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Summary. The first results of numerical fully three-dimensional simulations
of formation and evolution of the large-scale structure of the Universe are
presented. The simulations were carried out in the framework of the adiabatic
scenario of galaxy formation.

The model contains 323 =32 768 collisionless particles interacting only
gravitationally. Equal mass particles are moving in a collective gravitational
field which is smoothed at small scales. Evolution of perturbations is followed
in an expanding cosmological model.

The numerical procedure starts at Zg,y =~ 5.25, when (8p/p), = 0.22 and
ro = 5 h3do Mpc is our cell length. Previous evolution was computed in accord
with the approximate non-linear solution by Zeldovich. The initial perturba-
tions of density as well as velocity were taken as a Fourier sum with random
coefficients ranging from A i, = 40 A7do MPC Up t0 A max = 160 A780 Mpc. The
latter is the size of the cube where particles travel. The total number of cells
to solve the Poisson equation is 323, thus the shortest wavelength in the
initial perturbations contains eight cells.

The structure formation begins from pancakes, then evolves to the net-
work structure, then to formation of clumps connected by strings and after-
wards to formation of huge isolated clumps. Because of statistical initial
perturbations one can observe different phases of the process in different
places simultaneously.

The two-point correlation function was calculated. The model correlation
function is shown to agree reasonably over the range 12 £ 2 0.05 with the
observational one. We were mainly interested in the scale 5 A7 Mpc < < 160
hieo Mpc; the smaller as well as larger scales were beyond the opportunity of
our simulations. The mass function of clumps agree reasonably with that of
Abell clusters.

1 Introduction

Recent observations of the large-scale galaxy distribution urge theorists to develop more and
more realistic models of the formation of structure in the Universe. Numerical simulation of
self-gravitating systems is very important.
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Three-dimensional numerical experiments have been carried out in the framework of the
isothermal scenario of galaxy formation (for example, Fall 1978; Aarseth, Gott & Turner
1979; Gott, Turner & Aarseth 1979; Efstathiou & Jones 1979; Efstathiou 1979; Efstathiou
& Eastwood 1981). In these works most attention was paid to the evolution of the correla-
tion function and formation of groups and clusters. However, a very important feature of
the large-scale structure, an existence of flattened objects similar to the Local Supercluster
(de Vaucouleurs 1976; Tully 1982) and elongated ones similar to the Perseus chain (Einasto,
Joever & Saar 1980), have not found an explanation in the isothermal picture.

The large voids of galaxies discovered in recent years (Gregory & Thompson 1978;
Einasto er al. 1980; Kirshner et al. 1981) make another, probably more serious, challenge to
the isothermal scenario (Zeldovich & Shandarin 1982). On the other hand, this structure is
inevitable in the adiabatic picture (Zeldovich 1978 and references therein). However, until
now there were no necessary estimates of the correlation function in this scenario.

Studying the evolution of adiabatic perturbations, Zeldovich (1970) showed that objects
forming at the non-linear stage must have a very flattened shape. Due to their shape they
were called ‘pancakes’. Afterwards it was found that a pancake is a particular type of a few
generic singularities arising in potential flows of a cold medium (Arnold 1972; Arnold
Zeldovich & Shandarin 1982). Pancakes are a specific kind of singularities as they give birth
to the large-scale structure. The subsequent evolution, as it was shown in the two-
dimensional simulation (Doroshkevich et al. 1980) leads to intersection of the pancakes and
to formation of the well-pronounced cellular structure.

In this paper we present the first results of three-dimensional numerical simulations of
the large-scale structure formation in the adiabatic scenario. These results show that the
theory explains two observational facts: (i) the power-law shape of the two-point spatial
correlation function over the range 12 £2 0.05 (with the power index v ~ 1.8) and (ii)
existence of prolate filaments connecting the clusters.

Our numerical experiments show that the filaments form later than the pancakes. How-
ever, they have much stronger concentration of density and therefore one can observe them
much more easily. This is in qualitative agreement with the general theory of singularities
(Arnold et al. 1982 and references therein) and the observations (Einasto et al. 1980).

In the present paper we pay more attention to the most interesting qualitative results.
Many other questions will be discussed in detail in subsequent works. These results are useful
first of all for the adiabatic scenario in the neutrino dominated Universe (Doroshkevich et al.
1981).

