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Recent advances in theory and computational experiments have shown the need to refine the
previous categorization of magnetic reconnection at three-dimensional null points—points at which
the magnetic field vanishes. We propose here a division into three different types, depending on the
nature of the flow near the spine and fan of the null. The spine is an isolated field line which
approaches the null �or recedes from it�, while the fan is a surface of field lines which recede from
it �or approach it�. So-called torsional spine reconnection occurs when field lines in the vicinity of
the fan rotate, with current becoming concentrated along the spine so that nearby field lines undergo
rotational slippage. In torsional fan reconnection field lines near the spine rotate and create a current
that is concentrated in the fan with a rotational flux mismatch and rotational slippage. In both of
these regimes, the spine and fan are perpendicular and there is no flux transfer across spine or fan.
The third regime, called spine-fan reconnection, is the most common in practice and combines
elements of the previous spine and fan models. In this case, in response to a generic shearing
motion, the null point collapses to form a current sheet that is focused at the null itself, in a sheet
that locally spans both the spine and fan. In this regime the spine and fan are no longer perpendicular
and there is flux transfer across both of them.
© 2009 American Institute of Physics. �doi:10.1063/1.3257901�

I. INTRODUCTION

Magnetic reconnection is a fundamental process of en-
ergy release that lies at the core of many dynamic phenom-
ena in the solar system such as solar flares, coronal heating
events, geomagnetic substorms, and flux transfer events. Re-
connection in three dimensions has been shown to be com-
pletely different in many fundamental respects from the clas-
sically studied process in two dimensions.1–3 The main thrust
of reconnection theory at present is to understand the differ-
ent ways in which it may take place in three dimensions
�e.g., the books in Refs. 4 and 5�. A key point is that in three
dimensions reconnection occurs where a component of the
electric field parallel to the magnetic field is present—and
this can be in many different field configurations. For ex-
ample, reconnection may occur either at null points �e.g.,
Refs. 6–13� or in the absence of null points at quasi-
separatrix layers or hyperbolic flux tubes,14–23 or it may oc-
cur along separators that join one null point to another.7,24–31

Null points are common in the solar atmosphere32–35 and
are sometimes implicated in solar flares and coronal mass
ejections.36–41 Three-dimensional �3D� collapse of a null has
been described42–46 and stationary resistive flows near them
have been modeled.47–49 In particular, for a linear null and
uniform magnetic diffusivity, Titov and Hornig49 discovered
field-aligned flows when the spine current is small and spiral
field-crossing flows which do not cross the spine or fan when
the spine current exceeds a critical value.

A 3D null point possesses two different classes of field
lines that connect to the null: For a so-called positive null

point, a surface of field lines �called a fan by Priest and
Titov7� recedes from the null, while an isolated field line
�called the spine of the null� approaches it from two direc-

tions; for a negative null point, on the other hand the fan
approaches the null, while the spine recedes from it. �For an
alternative nomenclature, see Ref. 50.� The different types of
linear null were categorized by Parnell et al.

45 The generic
null in a potential magnetic field is an improper radial null,
with the fan perpendicular to the spine and the field lines in
the fan approaching or receding from essentially two direc-
tions �Fig. 1�b��. A particular case is the proper radial null in
which the field lines in the fan are radial �Fig. 1�a��. The
effect of a current along the fan is to make the fan and spine
no longer perpendicular �Fig. 3�b��, whereas a strong enough
current along the spine makes the fan field lines spiral �Fig.
3�a��.

There have been three steps toward categorizing recon-
nection at a null point due to �i� analytical ideal modeling,
�ii� kinematic resistive modeling, and �iii� computational ex-
periments. The initial analytical ideal treatment by Priest and
Titov7 aimed to understand the types of ideal motions that
are possible in the environment of a null point. They sup-
posed that the nature of reconnection is determined to a large
extent by the nature of the large-scale flows: They suggested
that an ideal flow across the fan would drive spine reconnec-

tion, in which a current forms along the spine, whereas an
ideal flow across the spine would drive fan reconnection with
a strong current in the fan. They also proposed separator

reconnection with a strong current along a separator joining
two nulls.

Since then, as we shall see in this paper, although behav-
ior reminiscent of the early spine and fan models may be
observed in certain limiting situations, recent numerical ex-
periments have suggested different forms of spine and fan
reconnection and also a hybrid spine-fan regime as being the
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generic modes that occur in practice. However, the existence
of separator reconnection has been well confirmed by a se-
ries of numerical experiments25,28,31,51 and its importance in
the solar corona has been stressed.27,30 In addition, quasi-
separatrix layer reconnection �called slip-running reconnec-
tion by Aulanier et al.

40� has been confirmed in numerical
experiments39,52–57 and in bright point and flare
simulations.17,58–61

Our aim here is simply to look more closely at the nature
of reconnection at a 3D null point and to propose a new
categorization to replace spine reconnection and fan recon-
nection. In Sec. II it is necessary to summarize the main
results from theory and computational experiments on null
point reconnection and to reinterpret them in the light of the
new regimes of reconnection that we are proposing. In Secs.
III–V we consider in turn the properties of the three new
types of reconnection, namely, torsional spine reconnection,
torsional fan reconnection, and the most common regime
spine-fan reconnection.

II. THEORY AND NUMERICAL EXPERIMENTS

A. Null points

The simplest linear null point �for which the magnetic
field increases linearly from the null� has field components

�Bx,By,Bz� =
B0

L0
�x,y,− 2z� �1�

in Cartesian coordinates or

�BR,B�,Bz� =
B0

L0
�R,0,− 2z�

in cylindrical polars so that � ·B=0 identically, where B0 and
L0 are constant. The field lines are given by

y = cx, z = k/x2,

where c and k are constants. The z-axis is the spine and the
xy-plane is the fan.

For this so-called proper radial null the fan field lines
are straight �Fig. 1�a��. It is a particular member �with a=1�
of a wider class of current-free improper radial null points
�a�1� with curved fan field lines, having field components

�Bx,By,Bz� =
B0

L0
�x,ay,− �a + 1�z� .

This is the generic form for a current-free null since the
proper radial null is structurally unstable in the sense that it
occurs only for a particular value of a, but for simplicity
much of the theory so far has used a proper radial null.

More generally, each of the three field components of a
linear null may be written in terms of three constants, mak-
ing nine in all. However, Parnell et al.

45 built on earlier
work62–64 and showed, by using � ·B=0, by normalizing and
by rotating the axes, that the nine constants may be reduced
to four constants �a ,b , j� , j�� such that

�
Bx

By

Bz

� =
B0

L0�
1 1

2 �b − j�� 0
1
2 �b + j�� a 0

0 j� − a − 1
��x

y

z
� ,

where j� /� is the current parallel to the spine and j� /� is the
current perpendicular to the spine. Furthermore, both nulls
and separators are susceptible to collapse to form current
sheets when the boundary conditions allow it.12,24,42

B. Kinematic ideal models

The effects in the ideal region around a 3D null of steady
reconnection were studied in the kinematic regime by Priest
and Titov7 extending earlier ideas.50 They solved the equa-
tions

E + v � B = 0 �2�

and

� � E = 0 �3�

for v and E when B is given by Eq. �1� and a variety of
different boundary conditions are imposed.

