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Three-dimensional object recognition by Fourier
transform profilometry

José J. Esteve-Taboada, David Mas, and Javier Garcı́a

An automatic method for three-dimensional ~3-D! shape recognition is proposed. It combines the Fou-
rier transform profilometry technique with a real-time recognition setup such as the joint transform
correlator ~JTC!. A grating is projected onto the object surface resulting in a distorted grating pattern.
Since this pattern carries information about the depth and the shape of the object, their comparison
provides a method for recognizing 3-D objects in real time. A two-cycle JTC is used for this purpose.
Experimental results demonstrate the theory and show the utility of the new proposed method. © 1999
Optical Society of America

OCIS codes: 100.4550, 100.6890.
1. Introduction

Much research has been devoted to pattern recogni-
tion through optical correlation. Optical correlation
has several advantages over digital methods, e.g.,
parallel and real-time processing abilities.

Most of the existing methods for pattern recogni-
tion have been developed for bidimensional ~2-D! ob-
jects. The most frequently used optical correlators
for this purpose have been the VanderLugt optical
correlator1 and the joint transform correlator ~JTC!.2
Both are capable of performing 2-D optical correla-
tion in real time, although the VanderLugt setup
requires a holographic recording of the reference sig-
nal and must be accurately aligned with the optical
axis. On the other hand, in the JTC setup the ref-
erence and the target are displayed side by side at the
input plane, reducing the alignment requirements,
and, moreover, there is no need for holographic re-
cording.

In spite of the usefulness of 2-D pattern recogni-
tion, there are applications in which the object infor-
mation is not contained in just one 2-D projection but
in its whole three-dimensional ~3-D! shape. Thus a
ull 3-D treatment is required. One simple approx-
mation to the problem may consist of taking several
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planar projections of the scene and correlating them
with their corresponding projections of the reference.
This solution has been successfully applied in Ref. 3,
but the huge amount of storage requirement and the
complexity of designing a full reference signal make
implementation of this technique complex.

An alternative solution was proposed in Ref. 4. In
that paper a segmentation of connected planar and
quadric surfaces of the object was used. The images
were captured with a range camera and then digitally
processed. A feed-forward neural network was then
used to perform the final recognition task. Unfortu-
nately, the required device for acquiring range im-
ages is not easily available, and the method needs a
previous segmentation of the image.

Recently, Rosen proposed an electro-optical imple-
mentation of a 3-D spatial correlation ~see Refs. 5 and
6!. As an example of an application with his
method, he described a 3-D JTC that is able to rec-
ognize targets in the 3-D space. The main drawback
of the electro-optical setup is the need for massive
digital calculation that may slow down the processing
speed. This setup has the additional complexity of
requiring an array of cameras for image acquisition.

On the other hand, several techniques have been
devised for 3-D image acquisition.7 In particular, in
Ref. 8 a technique for automatic 3-D shape measure-
ment is proposed and experimentally verified. This
method, called Fourier transform profilometry (FTP),
is based on projecting a grating on an object surface
and capturing the resultant image with a CCD cam-
era. The image obtained is a deformed grating pat-
tern that carries information on the depth and the
shape of the object. The image is digitally pro-
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cessed. and a final 3-D image is obtained. It must be
taken into account that for proper application of the
method the spatial frequencies of the objects ~consid-
ring reflectivity and the 3-D shape! should be small
ompared with the frequency of the projected grating,
.e., only relatively smooth objects can be analyzed.

Since the deformed fringe pattern obtained with
he FTP technique carries information about the
omplete shape of the object, a comparison of such
atterns with a reference pattern will provide a
ethod for recognizing 3-D objects. In this paper we

rove this statement and design an optical setup that
ill perform the detection in real time. The recog-
ition task is based on the 3-D shape of the object and
ot only on its 2-D profile. For this purpose, we use
modified JTC setup that offers clear advantages in
ractical implementations with respect to a
anderLugt correlator because it is not likely to be
ptically misaligned and it is easy to construct.9
In Section 2 we review the main aspects of the FTP

method introduced in Ref. 8 that are relevant for our
purposes. In Section 3 we apply the mathematics
derived in Section 2 to our particular case: the 3-D
JTC. In Section 4 optical experiments show the util-
ity of the method introduced here. Finally, in Sec-
tion 5 the main conclusions are outlined.

