three spatial dimensions extremely expensive.

Figures Sa-5c show pressure amplitudes on the rotor at 2.0,
50.0, and 98.0% span, respectively. The symbols in these
figures once again represent experimental values at midspan.
Unlike the stator pressure amplitudes, the rotor pressure am-
plitudes change considerably as we move from hub to tip. The
leading edge peak first increases and then decreases in the
spanwise direction. The suction side peak continually de-
creases from hub to tip. However, the pressure side ampli-
tudes on the rotor remain almost the same from hub to tip.

The agreement between theory and experiment at midspan
is not as good as in the case of the stator. The suction side
amplitude peak is shifted to the left of the experimental one.
A sizable portion of the pressure side peak toward the trailing
edge is due to strong pressure waves being reflected back from
the exit boundary. The stator pressure amplitude distributions
tend to be predicted better because the rotor airfoils shield the
stator airfoils from the reflected pressure waves (reflected off
the exit boundary). The numerical C, distribution of Fig. 5b is
in agreement with the two-dimensional, one-rotor/one-stator
calculations in Ref. 6 that are obtained with a reflective exit
boundary condition. The numerical data shown in Fig. 5b do
predict all the qualitative features shown by the experiment.
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Instantaneous Pressures in the Stator and Rotor Passages

Figure 6 shows pressure contours at the hub at a particular
instant in time. Although the calculation was performed with
only two airfoils, for the sake of clarity this contour plot
depicts several airfoils. The information regarding the addi-
tional airfoils is obtained from the periodicity condition. The
figure shows small-amplitude, high-frequency oscillations su-
perimposed on the contours. These oscillations are caused by
the decoupling of the continuity, momentum, and energy
equations that occur at low Mach numbers and will disappear
for calculations at higher Mach numbers. One interesting
feature is that the suction side pressure minimum on the hub

— NUMERICAL RESULTS
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Fig. 6 Instantaneous pressure contours at the hub.

in the stator row does not occur on the stator airfoil. Instead,
it has moved into the channel. This feature has been observed
experimentally in Ref. 7. A similar phenomenon also occurs
on the rotor hub; in fact, this effect is more pronounced in the
rotor row.

Time-Averaged Limiting Streamlines and Near-Surface Velocities

The nature of the flow close to the surfaces of the rotor and
stator airfoils and the hub surface can be better understood
from the pattern of limiting streamlines on these surfaces and
from velocity vectors near these surfaces (one grid point away
from the surface). These streamline patterns not only yield
information regarding the flow close to the surface, but also
reflect the presence of fluid mechanical entities such as shocks
and vortices in the interior of the region under consideration.
The following results presented were obtained by releasing
particles on the grid surface just above the hub or airfoil
surface and then allowing those particles to move according to
the time-averaged velocity field. The motion of the particles is
restricted to the grid surface on which they were originally
released (the out-of-surface component of velocity is not used
to move the particle). The velocity vectors in the follow-
ing figures have all been normalized and, hence, do not repre-
sent the actual velocity magnitudes but only the local flow
direction.

Figure 7 shows limiting streamlines on the stator-hub sur-
face. The flow is uniformly axial in the inlet region and then
aligns itself to the stator passage as it moves through the
passage. The details of the flow in the leading-edge region are
also seen in Fig. 7. The stator and stator hub, together, are
topologically similar to a blunt fin mounted on a flat surface.
The flow separates as it approaches the leading edge of the
stator. This flow separation results in the formation of a
horseshoe vortex, one leg of which wraps itself around the
leading edge of the stator and then impinges on the suction
side at about 35% of the chord. The other leg of the vortex
enters the passage and impinges on the suction side of the next
stator. This leg of the vortex will be referred to as the passage
vortex in the rest of the text. Figure 7 also shows a saddle point
of separation with two attachment lines and two separation
lines. The first attachment line starts at the saddle point and
meets the airfoil surface on the leading-edge circle on the
pressure side of the stator. The second attachment line starts
at the saddle point and extends upstream toward the inlet
boundary. The separation lines extend from the saddle point
into adjacent passages. The horseshoe vortex is formed be-
tween the separation lines and the airfoil surface. The results
of Fig. 7 agree qualitatively with the experimental results of
Ref. 7 (obtained for a cascade geometry).