In particular, Eq. �3� implies that E=�� and then the
component of Eq. �2� perpendicular to B yields

spine

null point

fan

(a)

(b)

FIG. 1. Field lines for �a� a proper radial null and �b� an improper radial
null.
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B · �� = 0, �4�

which, for certain imposed boundary conditions, may be in-
tegrated along field lines �characteristics� to determine the
value of � �and therefore E� throughout the volume. Then
the component of Eq. �2� perpendicular to B determines the
plasma velocity normal to B everywhere as

v� =
�� � B

B2 . �5�

If a continuous flow is imposed across the fan �Fig.
2�a��, singularities in E and v are produced at the spine.
Priest and Titov7 speculated that this would produce a strong
current at the spine in what they dubbed spine reconnection.
They considered the effect of diffusion in a preliminary man-
ner but they were unable at the time to resolve the singulari-
ties at the spine. As an example, they considered flows with
no �-component and an electric field of the form E�

=veB0 sin � giving rise to a velocity

v�R =
2E� L0

2 z/B0

R�R2 + 4z2�
, v�z =

E� L0
2 z/B0

R2 + 4z2 ,

for which v�z is continuous at the fan z=0, while v�R is
singular at the spine R=0.

If, on the other hand, a continuous flow is imposed
across the spine �Fig. 2�b��, singularities are produced at the
fan together with a strong flipping flow �that Priest and
Forbes65 had previously discovered�. Priest and Titov7 sug-
gested that this would produce a strong current at the fan in
what they dubbed fan reconnection. A particular example is
given in terms of x̄=x /L, ȳ=y /L, and z̄=z /L by a potential
of the form �=veBe�x̄2z̄ / �4+ ȳ2z̄�1/2�, which produces a flow
field

�v�x̄,v�ȳ,v�z̄� =
ve

�x̄2 + ȳ2 + 4z̄2��4 + ȳ2z̄�3/2

� �2x̄ȳz̄�z̄3 − 1�

z̄1/2 ,
2�x̄2 + 4z̄2 + ȳ2z̄3�

z̄1/2 ,

�4 + ȳ2z̄ + x̄2z̄�ȳz̄1/2	 ,

for which v�ȳ is continuous on the planes z̄= �1, while v�x̄

and v�ȳ are singular at the fan �z̄=0�. However, this analysis
left open the questions as to whether it is possible to resolve
the singularity and also whether these pure states are likely
to be set up in practice.

C. Kinematic resistive models

The next step in the theory was to consider the effect in
3D of an isolated diffusion region where frozen-in flux
breaks down and the induction equation is typically of the
form

�B

�t
= � � �v � B� + � � �� � � B� .

Reconnection in 3D is very different in many respects from
that in two dimensions �2D�.

In 2D, a differentiable flux-transporting velocity w �Ref.
66� satisfying

�B

�t
= � � �w � B�

always exists apart from at the X-point itself. This velocity
has a hyperbolic singularity at an X-type null point, where
the reconnection takes place. The magnetic flux moves at the
velocity w and slips through the plasma, which itself moves
at v. Furthermore, the mapping of the field lines in 2D is
discontinuous at the separatrix field lines that thread the
X-point. This mapping discontinuity is associated with the
fact that field lines break and reconnect at one point, namely,
the X-point. While they are in the diffusion region, field lines
preserve their connections everywhere, except at the X-point.
Two flux tubes that move into the diffusion region break and
rejoin perfectly to form two new flux tubes that move out.

In 3D, surprisingly, none of the above properties carry
over and so the nature of reconnection is profoundly
different.3 First of all, a single flux tube velocity �w� does not
generally exist66,67 since E ·B�0, but it may be replaced by
a pair of flux velocities describing separately what happens
to field lines that enter or leave the diffusion region.3 Second,
the mapping of field lines is continuous if there is no 3D null
point or separatrix surface. Third, as they move through a 3D
diffusion region, magnetic field lines continually change
their connections. Fourth, two tubes do not generally break
and reform perfectly to give two other flux tubes: rather,
when the two flux tubes are partly in the diffusion region and
so are in the process of reconnecting, they split into four
parts, each of which flips in a different manner, a manifesta-
tion of the continual change in connections. �Note that, in
general, in 2D and 3D the flux velocity w is nonunique. We

(a) (b)

FIG. 2. Regimes envisaged from ideal motions: �a� Spine reconnection with
a strong spine current driven by continuous motions across the fan. �b� Fan
reconnection with a strong fan current and flipping of field lines above and
below the fan produced by continuous motions across the spine.

122101-3 3D null point reconnection regimes Phys. Plasmas 16, 122101 �2009�

Downloaded 26 Feb 2010 to 138.251.201.144. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



choose here to consider the case in which we select w by
insisting that w=v in the ideal region. The crucial distinction
is that in 2D a single w exists �and is singular�, while in 3D
reconnection no single velocity w exists that satisfies Eq. �9�
together with the constraint that w=v in the ideal region. See
Refs. 66 and 67 for further discussion.�

The first attempt to model kinematically the effect of an
isolated diffusion region was by Hornig and Priest10 who set
up a formalism and applied it to a case without null points.

They solved

E + v � B = �j , �6�

where ��E=0, j=��B /�, and � ·B=0. The idea was to
impose a sufficiently simple magnetic field that both the
mapping and the inverse mapping of the field can be found
analytically. Then, after writing E=��, the integral of the
component of Eq. �6� parallel to B determines � everywhere
as an integral

� =
 �j · B

B
ds + �e

along field lines, in terms of the values ��e� at one end of the
field lines and the distance s along field lines. Simpler, in
terms of a dimensionless stretched distance S such that
ds /B=L0dS /B0,

� =
 �L0j · B

B0
dS + �e. �7�

One way of isolating the reconnection region in these
kinematic solutions is by choosing a form of � that is local-
ized. So-called pure solutions have �e�0 and produce
counter-rotating �or flipping� flows of field lines that link the
diffusion region. The rate of flux reconnection is calculated
by evaluating the integral

d�mag

dt
=
 E�ds �8�

along a field line through the diffusion region.20,68 Then the
flow normal to the field lines is determined by the compo-
nent of Eq. �6� perpendicular to B as

v� =
��� − �j� � B

B2 . �9�

These solutions may be regarded as either kinematic �i.e.,
satisfying just the induction equation� or as fully dynamic in
the limit of uniform density and slow flow �since they also
satisfy the equations � ·v=0 and �p= j�B�.

Pontin et al.
69 applied this formalism to determine the

behavior of the magnetic flux when an isolated diffusion re-
gion contains a spiral null point, i.e., a null with current
directed parallel to the spine line. The imposed magnetic
field was

�Bx,By,Bz� =
B0

L0
�x − 1

2 j̄0y,y + 1
2 j̄0x,− 2z�

or

�BR,B�,Bz� =
B0

L0
�R, 1

2 j̄0R,− 2z� �10�

in cylindrical polars, with the spine and current both directed
along the z-axis, where j̄0 is a dimensionless current density.
The diffusion region was assumed to be a cylinder of radius
a and height 2b �Fig. 3�a��.

