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Abstract

 

—Both forward and inverse (time-reversed) three-dimensional simulations of slow thermocon-
vective flow are considered for a highly viscous fluid with temperature-dependent density and viscosity.
The model is described by the equations of quasi-steady viscous inhomogeneous incompressible flow,
advection equations for density and viscosity, and a heat equation. The numerical solution is based on
the introduction of a two-component vector velocity potential and on the application of a finite element
method with a tricubic-spline basis for computing the potential. The advection equations were solved by
the method of characteristics. The heat equation was solved forward in time by a finite-difference
method based on a tridiagonal algorithm with the Crank–Nicolson scheme employed in each direction.
It was solved backwards in time by a variational method essentially based on a solution of a series of
forward problems. The numerical algorithms were designed to be implemented on parallel computers.
The principal results of the study are summarized as follows: a numerical method is developed for simul-
taneous solution of the Stokes flow equation, heat equation, and advection equations for physical param-
eters of the fluid both forward and backwards in time. Substantial progress in these problems was
achieved by using a special representation of the vector velocity potential and choosing a special basis
in the finite element method, which resulted in a considerable reduction of numerical complexity. Char-
acteristic examples were computed.

 

INTRODUCTION

We consider a numerical approach to simulation of three-dimensional forward and inverse problems of
thermal convection in an inhomogeneous viscous incompressible fluid. In the forward problem of thermal
convection in a continuous medium, a future state of the medium is to be determined from its current state.
In mathematical terms, the problem is formulated as follows: find a solution to the system of equations
describing the state of the medium (the Stokes flow equation, the continuity equation, advection equations
for density and viscosity, and a heat equation) under appropriate boundary and initial conditions by com-
puting forward in time [1–5]. In the inverse problem of thermal convection in a continuous medium, one
must recover the history of its motion resulting from the development of disturbances induced by gravity
and thermal fields. In other words, the problem is to restore the state of the medium under appropriate
boundary and initial conditions by computing backwards in time.

Problems of this kind arise, for example, when the evolution of salt in the crust, mantle convection move-
ment of continents driven by thermoconvective flow in the mantle, or some other geophysical processes are
to be modeled. One particular task of interest is the three-dimensional simulation of the incipience, devel-
opment, and formation of a mantle plume (diapir) caused by internal gravitational instability of an inhomo-
geneous medium (which can be due to thermally induced expansion of lower layers of the medium or to
decrease in density caused by phase transformations). Refinement of methods for processing seismic (or
other) probing data makes it possible to study these phenomena in more detail. Simultaneous analysis of
these data and results of numerical simulations leads to a better understanding of the nature of the phenom-
ena in question.

Dynamics of inhomogeneous (e.g., salt) structures lies in the focus of studies conducted by geophysicists
and geologists, particularly those specializing in deformation of sedimentary rocks, mining engineering,
prospecting, and underground construction. The reason is that such formations can promote caving, provide
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traps for hydrocarbons, and serve as radioactive waste disposal sites. For example, studies of salt domes are
of economic importance. Almost all oil and gas reserves in the Caspian salt basin are associated with salt
structure. To understand the history of sediment buildup, erosion, and deformation in sedimentary basins,
one must reconstruct the basin’s evolution backwards in time. The method of paleoreconstruction, which is
frequently employed for these purposes (e.g., see [6]), is a reliable tool for reconstructing the evolution.
However, it cannot be applied to restore the history of a salt basin in which salt has deformed the above-
lying rock. In [7–9], a numerical approach to a two-dimensional inverse problem of Rayleigh–Taylor insta-
bility was presented and the geological and geophysical profiles were numerically reconstructed along the
eastern part of the Caspian basin. A numerical approach to the three-dimensional inverse problem of Ray-
leigh–Taylor instability was presented in [10]. However, the approach to the inverse problem developed in
those studies did not take into account any influence of the thermal fields and internal heat sources due to
viscous friction. In this paper, we propose a possible approach to the reconstruction problem, based on a
three-dimensional computer simulation of the aforementioned inverse problem taking into account thermal
effects.