J. PROPULSION

Figure 8 shows limiting streamlines on the suction side of
the stator. The upward motion of the fluid particles near the
hub is caused by the passage vortex generated by the neighbor-
ing stator airfoil. The upward motion is confined to the first
15% of the span. This effect is a result of the passage vortex
being drawn toward the hub (the fluid in the passage vortex is
of lower total pressure and is, therefore, drawn toward a lower
radial location). Figure 8 also indicates the line of separation
that delineates the largely two-dimensional flow in the
midspan region and the vortex-dominated flow near the hub.

The upper half of Fig. 8 is qualitatively a mirror image of
the lower half because of the intersection of the stator and the
outer casing. The passage vortex associated with the casing has
a sense of rotation that is opposite to the sense of rotation of
the hub passage-vortex. Hence, it induces a downward flow on
the stator suction surface. This downward motion extends
almost all the way to midspan. The casing passage-vortex, just
like the hub passage-vortex, is pulled toward the hub because
it contains low total pressure fluid. However, unlike the hub
passage-vortex, which gets confined to the hub region because
of its downward motion, the casing passage-vortex gets elon-
gated and thus affects a greater portion of the stator surface.
The midspan flow on the suction side is largely two-dimen-
sional.

Figure 9 shows limiting streamlines on the stator pressure
side. The flow on this side is seen to be almost two-dimen-
sional everywhere except near the end-walls in the vicinity of
the leading edge (where the incoming boundary layer separates

Fig. 7

Fig. 8 Time-averaged limiting streamlines on the suction side of the
stator.
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and forms a horseshoe vortex). These observations are once
again in close agreement with those reported in Ref. 7.

Figure 10 depicts limiting streamlines on the rotor-hub sur-
face. The streamlines in this figure and in the following figures
pertaining to the rotor were generated using rotor-relative
velocities. As in the case of the stator, there is evidence of
leading-edge separation and the formation of a horseshoe
vortex. The secondary flow in the rotor passage is much
stronger than the secondary flow in the stator passage. The
rotor-passage flow is not aligned with the passage, but has a
large tangential component. Hence it can be expected that the
passage vortex impinges on the rotor suction side at a large
angle and thus creates a local stagnation region. This would
explain the higher pressures at midchord on the suction side of
the rotor (Fig. 3a). The saddle point of separation, the attach-
ment lines, and the detachment lines are all clearly discerned in
Fig. 10. Another feature that can be seen in this figure is a line
of separation on the suction side that extends from about 30%
chord all the way to the trailing edge of the rotor.

The rotor suction-side limiting streamlines are shown in Fig.
11a. As in the case of the stator, the end-wall passage vortices
induce strong radial components in the surface velocity field.
The figure clearly shows the two lines of separation caused by
the endwall passage vortices. Unlike the case of the stator,
these two separation lines tend to move toward each other and
the midspan region. The surface features mentioned above are
in agreement with the experimental results of Ref. 8, which are
shown in Fig. 11b. One difference between the experimental

Fig. 9 Time-averaged limiting streamlines on the pressure side of the
stator.

Fig. 10 Time-averaged limiting streamlines on the rotor hub.
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results shown in Fig. 11b and the numerical results of Fig. 11a
is that the spanwise location along which the radial component
of velocity is zero occurs at about 50% span in Fig. 11b and at
about 65% span in Fig. 11a, probably a result of the aspect
ratio of the rotor used in this study being smaller than that of
the experimental rotor.