First of all, a pure elementary solution which describes
the core of the reconnection process was obtained by setting
the flow to zero outside the volume defined by the “enve-
lope” �F� of flux that threads the diffusion region. Inside F

the flow and flux velocities are purely rotational �i.e., in the
�-direction� so that there is no flow across either the spine or
the fan. The reconnection rate is �E�dl along the spine, and

(a)

(b)

FIG. 3. The field near a null point with �a� uniform spine current and �b�
uniform fan current.
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measures the rate of rotational mismatching of the flux ve-
locities of field lines entering and leaving the diffusion re-
gion.

To this solution any ideal solution ��id� may be added
and in particular they considered a stagnation-point flow of
the form �id=�0x0y0, which brings flux into F and carries it
out again. The result is a transition from O-type to X-type
flow near the null when �0 exceeds a critical value. What
this solution suggests, therefore, is that a type of spine re-
connection with strong current along the spine direction is
possible when there are twisting flows about the spine. This
is quite different from the spine reconnection that was envis-
aged in Priest and Titov7 and so here we propose to call it
torsional spine reconnection and discuss its properties fur-
ther in Sec. III.

Next, Pontin et al.
70 applied the same approach to a dif-

fusion region �D� containing a null point having a uniform
fan-aligned current �B0 j̄0 / ��L0�� in the x-direction and field
components

�Bx,By,Bz� =
B0

L0
�x,y − j̄0z,− 2z� .

The diffusion region was assumed to have the shape of a disk
of radius a and height 2b �see Fig. 3�b��, inside which the
magnetic diffusivity decreases smoothly and monotonically
from the null to zero at its boundary. Outside D it vanishes.

The resulting plasma flow was surprisingly found to be
quite different from the fan reconnection of Priest and Titov7

since it is found to cross both the spine and fan of the null.
Field lines traced from footpoints anchored in the fan-
crossing flow are found to flip up and down the spine,
whereas those that are traced from the top and bottom of the
domain flip around the spine in the fan plane, as envisaged
by Priest and Titov.7 The reconnection rate is again given by
an integral of form �8�, this time along the fan field line
parallel to the direction of current flow �here the x-axis�. For
such a mode of reconnection this expression can be shown to
coincide with the rate of flux transport across the fan �sepa-
ratrix� surface.70

It is possible to find a solution that has similar field line
behavior to the pure fan reconnection envisaged by Priest
and Titov,7 with flow across the spine but not the fan, by
adopting instead a field of the form �B0 /L0��x ,y− j̄0z3

/L0
2 ,

−2z� with a fan x-current 3B0 j̄0z2
/ ��L0

3� �see Ref. 70�. It is
also possible to model pure spine reconnection with flow
across the fan but not the spine by considering �B0 /L0�
��x ,y , j̄0y3

/L0
2−2z� with a fan x-current 3B0 j̄0y2

/ ��L0
3�.

Both of these fields have a vanishing current at the null.
However, a key property of a null point is the hyperbolic
field structure, which tends to focus disturbances and thus
generate nonzero currents at the null for the primary recon-

nection modes. The above pure spine and fan solutions
should therefore not be considered as fundamental or pri-
mary reconnection modes but as secondary reconnection

modes in the sense that the current vanishes at the null.
It has been suggested that solutions for spine reconnec-

tion in incompressible plasmas47 may not be dynamically
accessible, and while incompressible fan solutions6 are dy-

namically accessible,8,71–73 this breaks down when the in-
compressibility assumption is relaxed.71 It turns out that the
generic null point reconnection mode that is observed in nu-
merical experiments in response to shearing motions is one
in which there is a strong fan current with flow across both
spine and fan, and which is in some sense a combination of
the spine and fan reconnection of Priest and Titov.7 We pro-
pose here to call it spine-fan reconnection and discuss its
properties further in Sec. V.

D. Numerical experiments

Several numerical experiments have been conducted in
order to go beyond the constraints of analytical theory and to
shed more light on the nature of reconnection at a 3D null.
The aim was also to see whether the types of reconnection
envisaged qualitatively could indeed take place in practice
and to discover whether any other regimes are possible.

First of all, Galsgaard et al.
74 investigated propagation of

a helical Alfvén wave toward the fan plane, launched by a
rotational driving of the field lines around the spine. This led
to the concentration of current in the fan plane and suggests
the possibility of torsional fan reconnection which we shall
propose in Sec. IV. �For highly impulsive driving, coupling
to a fast mode wave that wraps around the null was also
observed.� On the other hand Pontin and Galsgaard75 used a
resistive magnetohydrodynamic �MHD� code to show how
rotational disturbances of field lines in the vicinity of the fan
plane can also produce the strong currents along the spine
that are symptomatic of torsional spine reconnection �Sec.
III�.

Then Pontin and Craig12 used an ideal Lagrangian relax-
ation code to follow the formation of current sheets by the
collapse of a line-tied 3D null in a compressible plasma. This
was a result of the focusing of externally generated large-
scale stresses in the field in response to an initial shearing of
either the spine axis or fan plane. Building on a previous
linear theory by Rickard and Titov,76 they found that locally
the fan and spine collapse toward each other to form a cur-
rent sheet singularity. This was followed up by Pontin et

al.,77 who used a resistive MHD code to investigate the for-
mation and dissipation of the current sheet in response to
shearing of the spine, as shown in Fig. 4. The results support
the idea of spine-fan reconnection in which current concen-
trates around the null �in a sheet spanning the spine and fan�.
Including compressibility does not affect the results qualita-
tively, except that in the incompressible limit the spine-fan
current is found to reduce purely to a fan current71 with
behavior closely resembling earlier fan reconnection
models.6,7 So pure fan reconnection can be either an incom-
pressible limit of spine-fan reconnection or, as we have seen
in Sec. II C, the result of a secondary fan current which
vanishes at the null.

III. TORSIONAL SPINE RECONNECTION

The type of reconnection set up at a 3D null depends
crucially on the nature of the flows and boundary conditions
that are responsible for the reconnection. Let us suppose first
that a rotation of the fan plane drives a current along the
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spine and gives rise to torsional spine reconnection, as
sketched in Fig. 5�a�. The nature of the reconnection is that
in the core of the spine current tube there is rotational slip-
page, with the field lines becoming disconnected and rotating
around the spine �see Ref. 75�: Fig. 5�b� shows on the left
side a particular magnetic field line and its plasma elements
at t= t0; in the upper part of the figure �above the shaded
diffusion region� this field line and its attached plasma ele-
ments rotate about the spine through positions at times t1, t2,
and t3; in the lower part of the figure �below the diffusion
region� the plasma elements that were on the field line at t0

rotate to positions at t1, t2, and t3 that are on different field
lines. A steady kinematic solution may be found following
the approach of Sec. II C. The electric field may be written as
the sum �E=��=��nid+��id� of a nonideal pure �elemen-
tary� solution satisfying

��nid + vnid � B = � � � B ,

and an ideal solution satisfying

��id + vid � B = 0 .