We describe a numerical algorithm designed to solve a class of problems in thermal convection both for-
ward and backwards in time and to reconstruct the evolution of inhomogeneous media, such as salt basins.
The analysis is focused on computing the problem backwards in time. In an inhomogeneous structure, small
disturbances of layer boundaries or densities lead to its deformation. In the case of inverse density stratifi-
cation, these disturbances grow into diapiric structures. Mathematically, the problem is stable as computed
forward in time: small errors in specifying physical quantities and input data lead to small errors in recon-
structing the final state of the medium on a virtually unbounded time interval. In [11, 12], it was proved that
the corresponding mathematical problem is well posed in the two-dimensional case. According to [10], a
similar assertion is true in the three-dimensional case. However, the corresponding problem is unstable
backwards in time: small errors in specifying physical quantities or numerical inaccuracies in computations
can lead to large errors in reconstructing the initial state of the medium even over relatively short time inter-
vals. Therefore, it should be solved by invoking methods developed for ill-posed problems.

The equations of motion are approximated numerically by using a finite element method with a tricubic-
spline basis. The heat balance equation is approximated by a finite-difference method. The transport equa-
tions are solved by the method of characteristics. Some results concerning solution and modeling of forward
problems were presented in [13–18]. The solution of the heat equation backwards in time is reduced to the
solution of a special variational problem, which is, in turn, reduced to a series of forward problems. These
problems are stable with respect to input data perturbations. Under a special choice of numerical approxi-
mation, they are stable with respect to computational errors as well. In the present case, the forward heat
balance problems were solved by using a tridiagonal algorithm with the second-order accurate Crank–
Nicolson scheme employed in each direction [4, 5]. Numerical solution of such problems is a formidable
task, because the corresponding discrete approximations have large dimensions. Some progress here was
achieved by using special basis elements in the finite element method, a two-component representation of
the vector velocity potential, and a special variational method for solving the inverse problem for the heat
balance equation. These techniques made it possible to obtain qualitatively and quantitatively adequate
results for relatively low-dimensional discrete approximations.

The modeling involved the following basic simplifications: the motion of a viscous inhomogeneous fluid
was assumed to be slow, the medium was treated as a Newtonian fluid, and lateral forces (associated with
expansion or compression of the medium) were not taken into consideration.

Computations have shown that the proposed methods and algorithms can be applied in numerical imple-
mentations of the problems considered here. At the end of the paper, we present the results obtained by solv-
ing two model problems.

1. MATHEMATICAL FORMULATION OF SIMULATION PROBLEMS

In the parallelepiped 
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, consider a slow inhomogeneous viscous incom-
pressible flow in the presence of a gravity field. In Cartesian coordinates, the flow obeys the following equa-
tions (see [1–3]):
the Stokes flow equation

 

(1.1)

 

the incompressibility condition

 

(1.2)

p∇ div µeij( ) F,+=
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the heat equation

 

(1.3)

 

the equation of state for density

 

(1.4)

 

the rheological equation for viscosity

 

(1.5)

 

and the advection equations for thermally unperturbed density and viscosity

 

(1.6)

 

Here, 

 

u

 

 = (

 

u

 

1

 

, 

 

u

 

2

 

, 

 

u

 

3

 

) 

 

is the velocity vector; 

 

F

 

 = (0, 0, –

 

g

 

ρ

 

) 

 

is the external body force per unit volume; 
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production due to viscous friction:

Equations (1.1)–(1.6) make up a closed set of equations that determine the unknown 
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The function 

 

u

 

 must satisfy prescribed boundary conditions, the function 

 

T

 

 must satisfy prescribed
boundary and initial (or terminal) conditions, and the functions 
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*

 

 and 
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* 

 

must satisfy prescribed initial (or
terminal) conditions.

On the boundary 

 

Γ 

 

of the domain Ω , we set the no-slip condition

(1.7)
or the impermeability conditions with perfect slip

(1.8)
where n is the outward unit normal vector at x ∈ Γ and uτ is the projection of the velocity vector onto the
tangent plane to Γ at x ∈ Γ .

On each face Γ(xi = 0) or Γ(xi = li) (i = 1, 2, 3) of the parallelepiped Ω , temperature satisfies either a
boundary condition of the first kind (Dirichlet condition)

(1.9)

where W1 is a prescribed temperature distribution over the boundary segment, or a boundary condition of
the second kind (Neumann condition)

(1.10)

where W2 is a prescribed heat flux across the boundary segment. In practice, these conditions are frequently
combined: temperature is prescribed on some boundary segments; heat flux, on the remaining ones.