Our model is described briefly in Section 2 and the technique of simulation is considered
in Section 3. Section 4 is devoted to a description of the model evolution. In Sections 5 and
6 we give estimations of the two-point correlation function and the mass function of rich
clusters. Section 7 contains a short discussion of the main results.

2 Model

The Einstein—de Sitter universe (2 = 1) is considered. Initial perturbations are generated in a
random process and have a flat spectrum of density contrast in the range of scales restricted
both above and below. For the sake of convenience the computations were carried out in
coordinates comoving with the mean expansion of the Universe (Shandarin 1980).

The main problem is to compute motion of a large number of particles in the gravita-
tional field created by them. Since we are interested only in properties of the large-scale
structure, the smoothed potential technique is the most suitable one. In accordance with this
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technique, each particle is treated as moving in the collective field of all others, although the
influence of its closest neighbours comes into account with some inaccuracy.

The total number of equal mass particles in the model is 323 = 32 768. We used the wide
spread CIC (‘cloud-in-cell’) method. The fast Fourier transformation is applied when solving
a system of 32768 linear equations arising after discretization of the Poisson equation
(Hockney 1970).

The region within which the particles were allowed to move is a cube with the side being
equal to 32r,. Here ro =Sh™! Mpc is the linear size of a cell, h = Hy/(100 kms™ ! Mpc™!).
Boundary conditions are periodic, thus a particle coming out of the cube returns back on
the opposite side with the same velocity.

At initial time density perturbations on the scale ro were (8p/p), =0.2. After this the
evolution of the system is treated numerically till the time when density perturbations reach
the value of (8p/p),, = 4.8. For the whole time the expansion factor increases by a factor
of 22.

In numerical simulations done in the framework of the isothermal scenario the generation
of initial conditions is simple. Usually initial conditions were produced by choosing
randomly the positions of the particles in some region of space. The velocities were fixed
according to the Hubble law, sometimes with peculiar components (Aarseth et al. 1979). In
the case of the adiabatic models this method cannot be applied because it is necessary to
distribute the particles in such a way that the spectrum of density fluctuations should not
contain short harmonics.

In this work we used the non-linear theory of gravitational instability (Zeldovich 1970)
as a basis to produce the initial conditions. Only the growing mode of perturbations was
involved. The application of the non-linear theory permits us to start the calculations from
the moment when perturbations are rather large.

Let q be a fixed Lagrangian (unperturbed) coordinate of a particle at z =0 and 8S/dq be
the relevant vector of the particle displacement from the homogeneous state. Then,
according to the non-linear theory, the coordinates and velocities in a growing mode are (we
assume £ =p/p.=1)

t 2/3 aS
ri=a(r)[qi—(~) k) ()
Iy 04;
da 2 (t )”3 oS 2 o (t )2/3 @
v.=—r.—.* _ __’ t =¢.—., al‘z_ R
' adt ' 3ty \ty 0g; H 3H, 'H

where H, is the Hubble constant at z =0 and a(¢) is the expansion factor. Function S is
assumed to be a three-dimensional Fourier sum:

kmax kmax kmax . )
sw=a %% $ 1409 cos (kq) + BO) sin (ka) /42,
ky=—kmax k,="Kkmax k3=~ kmax 3)
k1,2’3=ﬂ'l/16r0, l=0,i'l,...i4, k2=k%+k%+k§¢0

Here A(k) and B(k) are Gaussian random numbers with (4) =(B)=0and (A42?)=(B?) = |,
a is the amplitude of perturbations. The value k.., is equal to 7/4ry (that is, the shortest
wavelengths in the initial density spectrum correspond to eight particles and eight cells).