2. Fourier Transform Profilometry Method

Two different optical geometries have been proposed
in the FTP method.8 In our experiment we employ
the parallel-optical-axes geometry ~see Fig. 1! in
which the optical axes of a projector and a camera lie
in the same plane and are parallel. Let us consider
a reference plane R, which is a fictitious plane that
serves as a reference from which the object height
h~x, y! is measured. The lines of grating G are nor-
mal to the plane of the figure, and the projector lens
forms its conjugate image ~with period p! on plane R.
The reference plane is imaged onto sensor plane S by
the camera lens. When the object is a flat surface on
R, i.e., h~x, y! 5 0, the grating image projected onto

Fig. 1. Optical arrangement for projecting the grating and grab-
bing the input image.
the object surface is a regular pattern that can be
expressed by its Fourier series expansion:

g0~x, y! 5 (
n52`

`

An exp~2pinf0 x!, (1)

here

f0 5
1
p

(2)

is the fundamental frequency of the observed grating
image. For a general object with varying h~x, y! the
deformed grating image is given by

g~x, y! 5 r~x, y! (
n52`

`

An exp$2pinf0@x 1 s~x, y!#%, (3)

where r~x, y! is the reflectivity distribution on the
object surface @r~x, y! is zero outside the object extent#
and s~x, y! 5 CD in Fig. 1. We can express this
equation as a spatially phase-modulated signal

g~x, y! 5 r~x, y! (
n52`

`

An exp$i@2pnf0 x 1 nf~x, y!#%,

(4)

here

f~x, y! 5 2pf0 s~x, y! 5 2pf0CD. (5)

This deformed grating @see Eq. ~4!# can be inter-
reted in terms of its diffraction orders, each with a
patial carrier frequency nf0 modulated in phase

through nf~x, y! and with an overall amplitude mod-
ulation r~x, y!. For future use we rewrite Eq. ~4!,
separating the phase terms as

g~x, y! 5 r~x, y! (
n52`

`

qn~x, y!exp~2pinf0 x!, (6)

where

qn~x, y! 5 An exp@inf~x, y!#. (7)

To obtain a connection between the phase f~x, y!
and the height h~x, y!, we note that DAHB is similar
to DCHD; therefore we can write

CD 5
2dh~x, y!

L 2 h~x, y!
, (8)

and thus, following Eq. ~5!, we have

f~x, y! 5
22pf0 dh~x, y!

L 2 h~x, y!
. (9)

We can see here that the phase f~x, y! contains in-
formation about the 3-D shape to be measured.

If the camera and the projector are far from the
object, at the denominator of Eq. ~9! h~x, y! can be
neglected with respect to L, and thus f~x, y! . kh~x,
y!, k being a constant equal to 22pf0dyL. Recalling
Eq. ~7!, the amplitude in any order n of the Fourier
expansion of the distorted grating has the form

r~x, y!qn~x, y! . r~x, y!An exp@inkh~x, y!#, (10)
1 August 1999 y Vol. 38, No. 22 y APPLIED OPTICS 4761
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so the phase of every order qn~x, y! is proportional to
the height of the object.

In general, the condition L .. h~x, y! is not nec-
ssary for our purpose. We can obtain the phase of
very order by using Eq. ~9!. As we see below, this
ethod provides a final equation that carries infor-
ation about the similar 3-D shape of the objects

o be checked. Therefore the height of the 3-D ob-
ect has been encoded as a phase function either
inearly or by a more complicated relation given by
q. ~9!.