To solve the problem forward in time, we set an initial condition for temperature (the initial time is set
to zero):

(1.11)

where T0 is a function defined on Ω to specify the temperature distribution over Ω at the initial time.
To solve the problem backwards in time, we prescribe the temperature at the final instant t = ϑ :

(1.12)

where Tϑ is a function defined on Ω to specify the temperature distribution over Ω at the final instant.
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The initial conditions for the thermally unperturbed density and viscosity have the form

(1.13)

where ρ0 and µ0 are functions defined on Ω to specify the density and viscosity distributions over Ω at the
initial time.

When the problem is to be solved backwards in time, we set terminal conditions for the thermally unper-
turbed density and viscosity:

(1.14)

where ρϑ and µϑ are functions defined on Ω to specify the density and viscosity distributions over Ω at the
final time.

Thus, the forward problem is to compute the functions u = u(t, x), T = T(t, x), ρ = ρ(t, x), and µ = µ(t, x)
that satisfy Eqs. (1.1)–(1.6) in Ω at t ≥ 0, boundary conditions (1.7)–(1.10), and initial conditions (1.11) and
(1.13).

The inverse problem is to compute the functions u = u(t, x), T = T(t, x), ρ = ρ(t, x), and µ = µ(t, x) that
satisfy Eqs. (1.1)–(1.6) in Ω at t ≤ ϑ , boundary conditions (1.7)–(1.10), and terminal conditions (1.12) and
(1.14).

2. NUMERICAL SCHEME FOR MODEL PROBLEMS

To facilitate computations, Eqs. (1.1)–(1.6) are simplified by introducing a two-component representa-
tion of the vector velocity potential,

(2.1)

applying the curl operator to Eq. (1.1); and rewriting Eqs. (1.1)–(1.6) and the quantities contained therein
in dimensionless form. These transformations were performed in detail in [14].

Methods for solving forward problems were exposed in [13–18]; methods for solving the Stokes flow
equation and the transport equations backwards in time, in [10].

2.1. Variational Method for Solving the Inverse Problem for the Heat Balance Equation

Consider the nonnegative quadratic functional

where T(ϑ , ⋅; ϕ) is the solution to forward problem (1.3) at the final time ϑ  obtained for a (yet unknown)
initial temperature distribution ϕ = ϕ(·) and χ(·) = T(ϑ, ·; T0) is the known temperature distribution at the
final time corresponding to the initial temperature T0 = T0(·). We seek the minimum of the functional with
respect to the argument ϕ. It is clear that the minimal (zero) value of the functional is attained only at the
element ϕ = T0 (its uniqueness is due to the uniqueness of the solution to the corresponding boundary value
problem for the heat equation):

The minimum can be determined by the gradient method (e.g., see [19]). First, we calculate the gradient
of the functional J. We add an increment h to the argument ϕ and define T(·, ·; ϕ) and T(·, ·; ϕ + h) as the
solutions to the corresponding forward problems. It is obvious that z = T(·, ·; ϕ + h) – T(·, ·; ϕ) solves the
following boundary value problem:

(2.2)

Here, σ1 and σ2 are sufficiently smooth functions or constants such that  +  ≠ 0. Adjusting these func-
tions appropriately, one can always satisfy the boundary conditions set in the original formulation of the
problem.

ρ* 0 x,( ) ρ0 x( ), µ* 0 x,( ) µ0 x( ), x Ω,∈= =

ρ* ϑ x,( ) ρϑ x( ), µ* ϑ x,( ) µϑ x( ), x Ω,∈= =

u curly, y ψ1 ψ2 0, ,( );= =
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J T0( ) 0.=

ρ*c z/ t ρ*c u ∇ z,〈 〉+∂∂ div k∇ z( ) ρ*αzQ, x Ω, t 0 ϑ,( ),∈ ∈–=
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2 σ2
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The increment of the functional can be represented as

Let us show that

where Ψ = Ψ(·) solves the following problem (which is frequently called the conjugate of (2.2) and can be
transformed into a forward problem by reversing time):