Figure 12a shows limiting streamlines on the rotor pressure
side. In the first 30% of the chord from the leading edge there
is a strong radial outflow. This has been demonstrated in Ref.
8 to be a result of the “‘relative-eddy”’ effect. This eddy is the
axial component of the relative vorticity in the flow when
viewed from the rotating frame of reference. Additional de-
tails regarding the relative-eddy effect can be found in Ref. 8.
The flow in the latter 50% chord of the airfoil is almost
two-dimensional. Figure 12b shows experimentally obtained
surface-flow visualization for the same rotor.? There is good
agreement between the numerical results of Fig. 12a and the
experimental data of Fig. 12b.

Figure 13 shows the velocity vectors just above the rotor tip
in the clearance region. In the first half of the rotor (toward
the leading edge) the clearance flow is almost perpendicular to
the pressure-side edge, whereas in the second half of the airfoil

Fig. 11a Time-averaged limiting streamlines on the suction side of
the rotor.

L Ll bbbl bl
em 2 4 6 B 10 12 14 16 18 20

S8 W NE T NN B

Fig. 11b Experimental visualization of rotor suction side flow.
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Fig. 12a Time-averaged limiting streamlines on the pressure side of
the rotor.

Fig. 12b Experimental visnalization of retor pressure side flow.

the clearance flow is seen to be more inclined toward the
positive axial direction. These features are in agreement with
the experimental results shown in Fig. 12b.

Total-Pressure Contours at the Exit to the Stator and Rotor

The limiting streamlines and near-surface velocity vectors
presented above demonstrate the effect of the stator- and
rotor-generated passage vortices on the flow. A better under-
standing of the vortex structure can be obtained by looking at
contours of total pressure at the exit to the stator and the exit
to the rotor. The passage vortices contain fluid from the
end-wall boundary layers and the airfoil surface boundary
layers and, therefore, represent low total-pressure regions
(compared with freestream total-pressure values). The differ-
ence in vortex total pressures and freestream total pressure
enables one to clearly observe the passage-vortex structure by
studying total-pressure contours at appropriate locations.

Figure 14 shows time-averaged, total-pressure contours, in
the absolute frame of reference, at the exit to the stator (8.8%
of the stator chord behind the stator trailing edge). This figure
clearly shows three distinct entities: the hub passage-vortex,
the casing passage-vortex, and the wake of the stator. The hub
passage-vortex is seen to be confined to a region close to the

Fig. 13 Time-averaged flow directions in the rotor-tip clearance re-
gion.

HUB

Fig. 14 Total-pressure contours at the exit to the stator airfoil (in a
plane perpendicular to the hub axis).

hub, whereas the casing passage-vortex is elongated and occu-
pies a relatively larger portion of the span. The reason for this
difference in structure between the two vortices has already
been discussed. Figure 14 also shows the end-wall boundary
layers in the form of highly clustered total-pressure contours
at the lower and upper boundaries, respectively.

Time-averaged, total-pressure contours (in the rotating
frame of reference) just behind the rotor are depicted in Fig.
15. The contours are displayed on a plane perpendicular to the
axis of the hub and at a distance of 7.4% of the rotor chord
behind the trailing edge of the rotor. The end-wall passage
vortices seem to have merged into a single low total-pressure
region with its center at about 60% span. The experimental
results of Ref. 9 do not indicate such a merger. This apparent
merger of the low total-pressure regions in the numerical
simulation is most probably because of the sparsity of grid
points in the spanwise direction (in the midspan region). A
total of 25 grid points were used in the spanwise direction to
resolve the two endwall boundary layers and the region in
between them. At least twice as many grid points are required
for an adequate resolution in the spanwise direction. A calcu-
lation with a higher spanwise grid density is currently being
planned. Figure 15 also shows the tip-leakage vortex just
above the passage vortices. As in the case of the stator exit
plane, the end-wall boundary layers are clearly seen at the
upper and lower boundaries, respectively.
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HUB

Fig. 15 Total-pressure contours at the exit to the rotor airfoil (in a
plane perpendicular to the hub axis).