3. Three-Dimensional Joint Transform Correlator

In this section we apply the mathematics derived in
Section 2 to our particular case: the 3-D JTC.

Consider that we project a regular grating pat-
tern on some 3-D objects to be checked for recogni-
tion and we take the image of these objects with a
camera. We obtain some distorted grating pat-
terns that carry information about the 3-D shape of
the objects, so that, comparing these patterns, we
can recognize a particular 3-D object. To compare
the 3-D shapes, we use a modified JTC ~see Fig. 2!.

his setup contains a spatial light modulator ~SLM!
t the input plane ~x0, y0!, which will display the
eformed grating patterns. This SLM is illumi-
ated with a convergent beam obtained with lens
1, so that we have the Fourier transform of the

nput function at plane ~x1, y1!. If we take the
ntensity distribution at this plane and put it at the
LM plane again, we obtain a correlation image at
lane ~x1, y1! that permits us to compare the 3-D

input shapes.
Let us suppose two input objects at the reference

plane described by their heights h~x, y! and h9~x, y!.
hese objects are centered, for example, at positions

0, Yy2! and ~0, 2Yy2!, respectively @see Fig. 3~a!#.
he distorted grating patterns can be described by
wo functions, s~x, y! and s9~x, y! @see Fig. 3~b!#.
he image of the distorted grating patterns is
rabbed by the CCD camera and fed to the SLM,
762 APPLIED OPTICS y Vol. 38, No. 22 y 1 August 1999
roviding an amplitude at the input plane ~x0, y0!
given by

U0~x0, y0! 5 s~x0, y0 2 Yy2! 1 s9~x0, y0 1 Yy2!, (11)

where, following Eq. ~6!, functions s~x0, y0! and s9~x0,
y0! are given by

s~x0, y0! 5 r~x0, y0! (
n52`

`

qn~x0, y0!exp~2pinf0 x0!, (12)

s9~x0, y0! 5 r9~x0, y0! (
n52`

`

qn9~x0, y0!exp~2pinf0x0!. (13)

At plane ~x1, y1! we have the 2-D Fourier transform
of U0~x0, y0! with the scaling given by lz @z being the

istance from plane ~x1, y1! to plane ~x0, y0! and l the
avelength of illumination#. The complex ampli-

ude at plane ~x1, y1! can be written as

U1~x1, y1! 5 SSx1

lz
,

y1

lzDexp~2ipy1 Yylz!

1 S9Sx1

lz
,

y1

lzDexp~ipy1 Yylz!, (14)

where S and S9 represent the 2-D Fourier transforms
of s and s9, respectively. In Eq. ~14! we have dropped
a 1yilz factor and a global quadratic phase factor ~see
Ref. 10, for example), which is irrelevant for our pur-
poses since we consider only the intensity of the dis-
tribution. Changing the distance between the SLM
and the CCD camera allows for Fourier transform
scaling to fit the area of the CCD. Real optical sys-
tems will also introduce the effect of limited aper-
tures, which has been neglected in our treatment ~see
also Ref. 10 for more details!.

Fig. 3. Scheme of the procedure for obtaining object-height infor-
mation by fringe projection. For simplicity a linear phase factor
has been removed in ~e!, and the objects are assumed to have
uniform reflectivity.
Fig. 2. Experimental setup including the acquisition part and the
JTC process.
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The 2-D Fourier transform for the s~x0, y0! function
can be expressed as

SSx1

lz
,

y1

lzD 5 S~u, v!

5 F (
n52`

`

Qn~u 2 nf0, v!G ^ ^@r~x0, y0!#,

(15)

with Qn~u, v! being the Fourier transform of qn~x0,
y0!. The symbol R denotes the convolution opera-
ion. A similar expression holds for the 2-D Fourier
ransform of s9~x0, y0!.