Consider a spiral null point �Eq. �10�� and suppose the
diffusion region is a cylinder of radius a and height 2b and

(a)

z

y

x

(b)

FIG. 4. �Color� �a� A shearing motion of a spine that is situated on the
z-axis. �b� The resulting collapse of spine and fan to form spine-fan recon-
nection, showing the current density contours �color� and flow velocity
�white� in the x=0 plane �after Ref. 77�.
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(b)
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FIG. 5. �a� A rotational motion of the fan �open arrows� driving torsional
spine reconnection with a strong current �solid arrows� along the spine.
�b� Rotational slippage of fields entering through the top of the diffusion
region on a curved flux surface, showing as solid curves the locations of the
plasma elements at t= t1, t= t2, and t= t3, that initially �t= t0� lay on one field
line. �c� The reconnection rate measures a rotational mismatching of flux
threading the diffusion region, namely, the difference between the rates of
flux transport through surfaces A and B.
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that the magnetic diffusivity has the form �=�0f�R ,z�,
where f�0,0�=1 and f�R ,z� vanishes on the boundary of the
diffusion region and outside it.

The field lines for this spiral null may be obtained by
solving

dR

dS
=

L0BR

B0
= R, R

d�

dS
= 1

2 j̄0R,
dz

dS
= − 2z .

Suppose we start a field line at the point �R ,� ,z�
= �R0 ,�0 ,b� at S=0. Then the field line equations are

R = R0eS, z = be−2S, � = �0 + 1
2 j̄0S . �11�

These give a mapping from an initial point �R0 ,�0 ,b� to any
other point �R ,� ,z� along a field line. The inverse mapping
is

R0 = Re−S, �0 = � − 1
2 j̄0S , �12�

where S=− 1
2 log�z /b�.

A. Pure nonideal solution

The pure elementary solution describes the core of the
reconnection process. It is obtained following Refs. 10 and
69 by solving E+v�B=�j, with ��E=0, j=��B /�, and
� ·B=0. Thus we write E=��nid with �nid given by Eq. �7�
and set �e�0 so that the flow vanishes outside the diffusion
region. Inside the diffusion region the flow and flux veloci-
ties have no component across either the spine or the fan. For
the spiral magnetic field �BR ,B� ,Bz�= �B0 /L0��R , 1

2 j̄0R ,−2z�
and mapping �11�, �nid becomes

�nid = − �nid0
 ��/�0�e−2SdS ,

where �nid0=2B0bj̄0�0 / ��L0�. Then, once a form for � is
assumed, this may be integrated to give �nid�S ,R0 ,�0�. After
using the inverse mapping �12�, we can then deduce
�nid�R ,� ,z� and therefore E and v� everywhere.

If a diffusion region is isolated, a change in connectivity
of field lines may be studied, by following field lines an-
chored in the ideal region on either side of the diffusion
region. A diffusion region is, in general, isolated if �j is
localized in space. In practical cases in astrophysics, this is
likely to be mainly because j is localized but, in addition,
sometimes because as a consequence � is also localized.
Some numerical simulations have a localized �, whereas oth-
ers have a uniform � or a purely numerical dissipation. How-
ever the important feature in all these cases is that the prod-
uct �j is localized. Now, in each of our solutions below, we
follow Refs. 10, 69, and 70 in choosing a spatially localized
�j by imposing a spatially localized resistivity profile to-
gether with a j that is not localized. The reason for doing this
is to render the mathematical equations tractable since we
have not yet discovered a way to do so with a localized j.
The quantitative spatial profiles of physical quantities will
depend on the � profile, but the qualitative topological prop-
erties of the field line behavior in such models are expected
to be generic and independent of the particular profile chosen

for �. Indeed, the topological properties of the reconnection
models of Refs. 10, 69, and 70 have been verified by the
numerical simulations.53,75,77

There are four regions with different forms for �nid, as
illustrated in Fig. 6, which shows a vertical cut in the first
quadrant of the Rz-plane. In region �1� threaded by field lines
that enter the diffusion region �shaded� from above, we as-
sume �nid�R ,z��0 so that there is no electric field or flow.
The same is true in region �2� which lies above the flux
surface zR2=ba2 that touches the upper corner �a ,b� of the
diffusion region. We calculate below the forms of �nid�R ,z�
in the diffusion region �3� and in region �4� threaded by field
lines that leave the diffusion region through its sides.

For example, let us assume that � vanishes outside the
diffusion region �D� and that inside D it has the form

� = �0�1 −
R4

a4 	�1 −
z2

b2	 ,

which peaks at the origin and vanishes on the boundary of D.
First, we use mapping �11� to substitute for R and z, and
integrate with respect to S from the point T�R ,b� on the top
of D to the point P�R ,z� inside D �Fig. 6�. Then we use the
inverse mapping �12� to replace R0 and S, and finally we
obtain the potential throughout D �region �3� in Fig. 6� as

�nid�R,z� = − 1
2�nid0
�1 −

z

b
	 −

R4

a4 � z

b
−

z2

b2	
+

1

3
� z3

b3 − 1	 +
R4

a4 � z2

b2 −
z3

b3	� . �13�

This then determines the components of the electric field
�E=��nid� everywhere in D as

FIG. 6. The projection of magnetic field lines and the diffusion region in the
first quadrant of the Rz-plane, showing four different regions, in which
�nid�R ,z� is calculated. A magnetic field line whose projection intersects the
top of the diffusion region in T�R ,b� and the side in Q�a ,zs� contains typical
points P�R ,z� inside and beyond the diffusion region. The bounding field
line zR2=ba2 is shown as dashed.
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ER =
��nid

�R
=

2�nid0R3

a4 � z

b
−

2z2

b2 +
z3

b3	 ,

Ez =
��nid

�z
=

�nid0

2b
�1 +

R4

a4 −
z2

b2 −
4zR4

ba4 +
3z2R4

b2a4 	 .

In order to find �nid�R ,z� in region �4� of Fig. 6, we start
with the values of �nid at the point Q�a ,zs� on the side of the
diffusion region �Fig. 6� and then calculate �nid at any point
P�R ,z� that lies on the same field line in region �4� to the
right of Q. Thus, after setting �R ,z�= �a ,zs� in expression
�13� for � that holds in the diffusion region, we obtain

�nid�a,zs� � f�zs� = − �nid0
1

3
−

zs

b
+

zs
2

b2 −
zs

3

b3� . �14�

Since ideal MHD holds in region �4�, �nid�R ,z� is constant
along the field line �zR2=zsa

2� joining Q to P, and so the
value of �nid at P is simply

�nid�R,z� = f� zR2

a2 	
= − �nid0
1

3
−

z

b

R2

a2 +
z2

b2

R4

a4 −
z3

b3

R6

a6� . �15�

The solution for z�0 can be obtained in a similar manner by
integrating from z=−b.