(2.3)

Indeed,

Since Ψ = Ψ(·) solves problem (2.3) and z = z(·) solves problem (2.2), one can use the boundary conditions
in (2.3) and (2.2), the condition divu = 0, and the boundary conditions for the velocity field to obtain

Finally, we have

This representation implies that the value of the gradient of J at ϕ is Ψ(0, ·), where Ψ is the solution to
boundary value problem (2.3):

To minimize the functional J, we invoke the gradient method (see [19])

(2.4)

(2.5)

The numerical scheme for solving the heat equation backwards in time is as follows:
(1) on the time interval [0, ϑ], find a solution to the forward boundary value problem (1.3), (1.9)–(1.11)

supplemented with the initial condition ϕk by using a tridiagonal algorithm with the Crank–Nicolson
scheme employed in each direction;
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(2) find the gradient Ψ(0, ·) of the functional J at the point ϕk by solving problem (2.3) backwards in time
with the use of the finite-difference scheme employed in the preceding step;

(3) evaluate the parameter αk by applying formula (2.5) and use formula (2.4) to update the value of ϕk + 1
(the choice of αk can be simplified as done in [19]);

(4) if  < ε, then terminate the computation and adopt ϕk as an approximation of the

unknown initial state of the medium; otherwise, go to step (1) and perform another iteration cycle (in our
computations, we used ε = 10–8).

Thus, solution of the inverse heat balance problem is actually reduced to solution of a series of forward
problems, which are known to be well posed (see [4, 5]). An analogous method can be applied to solve a
similar problem on any time interval.

2.2. Numerical Method for Solving the Stokes Flow Equation

Following the method developed in [14], we represent the vector velocity potential as a linear combina-
tion of tricubic basis splines and apply the finite element method to problem (1.1), (1.2), (1.7), (1.8). To sim-
plify analysis, we begin with representing the problem in variational form [14]. To solve the problem numer-
ically, we discretize the domain Ω by introducing the uniform rectangular grid

with grid points Ωijk = , ,  (0 ≤ i ≤ n1, 0 ≤ j ≤ n2, 0 ≤ k ≤ n3). At each grid point Ωijk, we define a

tricubic basis element  = (x1, x2, x3) (l = 1, 2) as the tensor product of the corresponding one-dimen-
sional cubic basis elements (see Fig. 1). The construction of bases consisting of tricubic and trilinear ele-

ments,  and , was described in detail in [15, 16].

The vector velocity potential is approximated by the combinations

(2.6)

Density and viscosity are approximated by using trilinear basis elements:

The coefficients  are determined on each time layer by solving a system of linear algebraic equations
with a large symmetric positive definite banded matrix. The system is solved iteratively by conjugate gradi-
ent methods or by block Gauss–Seidel (over- or underrelaxation) methods. This is done by grouping the grid
points Ωijk into blocks and distributing them among processors so that each processor is associated with at
least three grid points in the x1 direction. When a distributed-memory parallel computer is employed, an
important role is played by the distribution of data among processors, which determines the final amount of
data handled by each processor and data exchange between processors. To optimize the distribution, the
amounts of data handled and stored should be equal for each processor, while the exchange between the pro-
cessors should be minimized. The partition into blocks shown in Fig. 2 minimizes data exchange between
the processors. Detailed analyses of particular implementations of iterative methods for systems of linear
algebraic equations having this structure were presented in [13, 14].

2.3. Numerical Method for Solving the Advection Equations

The advection equations have characteristics described by the system of ordinary differential equations

Both density and viscosity retain constant values along the characteristics:
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dx t( )/dt u t x t( ),( ).=

ρ* t x t( ),( ) ρ0 x 0( )( ), µ* t x t( ),( ) µ0 x 0( )( ).==
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These formulas can be used to determine the density and viscosity at a time t for known density and vis-
cosity distributions at the initial time and for known velocity fields prior to t, which must have already been
computed. Applying trilinear basis elements to approximate density and viscosity, one can organize a suffi-
ciently large number of independent modules to perform parallel computations of the characteristics of the
transport equations. Computations of density and viscosity backwards in time are performed in a similar
manner.