One can easily find that in the linear approximation the density contrast of the matter is

kmax
splp=—a Y5 5 [A(k) cos (kq) + Bk) sin (kq)]. *)
k

— *max
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So equations (1)—(3) determine an approximately flat spectrum of density fluctuations with
rms Fourier components equal to a. We have chosen a =8 x 1073 (z = 5.25).*

All calculations were carried out in dimensionless comoving coordinates. In order to
return to real dimensional values it is necessary to fix the linear size of a cell (o) and the red-
shift when the calculations were started (Zg,y ). These values are selected on the base of best
agreement between the simulation results and (i) observed two-point correlation function
(Groth & Peebles 1977) and (ii) data on luminosity function of Abell clusters (Bahcall
1979). It was found that best agreement was reached when ro =5 h™! Mpc and zg, = 5.25,
where i = Hy /(100 km s™! Mpc™!). Unfortunately both numerical and observational data are
not very precise and this is the reason why the accuracy of 7y and zg, is not better than
30—-50 per cent. Consequently all model parameters have the same uncertainty. The fact
that we were able to fit the two functions by using only two parameters (ro and zg, ) gives
us more confidence in the model.

With 7o and zg,y, fixed this way the rms value of Fourier components of §p/p is
3.2x107*° at the recombination. The spectrum of the density contrast is constrained by
(z=0):

Amin =40 A~ Mpc (Mpin = %7 A 30in P = 1.8 x 1016 p71 M)t
and
Amax = 160 77 Mpc (Mpax = Y3030 P = 1.2 x 108 171 M),

The main characteristics of the model are: (1)  =1; (2) the linear size of the cube is
32xre=160h"" Mpc at z =0; (3) the mass inside the cube is 1.2 x 108 1™ M,; (4) the
spectrum of the density perturbations is flat for A jn <A <Amaxs (5) on scales I <\ pin/
2m~64(1+z) 'h ! Mpc the density contrast weakly depends on [ and is approximately
equal to 8 x 10™* at decoupling of the matter and radiation. It seems that this value does not
contradict the data on AT/T especially in the neutrino dominated Universe.

3 Method

The investigation of the motion of a large number of particles via self-gravitation was carried
out in comoving coordinates. Let r, u, ® be the coordinated, the velocity and the gravita-
tional potential of a particle, then in the cosmological model the corresponding dimensionless
comoving values ¥, v, ¢ are (Shandarin 1980):

- 1l r ~l o

r=— —, v=H@)r+v —(—~), )
ary a\ty
2 (fo)\?

“5al3) ©
o\!

- 5 8nG 3

p=pa| ) =pa [Perit(2), (7)
2 ~ 1 /7ro\2

® = 1Gpa 0 +5 (=) ®)
3 a2 4fo

* Thus the initial amplitude of density perturbations is \/(80/p)* = a~/N = 0.2 at the scale ~ 1/kmax =
(4/m)r,, where N = 729 is the total number of various Fourier harmonics.

Actually some components with shorter wavelengths are present. The shortest one is A = A jpin/+/3, but
the number of such harmonics is small. This is so because the amplitudes of Fourier harmonics of 6/p are
assumed to be constant (in a statistical sense) inside a cube and not inside a sphere in phase space of k (3).
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with
tg=——=, a=\— ( t) , to<0,t<0. 9)
Hy(—tp) t 2

Here ¢, is an arbitrary dimensionless constant (connected with zg,4), 7o is the constant of
linear dimensionality (the cell size). In dimensionless coordinates the equations of motion
and the Poisson equations are

v _ 0¢ %6 6(p—1)
di  oF’ aF? A (10

It is worth noting that dimensionless time 7 is negative. The cosmological singularity
corresponds to 7 = — and 7 =0 corresponds to infinite future.

The system of equations (10) is solved numerically with the ‘cloud-in-cell’ method
(Hockney 1970). The main steps of this method are the following. (1) We define a space grid
(in our case 32 x 32 x 32) and calculate a density at the mesh-points. (2) We compute the
gravitational potential at the mesh-points. The discrete analogue of Poisson equation (10) is
a system of 32768 equations that is solved numerically using the fast Fourier transforma-
tion. [All the harmonic components are involved when solving the Poisson equation,
including the ones whose wavelengths are shorter than 2m/kya..] (3) The particles are
shifted by one time-step in accordance with their velocities and accelerations which were
obtained after the numerical differentiation of the potential and the consequent interpola-
tions. The following scheme of integration of the equations of motion was chosen (tildes are
omitted):

X1 =Xp VAL + 8, A2 = x, +a, +by; a, = vhAt, b, =gaA2%/2, (1)
xxcl(:-n;_xn+VnAt+(2/3gn+1/3gn+1)Af2/2 xn+1+1/3(bn+1_bn) (12)
Vn+1=Vn+(gn+ggr+1)At/2ﬁan+1=an+bn+bn+1~ (13)

This scheme of integration can be easily modified for the case of variable time-step A¢. The
quickly growing value 7“2 in the Poisson equation is a reason for decreasing At.