Therefore Eq. ~14! may be rewritten @taking into
ccount that u 5 ~x1ylz! and v 5 ~y1ylz!# as

U1~u, v! 5 HF (
n52`

`

Qn~u 2 nf0, v!G ^ ^@r~x0, y0!#J
3 exp$2ipvY% 1 HF (

n52`

`

Qn9~u 2 nf0, v!G
^ ^@r9~x0, y0!#Jexp~ipvY!. (16)

Assuming that r~x, y!@r9~x, y!# and f~x, y!@f9~x, y!#
vary slowly compared with the frequency f0 of the
grating pattern, we can consider that all the spectra
Qn~u 2 nf0, v!@Qn9~u 2 nf0, v!# are separated from one
another by carrier frequency f0 @see Fig. 3~c!#, so that,
using a mask at plane ~x1, y1!, we can easily filter
these spectra and select only the spectrum with n 5
1 @see Fig. 3~d!#:

U19~u, v! 5 $Q1~u 2 f0, v! ^ ^@r~x0, y0!#%

3 exp~2ipvY! 1 $Q19~u 2 f0, v!

^ ^@r9~x0, y0!#%exp~ipvY!. (17)

The object-height information can be obtained as
an encoded phase modulation with an inverse Fou-
rier transform of Eq. ~17!:

^21@U19~u, v!# 5 A1 r~x1, y1!exp{i@f~x1, y1!

1 2pf0 x1#} ^ d~x1, y1 2 Yy2!

1 A19r9~x1, y1!exp$i@f9~x1, y1!

1 2pf0 x1#% ^ d~x1, y1 1 Yy2!. (18)

Equation ~18! has two complex terms. Figure 3~e!
depicts a simplified example of these two terms sep-
arating the amplitude and the phase information.
As stated in Section 2, the phase, aside from a linear
phase factor, contains the object-height information.
The delta functions locate the patterns in their orig-
inal locations.

Nevertheless, to obtain for pattern-recognition pur-
poses a comparison between these phase-modulated
functions, we go on with the modified JTC setup.
This allows for skipping this phase extraction and
dealing with only the Fourier domain. Therefore we
now take the intensity of U19~u, v! @this is at the first
diffraction order at plane ~x1, y1!# with a second cam-
era ~see Fig. 2!:

I~u, v! 5 uQ1~u 2 f0, v! ^ ^@r~x0, y0!#u2 1 uQ19~u 2 f0, v!

^ ^@r9~x0, y0!#u2 1 $Q1~u 2 f0, v!

^ ^@r~x0, y0!#%(Q19*~u 2 f0, v!

^ $^@r9~x0, y0!#%*)exp~2i2pvY! 1 (Q1*~u

2 f0, v! ^ $^@r~x0, y0!#%*)$Q19~u 2 f0, v!

^ ^@r9~x0, y0!#%exp~i2pvY!, (19)

where the asterisk indicates the complex conjugate
operation.

This image is sent again to the SLM at plane ~x0,
y0!. The new field at plane ~x1, y1! will be the Fou-
rier transform of the function I~u, v!. Taking into
account the scaling factors and coordinate inversions,
this new field distribution results in

U2~x1, y1! 5 s̃~x1, y1! , s̃~x1, y1! 1 s̃9~x1, y1! , s̃9~x1, y1!

1 @s̃~x1, y1! , s̃9~x1, y1!# ^ d~x1, y1 2 Y!

1 @s̃9~x1, y1! , s̃~x1, y1!# ^ d~x1, y1 1 Y!,
(20)

where the star symbol , denotes the cross-correlation
operation, and functions s̃~x1, y1! and s̃9~x1, y1! are

s̃~x1, y1! 5 r~2x1, 2y1!q1~2x1, 2y1!exp~22pif0 x1!

5 r~2x1, 2y1!A1 exp$i@f~2x1, 2y1!

2 2pf0 x1#%, (21)

s̃9~x1, y1! 5 r9~2x1, 2y1!A19 exp$i@f9~2x1, 2y1!