2.4. Numerical Method for Solving the Heat Equation

Temperature is approximated by finite-difference methods. To do this, we define a regular grid in Ω (for
simplicity, we use a grid identical to that employed to approximate density and viscosity). The derivatives
with respect to coordinates in the heat equation are approximated by finite differences:

(analogous formulas are used in the approximations along the x2 and x3 axes). On the domain boundary, the
derivatives are approximated by introducing fictitious grid points [4]. The derivatives ∂ui/∂xj are determined
by differentiating (2.1) and using (2.6).

Temperature is computed by an implicit alternating-direction method [4, 5]. Essentially, the values of
Tn + 1/3, Tn + 2/3, and Tn + 1 are calculated on intermediate layers at each iteration step of the method as

where τ is the time step and U contains absolute terms, first derivatives of T, and the function T itself. In
each iteration cycle in time, n2n3 + n1n3 + n1n2 tridiagonal systems are solved, and the corresponding number
of independent modules can be organized to perform parallel computations of these systems by a tridiagonal
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method. The representation of the vector velocity
potential based on cubic splines employed here makes
it possible to compute both convective transport and
diffusion of temperature simultaneously by finite-dif-
ference methods.

2.5. The Scheme of Numerical Solution of the Overall 
Inverse Problem

The solution of the problem backwards in time con-
sists of the following principal stages:

(1) solution of a system of linear algebraic equa-
tions that determines the coefficients of the expansion
of the vector velocity potential in terms of basis ele-
ments;

(2) interpolation of the velocity field;

(3) solution of the heat balance equation backwards
in time;

(4) solution of the advection equations for density and viscosity backwards in time.

Now, we describe the scheme of numerical solution of the overall inverse problem step by step. We define
a uniform partition of the time axis at points tn = ϑ  – τn (n ∈  Z), where τ is the time step. After that, we
organize an iterative process in which n successively takes integer values from 0 to some natural number
m = ϑ /τ. Each iteration cycle in time consists of the following three successive steps.

Step 1. Temperature T = T(tn, ·) and thermally unperturbed density ρ* = ρ*(tn, ·) and viscosity µ* = µ*(tn, ·)

corresponding to t = tn are used in Eqs. (1.4) and (1.5) to find the thermally perturbed density ρ = ρ(tn, ·) and
viscosity µ = µ(tn, ·) corresponding to the same t = tn. Then, Eqs. (1.1) and (1.2) combined with appropriate
boundary conditions are solved to find the potential y = y(tn, ·), and Eq. (2.1) is used to determine the veloc-
ity u = u(tn, ·).

Step 2. The velocity field u = u(tn, ·) and thermally perturbed density ρ = ρ(tn, ·) and viscosity µ = µ(tn, ·)
are used in Eq. (1.3) combined with boundary conditions to find the temperature T = T(tn + 1, ·) corresponding
to t = tn + 1.

Step 3. The velocity field u = u(tn, ·) and thermally unperturbed density ρ* = ρ*(tn, ·) and viscosity µ* =

µ*(tn, ·) are used in Eq. (1.6) to find the thermally unperturbed density ρ* = ρ*(tn + 1, ·) and viscosity µ* =

µ*(tn + 1, ·) corresponding to t = tn + 1.

After the iterative process is completed, we will have temperature T = T(tn, ·), potential y = y(tn, ·), velo-
city field u = u(tn, ·), thermally unperturbed density ρ* = ρ*(tn, ·) and viscosity µ* = µ*(tn, ·), and thermally

perturbed density ρ = ρ(tn, ·) and viscosity µ = µ(tn, ·) corresponding to t = tn (n = 0, 1, …, m). Having these
results, we can use interpolation to reconstruct, when necessary, the entire process on the time interval [0, ϑ]
in more detail. The time step is chosen automatically so that the maximal displacement of material points
does not exceed a sufficiently small preset value. To solve the problem in a domain other than a parallelepi-
ped, one can invoke the domain imbedding method [4].

3. NUMERICAL RESULTS FOR MODEL PROBLEMS

As model physical parameters of the medium, we take their values used in [14] (which are characteristic
of the upper layers of the Earth).