Our program was checked with the exact one-dimensional solution (Sunyaev & Zeldovich
1972; Doroshkevich, Ryabenki & Shandarin 1973).

X=qy +%2 sin[% (71x—1)], 1<qy,<33 (14)

- 2 27

e Fca| | (1)

Y E R ”
dqy 32

Solutions (14)—(16) are valid up to the moment of infinite density at the point X =g, =17,
that is up to 7, = —+/m/16 ~ —0.44. At the beginning of the test (Zgay = —0.8) all particles
(32%) were homogeneously distributed in ¥ and Z directions (gy=j,i=1,2,...,32; q, =k,
k=1,2,...,32; 5,, =7, =0) but in X-direction coordinates and velocity of the particles
were fixed in accordance with equations (14) and (15), where g, =i,i=1,2,...,32.

The test was carried out for the special choice of A7: A7, =0.03 and A7,/A%,_, =0.93.
The test took only 25 time-steps. Some inaccuracies of the method gave rise to the not
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A

per cent
|

Figure 1. The errors of the one-dimensional test (see equation 19) are plotted as a function of 7. ;* is the
time when a density singularity occurs according to the exact solution. Curve 1 is the rms error of particle
coordinates, curve 2 is the deviation of kinetic energy in numerical calculations compared to exact one,
and curve 3 is A (see equation 19). All values are percentages.

complete accordance with equations (14)—(16) at f > fgar. The growth of computational
errors is illustrated in Fig. 1. The curve 1 gives the errors (percentage) in the displacement of
100 randomly chosen particles. The curve 2 shows the growth of the kinetic energy error of
the whole system 7. Ty, is the ‘true’ kinetic energy:

- 1 33 e 1 33 4 -
Te=7 f dqxﬁuijf dqx =g sin [n/16(7 )] = 32/7°, (17)
1 1

During the test (—0.8 <7< —044)T,, increased by a factor of 36 and the difference
between T and Tt, at the end of computations was only 5 per cent.

The most sensitive accuracy check is based on the Irvine—Dmitriev—Zeldovich theorem,
which in variables with tildes, has the form (€ = 1):

ar d(7+217/~ FeiYmol 0 1[50 Nav=-¥ 3 (18)
— == t; == muji; J=— - =7 i
di di o2 2,0 y i

Curve 3 in Fig. 1 demonstrates the relative error of the fulfilment of equation (18), that is
.~ iU - L
A= [T—U—2f = df -(Tstm—Um)] (T - ). (19)

The computations of the three-dimensional model, outlined in Section 1, were performed
with time-dependent A7. At the beginning (fg¢ = —3) the time-step was 0.05 and then it
decreased with the law A?,/A?n_l =098. At 7 =—0.64, when 142 steps were made,
calculations were interrupted. The kinetic energy of the system at the end was 360 times
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greater than that at the beginning. The maximum A (equation 19) during calculations was
=~ 14 per cent, that is it was very close to A for one-dimensional test (14)—(16)at 7 =7 .

4 Evolution of the model

The evolution of the model is demonsrated in Fig. 2. In this figure orthogonal projections of
4000 particles (each eighth) are shown. Fig. 2(a) corresponds to an expansion factor 6.25
from the beginning. It is at this time that the best correspondence to the observed Universe
is achieved. This was found from comparison of the observed and simulated both the
correlation function and the number densities of rich clusters of galaxies. Large clumps of
particles which stand for rich clusters of galaxies can be easily seen in Fig. 2(a). It is possible
to recognize some webs connecting these ‘clusters of galaxies’. Moreover, wide areas of a
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Figure 2. Three snapshots of the system. (a) Scale factor @ =6.2a44,p¢ and (Sp/,o),.0 =1.6; (b) a=

13.6agiart; (ﬁp/p),.o >3.3; (c) @ = 18agtart; (80/p)y > 4.8. Only each eighth particle is plotted in the
figures.