We may now make various deductions from the solution.
The reconnection rate depends on the form of � and is given
in order of magnitude by


 E�ds � 2E0b ,

where E0 is the electric field at the center of the diffusion
region and 2b is the dimension of the diffusion region along
the magnetic field direction. In our example, E0=Ez�0,0 ,0�
=�nid0 / �2b�=�j0, where j0= j̄0B0 / ��L0� is the value of the
current at the origin, and along the spine, Eq. �13� implies
that

Ez�0,0,z� =
�nid0

2b
�1 −

z2

b2	 ,

and so the reconnection rate becomes, more accurately,



−b

b

Ez�0,0,z�dz = 4
3E0b = 2

3�nid0. �16�

The other feature that we can deduce from the electric
field components is the perpendicular plasma velocity given
by Eq. �9�. In particular, on the fan plane �z=0� inside D,
ER=0, Ez= ��nid0 /2b��1+R4

/a4�, �jz= ��nid0 /2b��1−R4
/a4�,

and BR=B0R /L0 so that there is a rotational component given
by

v� =
�Ez − �jz�BR

B2 = v0
R3

a3 ,

where v0=�nid0L0 /�baB0�1+ 1
4 j̄0

2��. The nature of the flow
becomes clear if we subtract a component parallel to B in
order that vz=0 �we are free to do this since the component

of v parallel to B is arbitrary in the model�. After doing this
we find that vR vanishes, leaving v= �0,v� ,0�, i.e., the flow
corresponds to a pure rotation �as in the solutions of Refs. 10
and 69�.

B. Extra ideal solution

To the above pure diffusive solution any ideal solution
may be added satisfying E+v�B=0 and ��E=0, for
which the potential ��id� satisfies

B · ��id = 0.

Thus, once the functional form �id�R0 ,�0� is chosen at the
points �R0 ,�0 ,b� on z=b, say, that form of �id is constant
along field lines given by mapping �11�. The resulting varia-
tion of �id�R ,� ,z� throughout space is given by substituting
for R0 and �0 from the inverse mapping �12�.

As an example, suppose

�id�R0,�0� = �id0
R0

2

a2

on the plane z=b. Then throughout the volume we find

�id�R,�,z� = �id0
R2z

a2b
,

which implies electric field components

ER =
�id0

a2b
2Rz, Ez =

�id0

a2b
R2.

The plasma velocity components follow from v�=E�B /B2

as

�v�R,v��,v�z� =
�id0L0

a2bB0

�− 1
2 j̄0R3,R3 + 4Rz2, j̄0R2z�

��2R2 + 4z2�
,

�17�

where �2=1+ 1
4 j̄0

2. In particular, we notice that the flow van-
ishes on the spine R=0, and that in the fan z=0 there is a
rotational flow that linearly increases with distance
v��R ,� ,0�=−�id0L0R / �a2bB0�2�.

The reconnection of field lines takes the form of a rota-
tional slippage. Field lines entering the diffusion region have
a flux velocity win=−��in�B /B2, while those that leave it
have a flux velocity wout=−��out�B /B2. �in is obtained by
integrating along field lines that enter from the ideal region
on one side, while �out is obtained by integrating backward
along field lines that leave from the other side. The rate of
slippage between inward and outward flux bundles is given
by 	w=wout−win and represents the rate of reconnection,
which we have evaluated directly above in Eq. �16�. This
reconnection rate, obtained by integrating E� along the spine,
measures the difference between the rates of flux transport
across surfaces A and B in Fig. 5�c�.

Note that the extra ideal solution does not change the
rate of relative slippage. However, it does allow for different
external conditions, such as rotation above and below the
diffusion region in the same or opposite senses. To see the
effect of a nonrotational ideal flow, see Ref. 69. In the solu-
tion given above, the physical quantities E and v are con-
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tinuous but not differentiable at the boundary between re-
gions �3� and �4�. This is a sacrifice made for tractability and
pedagogic purposes. For a solution with differentiable physi-
cal quantities, see Ref. 69.

In the above, the diffusion region was imposed to be a
cylinder whose width �a� and height �2b� are parameters of
the solution. The formation, in a self-consistent fashion, of
such a cylindrical diffusion region was observed in the simu-
lations described by Pontin and Galsgaard.75 In one of their
simulations they imposed a twisting perturbation of the mag-
netic field in the vicinity of the fan plane. As the disturbance
propagated inwards toward the null, it was dominated by a
helical Alfvénic wave—traveling along the field lines and
thus stretching out along the spine. The result was a tube of
current focused around the spine, giving a large aspect ratio
to the diffusion region �b
a�. During the process of tor-
sional spine reconnection the narrowing and elongation of
the current tube are likely to continue until the rotational
advection that twists the field and intensifies the current is
balanced by the rotational slippage.

IV. TORSIONAL FAN RECONNECTION

Now suppose that we rotate the field lines near the spine
in opposite directions above and below the fan. Then a cur-
rent builds up in the fan. Within the fan current sheet, field
lines experience rotational slippage,74,75 in the opposite sense
above and below the fan, in what we propose to term tor-
sional fan reconnection �Fig. 7�. Again there is no flow
across either spine or fan.

The counter-rotation �above and below the fan� of the
region around the spine builds up a double-spiral structure
near the null point, with a current that possesses two compo-
nents: an axial component that reverses sign at the fan plane
and a radial component. A counter-rotating part to the diffu-
sion velocity ��jRBz� is set up in the �-direction that reverses
sign at the fan.

In order to model such reconnection, we consider what
we term a double-spiral null point with field components

�BR,B�,Bz� =
B0

L0
�R,2 j̄0

z2M+1RN−1

b2M+N−1 ,− 2z	 , �18�

where M and N are positive integers and the corresponding
current components are

�jR, j�, jz� =
2B0 j̄0

�b2M+N−1L0
�− �2M

+ 1�z2MRN−1,0,Nz2M+1RN−2� .

An alternative solution to the one presented below is outlined
in the Appendix.

The field line equations for a mapping from an initial
point �R0 ,�0 ,b� to any other point �R ,� ,z� are

R = R0eS, z = be−2S,

� = �0 +
2 j̄0

4M − N + 4

R0
N−2

bN−2 �1 − e−�4M−N+4�S� ,

and the inverse mapping is

R0 = Re−S,

�0 = �0 −
2 j̄0

4M − N + 4

R0
N−2

bN−2 �1 − e−�4M−N+4�S� ,

where S=− 1
2 log�z /b�.