Example 1. Consider the motion of an inhomogeneous viscous incompressible fluid in a gravity field

within the parallelepiped  = [0, 3] × [0, 3] × [0, 1]. Set T(t, x) = Ts. At the initial time t = 0, an inclined
fluid layer Ω1 was located between two layers characterized by higher viscosity and density:
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At the initial time, it was assumed that ρ0(x) = 0.85 at x ∈  Ω1 and ρ0(x) = 1 at x ∈ Ω /Ω1, while µ0(x) = 1 at
x ∈ Ω 1 and µ0(x) = 100 at x ∈ Ω /Ω1.

Disturbances of boundaries between the media were introduced as initial states of incipient diapirs,
which would evolve in time as a result of the internal gravitational instability of the system. To be specific,

n = 0 n = 0

n = 60 n = 60

n = 110 n = 110

n = 170 n = 170

n = 210 n = 210

Fig. 3.
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we restricted our analysis to the case of boundary conditions of perfect slip with impermeability for the
Stokes problem.

To compute the problem, we used a 32 × 32 × 32 grid in approximating the vector velocity potential and
a 94 × 94 × 94 grid in approximating density and viscosity. The corresponding system of linear algebraic
equations was solved by using the parallel Gauss–Seidel algorithm. The run time required to compute an
iteration cycle by means of ten processors was 2 min on an MVS-1000 distributed-memory parallel com-
puter (including the computations of vector potential, velocity field, and updated density and viscosity).

The left-hand column in Fig. 3 shows the evolution of the fluid forward in time (evolution of diapirs).
The depicted surface is the boundary between the light and heavy fluids. The right-hand column in the figure
shows the time-reversed evolution of the diapirs (the reconstructed history of the diapirs). The final state of
the model in the forward problem was used as the initial condition in the inverse problem.

Figure 4 shows the rms error (over the vertical axis)

where  is the result obtained by solving the inverse problem.

Example 2. Consider fluid motion in the parallelepiped  = [0, 3] × [0, 3] × [0, 1]. At t = 0, we set
ρ*(·) ≡ 1, µ*(·) ≡ 1, and T0(x) = 1.1 – x3/l3. We set T2(t, x) ≡ 0.1 on the face Γ(x3 = l3) and T1(t, x) ≡ 1.1 on

the face Γ(x3 = 0). For simplicity, we set Q = 0 and restricted our analysis to the case of boundary conditions
of perfect slip with impermeability for the Stokes problem. The heat balance equation was supplemented by
the boundary condition ∂T/∂n = 0 set on the lateral faces. To kick the fluid out of an unstable equilibrium,
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we introduced a small initial thermal disturbance at x0 = (3/2, 3/2. 1/3), which eventually developed into a
diapir.

To compute the example, we used a 32 × 32 × 32 grid in approximating the vector velocity potential and
viscosity and a 94 × 94 × 94 grid in approximating the density and temperature. The time step was set equal
to 0.1.

The left-hand column in Fig. 5 illustrates the evolution of the fluid (evolution of the diapir) forward in
time. The frames show the isotherms of T = 0.1, 0.4, 0.7, and 1.0 at successive times. The right-hand column
shows the isotherms corresponding to these temperature values computed backwards in time (as a recon-
structed evolution of the diapir). The final state of the model in the forward problem was taken as the initial
state in the inverse problem. Figure 6 shows the error

where K is 0.01, 0.02, 0.04, or 0.08 and  is the result obtained by solving the inverse problem.
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Fig. 5.
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CONCLUSIONS

We proposed a numerical approach designed to solve the forward and inverse problems of three-dimen-
sional slow motion of a viscous incompressible fluid with varying (temperature-dependent) density and vis-
cosity induced by thermal and gravitational effects. Mathematically, we constructed a method of simulta-
neous approximate solution forward and backwards in time for the system consisting of the Stokes flow
equation, incompressibility condition, heat equation, and advection equations for density and viscosity sup-
plemented with appropriate boundary and initial conditions.

The basic results of this study are summarized as follows.
(1) A method for reconstructing an early state of the medium in question from its current state is pro-

posed. The method is stable with respect to computational errors and inaccuracies.
(2) Typical examples of forward and inverse problems of gravitational instability and thermal convection

were computed in the three-dimensional case.
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