30
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low density can be found. But except for the clusters, the structure seems to be very washed-
out and dim. At this time (8p/p), = 1.6. At least part of this effect is explained by reduced
number of particles plotted in the figure.

Fig. 2(b) corresponds to the expansion factor 13.6 and (8p/p),, = 3.3. Beside the clusters
one can see very long and massive strings or filaments which tie some clusters together. One
also can observe large patches of a very low density. Fig. 2(b) represents the most developed
structure.

Later the structure begins to decay and instead of small clusters (at z =0 the whole mass
in the clusters is 5—10 per cent), linked by massive bridges—superclusters, the system of
isolated big clusters gradually begins to form. The main source of the cluster enhancement is
swallowing of superclusters. The stage of evolution is illustrated in Fig. 2(c) [expansion
factor is 18 and (6p/p),, = 4.8].

Fig. 2 shows the distribution of mass density, not that of galaxies. In line with the
adiabatic scenario galaxies form only inside regions of high density, that is inside filaments
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Figure 2 (c)

and perhaps inside pancakes. So galaxy distribution should have a better pronounced
structure than that of the matter.

To demonstrate some aspects of the matter density structure, we picked out a sphere of
radius R =6r, =304 ! Mpc with a randomly chosen centre. The sphere contains ~ 1100
particles and the particles are shown in Fig. 3. To produce an impression of a three-
dimensional picture, every particle is drawn as a triangle whose size is inversely proportional
to the distance from an observer placed at the distance 1.5 R =45k~ ! Mpc from the sphere
centre.

In Fig. 3 three different projections of the particle inside the sphere are shown. They
were obtained with two successive rotations by 45° around an axis designated by +. One sees
that within the sphere there are two rich clusters and two chains. A chain of particles
conneets the clusters, while another one begins in the bottom cluster, then goes up and left
in Fig. 3(c) and leaves the sphere (at the upper left of Fig. 3a) without touching the upper
cluster. A very complicated spatial distribution of the particles makes it too difficult to
realize the relative location of the chains.
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Figure 3. A small fragment of the particle distribution plotted in Fig. 2(b), when a = 13.6 agtqart. As
opposed to Fig. 2 here all particles in the sphere with radius R = 67,=30A"! Mpc are plotted. Every
particle is depicted as a triangle whose size is inversely proportional to distance from an observer. The
observer is situated at a distance 1.5 R from the centre of the sphere.

A more effective but much more complicated way is to draw a surface of a constant density
level. In Fig. 4 a part of a surface defined as p=2.5p (p is the mean density, p = 1) is
shown. It is depicted inside the same sphere. Two dots show the cluster centres. The chains
in the tigure touch each other near the upper cluster. This is the result of a coarse-grained
grid, which was used to define the surface.

The level surfaces constructed over large space reveal that there exists a system of chains
(or filaments) extending over the whole volume of the model. The clusters of different
richness classes are situated at the points of bifurcation of the chains.

Two-dimensional objects, that is the pancakes, are the most difficult ones to investigate.
On the scale 30—50 Mpc the surface of the pancake is far from being a plane, so none of the
discussed methods were successful in finding the pancakes. Nevertheless, when placing a
plane layer normal to a chain, we observed the particles inside this layer forming strings.
Probably these strings result from intersection of the layer with pancakes.
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5 The correlation function

The computation of the spatial two-point correlation function was based on the standard
definition:

é(r)=_Np 1

rNcAV_ , N¢ <AV =Ny (20)
where Np is a number of pairs within the distance interval 7, r +dr. N, is a number of
randomly chosen centres (in our case N, = 450); 7 is the mean particle density (7 = 1), and
AV=4n[3[(r +dr)®—r] is the volume between successive spheres. The usual difficulty
arising from sample boundaries is avoided owing to periodicity. At z = 0 (which corresponds
to Fig. 2a) the resulting £(r) is shown in Fig. 5. The correlation function is approximated by
a power law £ = (3.5h7" Mpc/r)"® at 347 <r < 154! Mpc, being in agreement with obser-
vations. At smaller 7(r < 34~ " Mpc) & differs significantly from the power-law model. This is
the result of the small-scale smoothing inherent in our model. The break of £atr=~15
h™'Mpc (§=0.1) probably is not an artefact of our calculations. It indicates the scale
separating domains of linear and non-linear regimes. It is worth noting that at the beginning
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Figure 3 (c)

of the simulations (at the linear state) the correlation function is alternating at r <15
7! Mpc and its amplitude is ~ 0.2. Thus a power-law shape of £(r) at 347! <r< 15h™" Mpc
is entirely determined by non-linear effects. (see for discussion Appendix 1).