Let us follow the approach of Sec. III A and calculate
the pure nonideal solution. We shall assume the diffusion
region to be a disk of radius a and height 2b, with the same
diagram as before �Fig. 6�, except that the diffusion region is
now expected to be in the shape of a thin disk �with b�a�
rather than a thin tube �with b
a�. Assuming, as before, that
��R ,z� vanishes in regions �1� and �2�, we evaluate it in
region �3� by integrating from a point T�R ,b� on the top of
the disk to a point P�R ,z� inside the diffusion region. After
using Eq. �7� and the mapping and setting �e=0, the expres-
sion for the potential at P�R ,z� then becomes

� = − �nid0
 �

�0
��2M + 1�

R0
N

bN
e−�4M−N�S

+ 2N
R0

N−2

bN−2 e−�4M−N+6�S	dS . �19�

We adopt the following general form for the magnetic
diffusivity inside the diffusion region �D�:

FIG. 7. A rotational motion of the spine �open arrows� driving torsional fan
reconnection with a strong current in the fan and slippage of field lines
�solid arrow�.
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� = �0�1 −
Rm

am 	�1 −
zn

bn	 ,

which peaks at the null point and vanishes on the boundary
of D when m and n are positive and n is even. After substi-
tuting into Eq. �19� and using the mapping and inverse map-
ping, we find the potential throughout the diffusion region. In
particular, it transpires that an important constraint on the
constants M, N, m, and n is that Ez be finite and continuous
at the fan plane. As an example, one set of such constants
that works is M =2, N=6, m=4, and n=2, for which

�nid�R,z� = − �nid0� z2R4

2b6 +
5z3R6

3b9 −
5z4R6

2b10 +
5z5R10

b11a4

+
5z6R6

6b12 −
5z6R10

2b12a4 +
z8R4

b12 −
5z4R10

2a4b10 −
3z6R4

2b10

−
3z4R8

2b8a4 −
3z6R8

b10a4 −
3z8R8

2b12a4� . �20�

The corresponding components of electric field are

ER =
��nid

�R
= −

�nid0

b
�2z2R3

b5 +
10z3R5

b8 −
15z4R5

b9

+
50z5R9

b10a4 +
5z6R5

b11 −
25z6R9

b11a4 +
4z8R3

b11 −
25z4R9

a4b9

−
6z6R3

b9 −
12z4R7

b7a4 −
24z6R7

b9a4 −
12z8R7

b11a4 � ,

Ez =
��nid

�z
= −

�nid0

b
� zR4

b5 +
5z2R6

b8 −
10z3R6

b9 +
25z4R10

b10a4

+
5z5R6

b11 −
15z5R10

b11a4 +
8z7R4

b11 −
10z3R10

a4b9 −
9z5R4

b9

−
6z3R8

b7a4 −
18z5R8

b9a4 −
12z7R8

b11a4 � .

In order to find ��R ,z� in region �4� of Fig. 6, as before,
we calculate its value at any point Q�a ,zs�, where a field line
leaves the diffusion region, and then project that value along
that field line. Thus, after setting �R ,z�= �a ,zs� in Eq. �20�,
we obtain

�nid�a,zs� � f�zs� = − �nid0� zs
2
a4

2b6 +
5zs

3
a6

3b9 −
5zs

4
a6

2b10

+
5zs

5
a6

b11 +
5zs

6
a6

6b12 −
5zs

6
a6

2b12 +
zs

8
a4

b12 −
5zs

4
a6

2b10

−
3zs

6
a4

2b10 −
3zs

4
a4

2b8 −
3zs

6
a4

b10 −
3zs

8
a4

2b12 � . �21�

Since ideal MHD holds in region �4�, �nid�R ,z� is constant
along the field line �zR2=zsa

2� joining Q to P, and so the
value of �nid at P is simply

�nid�R,z� = f� zR2

a2 	 = − �nid0� z2R4

2b6 +
5z3R6

3b9 −
5z4R8

2a2b10

+
5z5R10

a4b11 +
5z6R12

6a6b12 −
5z6R12

2a6b12 +
z8R16

a12b12

−
5z4R8

2a2b10 −
3z6R12

2a8b10 −
3z4R8

2a4b8 −
3z6R12

a8b10

−
3z8R16

2a12b12� . �22�

The electric field components vanish in both the spine
and the fan but are strong just above and below the fan,
which is where the reconnection of field lines occurs by ro-
tational slippage in a similar fashion to torsional spine recon-
nection. Near the spine and fan we have to lowest order in R

and z,

ER = −
�nid0

b
�2z2R3

b5 	, Ez = −
�nid0

b
� zR4

b5 	 .

The reconnection rate is the maximum value of ��E�ds�
along the set of field lines �R2z=R0

2b� that enters the diffu-
sion region from above at T�R0 ,b� and leaves at Q�a ,zs�.
Along such field lines the integral is a function of R0 /a and
b /a, namely,


 E�ds =
 E · B

B
ds =
 E · B

BR

dR = −
�nid0

b

 5z4R5

b9

−
5z6R5

b11 +
5z6R9

b11a4 −
12z8R3

b11 −
5z4R9

b9a4 +
12z6R3

b9

+
12z6R7

b9a4 +
12z8R7

b11a4 dR

= �nid0� R0
4

2b4 +
5R0

6

3b6 +
9R0

8

2b8

b4

a4 +
5R0

10

b10

b4

a4 −
5R0

8

b8

b2

a2

−
5R0

12

3b12

b6

a6 −
9R0

12

2b12

b8

a8 −
R0

16

2b16

b12

a12� .

When R0�a
b for a slender disk-shaped diffusion region,
this reduces to


 E�ds = −
�nid0a4

2b4 �R0
4

a4 +
9R0

8

a8 −
9R0

12

a12 −
R0

16

a16� .

If a and b are held fixed and R0 is varied, the maximum
value of this occurs at R0�0.90a, giving a reconnection rate
of

�
 E�ds	
max

= 0.9�nid0
a4

b4 . �23�

As for torsional spine reconnection, the reconnection
rate is proportional to the potential �nid0=2B0bj̄0�0 / ��L0�,
but in this case, as well as being proportional to the current
density j̄0 and diffusion region height �b�, it also depends on
its aspect ratio �a /b�.

Again, as before, a wide range of ideal solutions ��id�
may be added to the diffusive solution. Thus if, for example,
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�id�R0 ,�0�=�id0R0
n
/an on the top �z=b� of the diffusion re-

gion, the fact that it remains constant along field lines �R2z

=R0
2b� determines

�id�R,�,z� = �id0
Rnzn/2

anbn/2 ,

from which the electric field components can be deduced.
For instance, the case n=4 gives an electric field of

�ER,E�,Ez� =
2�id0

a4b2 �2R3z2,0,R4z� ,

which implies a plasma velocity with components normal to
the magnetic field of

�vR,v�,vz� =
1

B2 �− EzB�,EzBR − ERBz,ERB��

=
�id0

g�R,z�
�− 4 j̄0z6R9,�2R5z

+ 8R3z3�b9,8 j̄0z7R8� ,

where g�R ,z���R2+4R10z10 j̄0
2
/ �b18�+4z2�B0a4b11

/L0. In
particular, it gives a rotational component �v�� that is odd in
z and so represents the kind of counter-rotation that is typical
of torsional fan reconnection.