2 2pf0 x1#%. (22)

In the expression for U2~x1, y1! given by Eq. ~20! the
hird and the fourth terms are the cross correlations
etween functions s̃ and s̃9. The third is centered at
oordinates ~0, Y! and the fourth at coordinates ~0,

2Y!. One is a mirror reflection of the other about
the optical axis. This analysis is also valid if instead
of a second object s9~x, y! we have a scene @say, f ~x, y!#
composed of several objects. In fact, this is the most
common case in the applications in which an object
has to be recognized in a complex scene. Therefore
in the upper part of the output plane the correlation
between the scene f ~x, y! and the reference s~x, y! will
be obtained.

Going back to the analysis of Eq. ~20!, we can see
immediately that the cross correlation between func-
tions s̃~x1, y1! and s̃9~x1, y1!,

s̃~x1, y1! , s̃9~x1, y1! 5 **
2`

`

s̃~a, b!s̃9*~a 2 x1, b

2 y1!dadb

5 A1 A19* exp~22pif0 x1!$r~x1, y1!

3 exp@if~x1, y1!# , r9~x1, y1!

3 exp@if9~x1, y1!#%, (23)
1 August 1999 y Vol. 38, No. 22 y APPLIED OPTICS 4763
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carries information about the similar 3-D shape of
the s~x0, y0! and s9~x0, y0! functions. This cross-
orrelation function contains a correlation between
~x1, y1!exp@if~x1, y1!# and r9~x1, y1!exp@if9~x1, y1!#,

where r and r9 are the reflectivity distributions and f
and f9 contain the object-height information encoded
as a phase modulation @see Eq. ~9!#.

Note that, if the camera and the projector are far
from the object, i.e., L .. h~x, y!, our experimental
setup is invariant to shifts along the direction given
by h~x, y!. This can be checked in Eq. ~10!: Any
constant added to height h~x, y! would appear in Eq.
~23! like another constant affecting the whole corre-
lation.

Therefore we are able to detect similar 3-D shapes
by comparing the filtered distorted fringe patterns
obtained when we project a grating on some 3-D ob-
jects. Finally, note that Eq. ~23! is the correlation
between the phase-encoded 3-D input objects and not
that between the fringe patterns themselves. This
correlation allows detection that is invariant under
displacements on the three axes. This is in contrast
with other approaches in which the fringes are used
to make the correlation process spatially variant.11

4. Experimental Results

The usefulness of the method has been tested by an
optical experiment. The actual setup is the one
shown in Fig. 2. The parallel-optical-axes geometry
is used for fringe projection. A slide projector is used
to image a Ronchi grating of 8 linesymm onto the
objects’ surface. The objects are three chess pieces
~two pawns and a knight! placed in a black uniform

lane that serves as a reference from which object
eights are compared. One of the pawns is the ref-
rence object, while the other pawn and the knight

Fig. 4. ~a! Input scene. ~b! Reference object. Both images are
isplayed side by side on the SLM. Note that, despite the 3-D
hapes of the two pawns being the same, the deformed grating
attern is different, owing to the different location of the grating.
764 APPLIED OPTICS y Vol. 38, No. 22 y 1 August 1999
serve as the input image to be analyzed. The effect
of using a different grating profile ~sinusoidal, for
example!, according to the theory in Section 2, would
change our expression in only a global amplitude
factor ~the Fourier coefficient of the selected order in
he Fourier domain!.