The slope of §(r) increases with time. It is reasonable to suppose that this is due to transi-
tion of the system through several different stages. Every stage is characterized by a fixed
kind of object. The first objects inherent in the non-linear stage are pancakes. At this stage
g ocr~! on the scales larger than thickness of a pancake (~ 54~ ' Mpc) but less than the mean
distance between them. Afterwards the stage of filaments, that is one-dimensional objects,
comes. At this epoch § &7~ 2, Of course the real picture is much more complicated because
both types of objects exist simultaneously. Besides, the density distribution in the pancakes
as well as in the filaments is inhomogeneous. Nevertheless the evolution goes in this way and
it gives rise to the increase of the slope of £(r).

6 Clusters

As the volume of the model is large enough (~ 4 x 108 43 Mpc?) there are several tens of
rich clusters in it. To compare the number of clusters in the model with the observed one,
we used the results of Bahcall (1979) on the luminosity function of Abell clusters. The
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Figure 4. A surface of constant density level is plotted for the same region as that in Fig. 3.

&(r)

O+

| 2 3 4 5 , 10 20 30 Mpc
Figure 5, Spatial two-point correlation function computed at the time corresponding to Fig. 2(a). The

straight line is a function ¢ = (3.5 27! Mpc/r)!-3.
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Figure 6. The integral mass function of rich clusters: a histogram represents a model function, crosses are
number of Abell clusters in a volume of (16047 Mpc)®. When calculating the mass function from the
luminosity function the ratio M/L = 280 h Mo/L o was used (Bahcall 1979).

magnitude of M/L =280hM,/L, was used to obtain the mass distribution of rich clusters.
Let us remind the reader that M/L of Coma is estimated to be in the range 240 h(Mo/Lo) <
M/L <3007 (Mo/Lo) (Rood et al. 1972; Abell 1977). The radius of a model cluster was
chosen to be 1.5 A~ ! Mpc, that is the same as one used by Abell for the real clusters.

The histogram in Fig. 6 shows the mass function of clusters in the model. Crosses indicate
the mean expected in the volume of the model numbers of the Abell clusters of richness
greater than richness 1 (upper cross), 2 (middle one) and 3 (lower one).

7 Discussion

The aim of the work is to investigate some aspects of adiabatic scenario in view of the
large-scale structure of the Universe.

Our choice of § =1 reflects the present tendency. The constraints on the angular small-
scale fluctuations of relict background radiation imply that low fluctuations should be taken
at recombination. But this forces us to turn to rather high Q. Data on neutrino rest mass
(Lyubimov et al. 1980) if confirmed will justify our choice (see also Doroshkevich et al.
1981). However, because of the lack of sufficient observational data, we consider the value
2 =1 as a possible one.

Our model is in good agreement with the model of the Universe mainly filled with
massive neutrinos which interact only through gravity. In this case the evolution of a small
part of matter (~ 1+ 10 per cent) consisting of baryons and electrons — is determined by
complicated processes proceeding inside superclusters (i.e. the filaments and pancakes), these
processes are similar to those occurring in the models without neutrinos (Sunyaev &
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Zeldovich 1972; Doroshkevich, Shandarin & Saar 1978). But the large-scale structure can
be well described by a collisionless medium.

Both observational and theoretical arguments give evidence that first objects were formed
at z > 2. In the model under consideration superclusters contained about 0.1 per cent of the
whole mass at z =2. First objects were able to form at this time, but the main part of
galaxies probably appeared in the model at z =~ 1. It seems to be somewhat later and we
believe that fitting of parameters of the model can push the epoch of galaxies formation to
an earlier time.

The main results can be summarized as follows.