V. SPINE-FAN RECONNECTION

In general, if the driving motions tend to shear a null
point rather than rotate it, then the result will be spine-fan
reconnection. A shear disturbance of either the spine or fan
of the null will tend to make the null “collapse.” That is, the
resulting Lorentz force acts to increase the displacement, just
as at a 2D null �see Ref. 12� and as at a separator.25,26 This
collapse is opposed by the line tying at the boundaries, and
what occurs is that the shear distortion tends to focus in the
weak field region in the vicinity of the null point, forming a
localized current sheet.12,77

What distinguishes spine-fan reconnection from the
other null point reconnection modes is that flux is transferred
across both the spine and fan. Furthermore, the current con-
centration is in the form of a localized sheet that is inclined
at an intermediate angle between the spine and fan—indeed
the current sheet contains part of both the spine and the fan
�see Figs. 4�b� and 8�a��. As mentioned above, the reconnec-
tion rate for this mode of reconnection is obtained by inte-
grating E� along the fan field line with the maximum value of
�E�ds. By the symmetry of the simple models described
herein, this is the field line parallel to the current orientation
at the null �perpendicular to the applied shear�. The recon-
nection rate thus obtained measures exactly the rate of flux
transport in the ideal region across the fan separatrix surface.
To illustrate the properties of this mode of null point recon-
nection, we describe here briefly the results of resistive MHD
simulation runs �see Ref. 77 for an initial description�.

In the simulations, a shear velocity is prescribed on the
�line-tied� z-boundaries, which advects the spine footpoints,
see Fig. 4�a� �the results are qualitatively the same if the fan
is distorted instead�. The current sheet that forms in response

to the shearing is localized in all three directions about the
null. However, in the plane of the applied shear �perpendicu-
lar to the current orientation at the null� the magnetic field
and current patterns have a similar appearance to a 2D
X-point configuration. As one moves away from the null in
the fan along the direction of current flow, the magnetic field
strength parallel to the current �sometimes known as the
“guide field”� strengthens, while the current intensity
weakens—see Fig. 8.

The boundary shearing velocity is ramped up to a con-
stant value �v0� at which it is held until being ramped down
to zero, at t=�=3.6 �space and time units in the code are
such that an Alfvén wave would travel one space unit in one
time unit for uniform density and magnetic field �B�=1, 


=1�. The resistivity is uniform. Current focuses at the null

(a)

(b)

FIG. 8. �a� The magnetic structure of the field in spine-fan reconnection,
showing the field lines and the �shaded� diffusion region. �b� The corre-
sponding motion of flux across both the spine and fan �large light arrows�.
The current sheet is shaded �with the part below the fan having a lighter
shading than the part above� and contains a current flowing in the
x-direction �large dark arrows�: Its width is l, its total length Ltot in the
yz-plane, and its length Lc common to spine and fan.
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during the period when the driving occurs, and when the
driving ceases both the current and reconnection rate peak,
after which the null gradually relaxes toward its original po-
tential configuration. Under continuous driving, it is unclear
whether a true steady state would be set up or whether the
current sheet would continually grow in dimensions and in-
tensity �see Ref. 77�. This is an open question for future
study. For the case of transient driving, the peak current and
reconnection rate increase linearly with the driving velocity.
Here we examine more closely the sheet geometry, and its
scaling with the driving velocity, and also investigate the
scaling of this geometry, the peak current, and peak recon-
nection rate with resistivity.

As previously noted, the current sheet that forms in
spine-fan reconnection is focused at the null, locally span-
ning both the spine and fan. The sheet has a tendency to
spread along the fan depending on the parameters chosen
�spreading is enhanced by lowering v0 or increasing the
plasma-��. We examine four spatial measurements �see Fig.
8�b�� associated with the current sheet, focusing on the time
when the current magnitude is a maximum and defining the
boundary of the sheet to be an isosurface at 50% of �j�max.
The sheet thickness is l, the length Ltot is the total extension
in the yz-plane �normal to j�, Lc is the length of the collapsed
section �within which the sheet contains both spine and fan�,
and the width w is the extension of the sheet along the
x-direction �parallel to j�.

The scaling of these dimensions with �peak� driving ve-
locity v0 is shown in Fig. 9 �we fix �=5�10−4�. The angle �
between the current sheet and the z=0 plane can be seen to
increase as the driving velocity increases. This can be set
down to the fact that the stronger driving creates a stronger
Lorentz force—the force that is responsible for the collapse.
As expected, Lc increases as v0 increases. This is a result of
the fact that the spine footpoints are sheared further for larger
v0, and there exists in fact a close correspondence;
�Lc cos �� /2�v0�. In contrast to Lc, Ltot shows a linear de-

crease with v0 �as does w, see Ref. 77�, showing that as the

collapse becomes stronger the distortion of the magnetic
field focuses closer and closer around the null itself. The
decline in Ltot with increasing v0 must of course cease once
Ltot=Lc, as is the case for the strongest driving considered.
Examining finally the sheet thickness l, any variation is
within the error bars of our measurements, moreover the res-
olution is not sufficient for firm conclusions to be drawn.

We turn now to consider the scaling of the current sheet
with �, setting v0=0.02, see Fig. 10. As � decreases, jmax

increases, while the reconnection rate decreases. In both
cases, with the limited data of this preliminary study, the
proportionality appears to be somewhere between power law
and logarithmic. That the run with the largest resistivity does
not seem to fit the trend for the reconnection rate is likely to
be because the current significantly dissipates before reach-
ing the null itself due to the high resistivity ��=0.002�. Ac-
companying the increase in jmax with � is, as expected, a
decrease in the thickness l. On the other hand, the overall
dimensions of the sheet, Ltot and w, seem to be unaffected by
�, to within our measurement accuracy. Finally, as � de-
creases and the current becomes more intense, the collapse
becomes more pronounced as evidenced by increases in both
Lc and �.

The relationships discussed briefly above certainly war-
rant further investigation with carefully designed, higher res-
olution simulations, as do the corresponding scalings for the
continuously driven case.

VI. CONCLUSION

We have here outlined a new categorization of reconnec-
tion regimes at a 3D null point. In place of the two previous
types, namely, spine and fan reconnection, we suggest that
three distinct generic modes of null point reconnection are
likely to occur. The first two are caused by rotational mo-
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tions, either of the fan or of the spine, leading to either tor-
sional spine reconnection or torsional fan reconnection.
These involve slippage of field lines in either the spine or the
fan, which is quite different from classical 2D reconnection,
but they do involve a change in magnetic connection of
plasma elements, i.e., magnetic reconnection.

Even though pure spine or fan reconnection may occur
in special situations �such as when � ·v=0 or there are high-
order currents�, it is much more likely in practice that a hy-
brid type of reconnection takes place, which we refer to as
spine-fan reconnection. This is the most common form of
reconnection that we expect to see in three dimensions at a
null point since it is a natural response to a shearing of the
null point. It is most similar of all the 3D reconnection re-
gimes to classical 2D reconnection and involves transfer of
magnetic flux across both the spine and the fan. It possesses
a diffusion region in the form of a current sheet that is in-
clined to the fan and spine and has current localized in both
the spine and fan, focused at the null.