Areas for Future Research

One of the main differences between the experiment of Ref.
1 and the current numerical calculation is the use of an en-
larged rotor airfoil in the present study so as to permit a
one-stator/one-rotor simulation. This modification to the ro-
tor changed the aspect ratio and, in the process, the blade-
twist angles and other parameters that were discussed earlier.
The use of an equal number of rotor and stator airfoils (in-
stead of the actual airfoil count) results in unsteady pressure
waves that are different from the actual ones, thus distorting
the transient pressures and loads on the airfoil surfaces. The
computer code used to simulate the results presented in this
study is currently being modified to simulate an arbitrary
number of rotor and stator airfoils. Such an extension has
already been made to the two-dimensional single-stator/sin-
gle-rotor code of Ref. 2, and the results obtained from the
modified code are presented in Ref. 6.

The second problem that needs to be addressed is the turbu-
lence model. Experience indicates that an algebraic turbulence
model does not accurately predict eddy viscosities in regions of
separation and in wakes without requiring extensive fine-tun-
ing of the model. Hence, it is important to use a more gener-
ally applicable turbulence model, such as the two-equation
models. Preliminary investigations with the two-dimensional
code of Ref. 2 show that the K — ¢ turbulence model yields
more accurate estimates of the eddy viscosity in the separation
regions near the trailing edges of the blades and, hence, results
in smaller pressure fluctuations. Another problem area with
regard to turbulence modeling is the tip clearance region.
Currently, the values of eddy viscosity in the tip-clearance
region are set to zero. More generally applicable turbulence
models, such as the one of Ref. 10, may yield realistic eddy-
viscosity values for the clearance region.

One of the main problems in simulating unsteady three-di-
mensional flow in complex geometries such as turbomachinery
is the large amount of computer time required to obtain
accurate solutions. Until these computing times are reduced by
an order of magnitude or more, three-dimensional, multiro-
tor/multistator codes will only serve as research tools used to
understand the basic flow mechanisms; they will not be used in
the design process. Various improvements in linearization
techniques that will permit larger time-steps are currently be-
ing investigated to minimize computing times.

Inlet and exit boundary conditions affect the transient solu-
tion in the interior of the domain. Although nonreflective
boundary conditions can be developed, it is not clear whether
these boundary conditions will result in more accurate simula-
tions in all cases. This is because in real situations the first
stage may be followed by another stage, or the flow may exit
through a nozzle to the ambient, or it may encounter bends in
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the piping, to mention just a few of the possibilities. Simulat-
ing entire systems such as multistage turbomachinery with the
appropriate upstream and downstream conditions will require
far more computing power than is currently available. Hence,
the area of inlet and exit boundary conditions still requires
development.

Summary

An unsteady, thin-layer, Navier-Stokes code to study three-
dimensional rotor-stator interaction problems has been devel-
oped. The hub, outer casing, and rotor-tip clearance are all an
integral part of the code. The code was used to simulate sub-
sonic flow past a turbine stage for which considerable data
exist.

Results in the form of time-averaged surface pressures, sur-
face-pressure amplitudes (corresponding to the pressure fluc-
tuation in time), limiting streamlines for various surfaces,
near-surface velocity vectors, pressure contours in the stator
and rotor rows, and total-pressure contours at the exit to the
stator and rotor have been presented. Time-averaged pressures
from hub to tip are compared with experimental data. Com-
parisons with experimental data are also made for midspan
pressure amplitudes and rotor-surface velocities. In all cases
the numerical data compared well with the experimental data.

The problem areas to be addressed in the future are 1) the
use of multiple airfoils in the calculation, 2) the use of better
and more generally applicable turbulence models, and 3) the
development of improved inlet and exit boundary procedures
that can simulate a variety of inlet and exit conditions.
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