The deformed grating patterns are recorded by a
ulnix Model TM-765 CCD camera. This video

rame is composed of two parts: the upper part is
he input scene @see Fig. 4~a!#, and the lower part is
he object to be detected @see Fig. 4~b!#. As can be
bserved in the images, although the 3-D shape of the
wo pawns is the same, the deformed grating pattern
s different, owing to the different location of the grat-
ng. The video output signal is stored in a frame-
rabber memory as a 256 3 256 pixel image
ontaining an arrangement like the one shown in Fig.
~a!. This digital image is sent to the SLM at plane
x0, y0! of the optical setup ~see Fig. 2!. The SLM is
liquid-crystal screen obtained from an Epson Model
P-100PS video projector. L1 is a Nikon 135-mm

fy2 photographic lens.
With a second Pulnix CCD camera without a lens

the intensity of the first order at plane ~x1, y1! is
btained. This image is sent to the SLM again.
herefore, as shown above, in this new cycle of the
odified JTC we have finally at plane ~x1, y1! corre-

ation terms in three different positions. Following
q. ~20!, in the optical axis we will obtain the addition
f the autocorrelation terms; in the upper part of the

Fig. 5. ~a! Input plane arrangement for the input scene f and the
reference object s. ~b! Output plane of the JTC. The asterisk
indicates the cross-correlation operation.

Fig. 6. Experimental optical correlation. The zero order in the
lowest part of the image has been clipped for graphic purposes.



image we will obtain the correlation between the in-
put scene and the reference object, and in the lower
part we will obtain the same distribution except for a
mirror reflection @see Fig. 5~b!#. This output plane is
captured again with a CCD camera, so the intensity
of this distribution is recorded. Figure 6 shows the
experimentally obtained intensity output plane when
the input objects are the chess pieces shown in Fig.
4~a!. This plot shows only the upper part of the JTC
output, containing only the correlation term between
the input scene and the target. This correlation out-
put takes into account the information about the sim-
ilarity of the 3-D shape of the objects. Aside from
the zero order in the lowest part of the image, which
has been clipped for graphic purposes, we can observe
a high correlation peak owing to the pawn appearing
in the input scene. This peak allows a clear discrim-
ination with the cross-correlation term that appears
at the right part of the image owing to the knight.
Note that we made no effort to enhance the experi-
mental correlation peak further ~see, for example,
image-processing algorithms or nonlinear processing
applied to the Fourier domain in Refs. 12 and 13,
respectively!.

5. Conclusions

We have presented a novel method for achieving 3-D
shape detection. The method is based on using 3-D
information contained in the deformed fringe pattern
obtained when a grating is projected onto the objects’
surface. When this deformed fringe pattern is ana-
lyzed, it has been shown that the first order of its
Fourier series expansion contains the objects’ height
information encoded on the phase. Therefore taking
the intensity of the first diffraction order permits the
realization of a modified JTC recognition process in
which the input function is the distorted pattern that
contains the 3-D shape of the objects with a phase-
encoded height.

The proposed method has been optically imple-
mented by a two-cycle JTC. In the first cycle the
intensity at the first diffraction order of the deformed
fringe pattern is taken and sent again to the JTC
input plane. The output of the second cycle contains
the desired correlation. Our system inherits from
linear correlation the invariance to translations in a
plane perpendicular to the line of sight; moreover, in
certain conditions our setup is invariant to shifts
along the direction given by the height of the object.
The procedure also takes from linear correlation the
sensitivity to distortions of the object. Changes in
the 3-D orientation of the object will result in differ-
ent height information, degrading the correlation
output.

Experimental results verify the derived theory and
show the utility of the method introduced here. The
whole experimental setup can be constructed with
simple equipment, and, except for grabbing the im-
ages, there is no need for electronic or digital process-
ing. As a consequence the system is simple and
robust. Moreover, the system can operate at nearly
video rates. The fully real-time feature is lost, be-
cause in our actual system we need an enabled and a
disabled binary mask for selection of the first-order
spectrum. Although this procedure is fast, it re-
quires a certain processing time. Alternatively, a
fully real-time setup could be done by cascading an-
other optical Fourier transform line by using the
masked intensity signal for driving another SLM in
the second Fourier transform line. Coordinate in-
version produced by two consecutive Fourier trans-
forms could be avoided by suitably addressing the
SLM. In this case the speed would be limited only
by the speeds of the SLM and the camera, usually
operating at video rates.
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