In future, much remains to be determined about these
new regimes of reconnection that have been observed in nu-
merical experiments. One is the shape and dimensions of the
diffusion regions and their relation to the driving velocity
and the magnetic diffusivity. Another key question is as fol-
lows: What is the rate of reconnection at realistic plasma
parameters, and is there a maximum value? Since the ana-
lytical theory is so hard in three dimensions, progress is
likely to be inspired by future carefully designed numerical
experiments.

ACKNOWLEDGMENTS

We are grateful to Guillaume Aulanier, Klaus Galsgaard,
and our colleagues in the St. Andrews and Dundee MHD
Groups for stimulating discussions, especially Gunnar
Hornig and Clare Parnell, and to the EU SOLAIRE network
and UK Particle Physics and Astronomy Research Council
for financial support. E.R.P. is also grateful to Jiong Qiu,
Dana Longcope, and Dave McKenzie for inspiring sugges-
tions in Bozeman where this work was completed.

APPENDIX: ALTERNATIVE TORSIONAL FAN
SOLUTION

Here we present another pure nonideal solution for tor-
sional fan reconnection. It possesses a much simpler electric
current, but the assumed form for the magnetic diffusivity
has to be more complex and vanish on the fan. We follow
Sec. IV but consider a different form for the magnetic field
of a double-spiral null point, namely,

�BR,B�,Bz� =
B0

L0
�R,

j̄0zR

2b
,− 2z	 �A1�

and corresponding current components

�jR, j�, jz� =
B0 j̄0

�bL0
�− 1

2R,0,z� .

The field line equations for a mapping from an initial point
�R0 ,�0 ,b� to any other point �R ,� ,z� are

R = R0eS, z = be−2S, � = �0 + 1
4 j̄0�1 − e−2S� , �A2�

and the inverse mapping is

R0 = Re−S, �0 = � − 1
4 j̄0�1 − e−2S� , �A3�

where S=− 1
2 log�z /b�.

Assuming, as before, that ��R ,z� vanishes in regions �1�
and �2�, we evaluate it in region �3� of Fig. 6 by integrating
from a point T�R ,b� on the top of the diffusion region to a
point P�R ,z� inside the diffusion region. After using Eq. �7�
and the mapping �A2� and setting �e=0, the expression for
the potential at P�R ,z� then becomes

� = − �nid0
 �

4b2�0
�4b2e−4S + R0

2e2S�dS . �A4�

As an example, we adopt the following form for the
magnetic diffusivity inside the diffusion region �D�:

� = �0�1 −
Rm

am 	 z4

b4�1 −
zn−4

bn−4	 ,

which peaks above and below the null point and vanishes on
the boundary of D. We have also chosen it to vanish on the
fan plane since jz vanishes there and in order to facilitate a
closed form solution with continuous physical quantities. Af-
ter substituting into Eq. �A4� and using the mapping �A2�
and inverse mapping �A3�, we find the potential throughout
the diffusion region as

�nid�R,z� = − �nid0� 1

12
−

z6

12b6 +
zm/2Rm

�m − 12�bm/2am

−
z6Rm

�m − 12�b6am
−

1

2n + 4
+

zn+2

�2n + 4�bn+2

−
zm/2Rm

�m − 2n − 4�bm/2am
+

zn+2Rm

�m − 2n − 4�bn+2am

+
zR2

24b3 −
z4R2

24b6 +
zm/2+1Rm+2

4�m − 6�bm/2+3am

−
z4Rm+2

4�m − 6�b6am
−

zR2

�8n − 8�b3 +
znR2

�8n − 8�bn+2

−
zm/2+1Rm+2

4�m − 2n + 2�bm/2+3am

+
znRm+2

4�m − 2n + 2�bn+2am� , �A5�

and the corresponding components of electric field as

ER =
��nid

�R
= −

�nid0

b
� mzm/2Rm−1

�m − 8�bm/2−1am
−

mz6Rm−1

�m − 12�b5am

−
mzm/2Rm−1

�m − 2n − 4�bm/2−1am
+

mzn+2Rm−1

�m − 2n − 4�bn+1am

+
zR

12b2 −
z4R

12b3 +
�m + 2�zm/2+1Rm+1

4�m − 6�bm/2+2am

−
�m + 2�z4Rm+1

4�m − 6�b5am
−

zR

�4n − 4�b2 +
znR

�4n − 4�bn+1

122101-13 3D null point reconnection regimes Phys. Plasmas 16, 122101 �2009�

Downloaded 26 Feb 2010 to 138.251.201.144. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



−
�m + 2�zm/2+1Rm+1

4�m − 2n + 2�bm/2+2am
+

�m + 2�znRm+1

4�m − 2n + 2�bn+1am� ,

Ez =
��nid

�z
= −

�nid0

b
�−

z5

2b5 +
m/2zm/2−1Rm

�m − 12�bm/2−1am

−
6z5Rm

�m − 12�b5am
+

zn+1

2bn+1 −
m/2zm/2−1Rm

�m − 2n − 4�bm/2−1am

+
�n + 2�zn+1Rm

�m − 2n − 4�bn+1am
+

R2

24b2 −
z3R2

6b5

+
�m/2 + 1�zm/2Rm+2

4�m − 6�bm/2+2am
−

z3Rm+2

�m − 6�b5am
−

R2

�8n − 8�b2

+
nzn−1R2

�8n − 8�bn+1 −
�m/2 + 1�zm/2Rm+2

4�m − 2n + 2�bm/2+2am

+
nzn−1Rm+2

4�m − 2n + 2�bn+1am� .

We note that the solutions in the lower half plane z�0
may be obtained simply by replacing S=− 1

2 log�z /b� by S=
− 1

2 log�−z /b�. There is a term in Ez that behaves like R2
/b3

and so is usually discontinuous at the fan plane. This discon-
tinuity may, however, be avoided by setting m=2 and bal-
ancing it with the term in zm/2Rm when a2

/b2=12�n−1��n
+6� / �5�n−4��n+1��. As a simple example, let us consider
n=6 and a2=72b2

/7. Then, in order to find ��R ,z� in region
�4� of Fig. 6, as before, we calculate its value at any point
Q�a ,zs� where the field line leaves the diffusion region, and
then project that value along the field line. Thus, after setting
�R ,z�= �a ,zs� into Eq. �A5�, we obtain

�nid�a,zs� = − �nid0� 1

48
+

zs

7b
−

171zs
2

280b2 +
3zs

4

14b4

+
29zs

6

120b6 +
zs

8

16b8� .

As before, ideal MHD holds in region �4�, and so �nid�R ,z�
can be calculated from the fact that it is constant along the
field line �zR2=zsa

2� joining Q to P. The electric field com-
ponents follow and can be used to calculate the reconnection
rate and the flow velocity in the usual way.

Comparing the two forms of torsional fan solution, the
advantage of the one presented in Sec. IV is that the mag-
netic diffusivity peaks at the null point, but the slightly un-
welcome feature is that the current density vanishes along
the spine and fan. By comparison, the solution in this appen-
dix has a current that vanishes at the null point but nowhere
else in the spine or fan, but its disadvantage is that we had to
choose the diffusivity to vanish in the fan.
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