(1) In course of non-linear evolution of adiabatic perturbations formation of a system
corresponding to the observed two-point correlation function in the range 34~ ! Mpc <r <
154~ Mpc is possible. Agreement can be gained only during a rather short time interval
because the slope of the correlation function increases with time. Scales shorter than °
~ 3h~! Mpc were beyond the scope of our simulations.

(2) At that time cluster mass function is close to the observed one.

(3) There is some evidence that side by side with prolate structures oblate ones also exist
at the non-linear stage of evolution of adiabatic perturbations. The dimensions and the form
of these objects qualitatively correspond to those of superclusters. The prolate systems are
much better denoted than the oblate ones.

(4) Both types of structure exist in space in symbiosis.

(5) The regions of high density seem to form a single three-dimensional web structure.
However, it is not clear from our simulations whether honeycomb structure arises or not.

(6) The most suitable method for the demonstration of superclusters is drawing a surface
of some density level in three-dimensional space. The method should be applied to the real
distribution of the galaxies. A possibility of application of the well developed methods for
image refinement and processing (Rosenfeld & Weszka 1976) is an advantage of this method.

Acknowledgments

Authors are grateful to Ya. B. Zeldovich and A. G. Doroshkevich for critical and stimulating
discussions, one of us (SFS) would also like to thank Dr S. D. M. White for comments on
some questions discussed in the article. We also thank Dr G. Efstathiou, who as the referee
of our paper has made useful remarks improving both the content and the form of the paper.

References

Aarseth, S. J., Gott, III J. R. & Turner, E. L., 1979. Astrophys. J., 288, 664.

Abell, G. 0., 1977. Astrophys. J., 213, 327.

Arnold, V. 1., 1972. Functional Analysis and its Application, 6, 3.

Arnold, V. 1., Zeldovich, Ya. B. & Shandarin, S. F., 1982. Geophys. Astrophys. Fluid Dynamics, 20, 111.

Bahcall, N. A., 1979. Astrophys. J., 232, 689.

Chincarini, G. & Rood, A. J., 1979. Astrophys. J., 230, 648.

de Vaucouleurs, G., 1976. Astrophys. J., 203, 33.

Doroshkevich, A. G., Ryabenki, V. S. & Shandarin, S. F., 1973. Astrofiz., 9, 257.

Doroshkevich, A. G., Shandarin, S. F. & Saar, E. M., 1978. Mon. Not. R. astr. Soc., 184, 643.

Doroshkevich, A. G., Kotok, E. V., Novikov, I. D., Polyudov, A. N., Shandarin, S. F. & Sigov, Yu. S,
1980. Mon. Not. R. astr. Soc., 192, 321.

Doroshkevich, A. G., Kholpov, M. Yu., Sunyaev, R. A., Szalay, A. S. & Zeldovich, Ya. B., 1981. Proc.
Xth Texas Symp. on Relativ. Astrophys.

Efstathiou, G., 1979. Mon. Not. R. astr. Soc., 187,117.

_ Efstathiou, G. & Eastwood, J. W., 1981. Mon. Not. R. astr. Soc., 194, 503.

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z ¥snBny 0z uo 1senb Aq £0588Z L/168/E/¥0Z/2101HE/SEIUW/ W00 dNO DIWSpEsE//:SA)Y WOl POPEOjUMOQ


http://adsabs.harvard.edu/abs/1983MNRAS.204..891K

FTO9B3VNRAS, Z02- “891K!

906 A. A. Klypin and S. F. Shandarin

Efstathiou, G. & Jones, B. J. T., 1979. Mon. Not. R. astr. Soc., 186, 133.

Einasto, J. B., Joeveer, M. & Saar, E. M., 1980. Mon. Not. R. astr. Soc., 193, 353.

Fall, M., 1978. Mon. Not. R. astr. Soc., 185, 165.

Gott. IIT1 J. R., Turner, E. L. & Aarseth, S. J.. 1979. Astrophvs. J., 234, 13.

Gregory, S. A. & Thompson, L. A., 1978. Astrophys. J., 222, 784.

Groth, E. G. & Peebles, P. J. E., 1977. Astrophys. J., 217, 385.

Hockney, R. W., 1970. Methods Comp. Phys., 9,135.

Kirshner, R, P., Oemler, A., Schechter, P. L. & Shechtman, S. A., 1981. Astrophys. J., 248, L57.

Lyubimov, V. A., Novikov, E. G., Nozik, V. Z., Tretyakov, E. F. & Kozik, V. S., 1980. Phys. Lett. B.,
94, 266.

Peebles, P. J. E., 1980. The Large Scale Structure of the Universe, Princeton University Press.

Rood, H. J., Page, T. L., Kintner, E. C. & King, I. R., 1972. Astrophys. J., 175, 627.

Rosenfeld, A. & Weszka, J. S., 1976. Digital Pattern Recognition, ed. Fu, K. S., Springer-Verlag, Berlin.

Shandarin, S. F., 1980. Astrofizica, 16, 769.

Sunyaev, R. A. & Zeldovich, Ya. B., 1972, Astr. Astrophys., 20, 189.

Tully, R. B., 1982. Astrophys. J., 257, 389.

Zeldovich, Ya. B., 1970. Astr. Astrophys., 5, 84.

Zeldovich, Ya. B., 1978. The Large Scale Structure of the Universe, eds Longair, M. S. & Einasto, J.,
Reidel, Dordrecht, Holland.

Zeldovich, Ya. B. & Shandarin, S. F., 1982. Pis’'mav A. Zh., 8, 131.

Appendix I

Let us consider in detail some aspects of the evolution and calculation of a two-point
correlation function. The correlation function calculated for initial distribution of particles
at z =5.25 is shown in Fig. 7 (dash—dotted line). At this time displacement of particles from
unperturbed positions in bonds of the regular cubic lattice are small and this influences
much the correlation function. Oscillations of the correlation function with distance are
explained by similar oscillations of bond numbers in regular lattice compared to that in a
statistically homogeneous distribution of particles.

At this time a much better estimation of the correlation function can be done directly
from the spectrum of initial perturbations. The well-known relation between spectrum
(|84 |* and correlation function g(r) is given by (Peebles 1980)

V
£(r) = a2y Jd3k(|5k 12y exp (—ikr) (AD)
V 47 kmax
= a? — (sin kr — kr cos kr) ,
@em? K
min

V =(1604"! Mpc)?, (18 1?)=a* =6 x107",
Kmin =2m/(160 h~')Mpc?, kmax ~ 4 Kmin V2.

Here V is the volume of the model; a is a mean amplitude of Fourier components (3); Kmin
is the wavenumber of the longest wave in the spectrum.

Deriving the second relation we replace the cubic region in the phase space where the
initial spectrum was given by the spherical one of equal volume. For flat spectrum it
provides equal values of £(0) in both cases. This estimate is plotted in Fig. 7 by a dashed
line.

At z =0 displacements of particles are large [(80/p),, = 1.6] and initial lattice influences
little the correlation function. The solid line in Fig. 7 shows the correlation function at this
time. The dotted line shows the power law £(r) = (3.52~! Mpc/r)*-7".
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Figure 7. Dash—dot line is the correlation function calculated for the particle distribution at initial time
(z = 5.25); dashed line is the correlation function estimated by the spectrum at the same time (z = 5.25);
solid line is the correlation function calculated for the particle distribution at z = 0; dotted line is the
power Taw £ (z) = (3.5~ Mpc/r)'-8.

It is interesting to estimate evolution of a quantity
R
D=47Tﬁf g(r)ridr, (A2)
0

which at linear stage (at 2 =1) increases as
D 473, (A3)

Numerical integration of £() at the initial time (A1) over a range from 0 to 204~ ! Mpc of
the comoving coordinate gives D(z = 5.25)~ 3.2. At z =0 the same integral for £(7) taken in
the form of the power law ¢ = (3.5~ ! Mpc/r)!-77 again over the same range (0—20A"! Mpc)
gives D(0) =30 instead of ~120 given by linear law (A3). This shows that the linear
extrapolation of (A3) can be dangerous: because of anisotropic collapse the linear law (A3)
for D (204! Mpc) is valid within a factor of about 4 despite the fact that £(20 A~! Mpc) is
much less than unity. Of course this does not put any doubt in the validity of the law (A3)
on larger scales. This question will be discussed in detail in a separate paper.
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