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I. Introduction

The primary objective of missile guidance laws is to drive the missile to intercept a specific target with zero miss

distance. Proportional navigation guidance (PNG) has been proved to be an efficient and simple guidance algorithm for

missile systems, thus showing wide applications in the past few decades [1]. The optimality of PNG was analyzed

in [2] and its extension to three-dimensional (3D) scenario can be found at [3]. In the context of modern warfare,

many high-value battleships, like destroyers and aircraft carriers, are equipped with powerful self-defense systems

against anti-ship missiles [4]. In order to penetrate these formidable defensive systems, the concept of salvo attack or

simultaneous attack was introduced: many missiles are required to hit a battleship simultaneously, albeit their different

initial locations. One typical solution of simultaneous attack is impact time control guidance. Generally, impact time

control can be classified into two categories: (1) specify the desired impact time and control each missile to satisfy the

desired impact time constraint individually; and (2) synchronize the impact time either in a distributed or decentralized

fashion through a communication network among all interceptors.

By using linearized kinematics with optimal control theory, the authors in [4] proposed an impact time control

guidance law. The resulting command was proved to be a PNG term in conjunction with a feedback term for regulating

the impact time error. This work seems to be the first paradigm in the area of salvo attack. A similar idea was utilized

in [5] to extend [4] to satisfy both impact angle and impact time constraints. In this reference, the jerk command

was chosen as the control input to provide one additional degree of freedom for impact time control. The authors

in [6] further suggested an impact time guidance based on nonlinear kinematics. The resulting guidance command

shows similar form as [4], thus justifying the applicability of [4] in reality. A biased PNG for impact time control was

introduced in [7], where the estimated time-to-go was based on Gaussian hypergeometric and beta function. Using

optimal error dynamics, the authors in [8] suggested a generalized optimal guidance law for impact time control. A

terminal guidance law with numerical time-to-go estimation for hypersonic vehicle was proposed in [9] to cater for the

impact time constraint.
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Apart from biased PNG concept, impact time control was also studied in the context of nonlinear control theory.

With dedicated Lyapunov functions, nonlinear impact time control guidance laws were developed in [10, 11]. The

singularity issue associated with the guidance command was also rigorously analyzed in [10]. Considering seeker’s

field-of-view limit, a terminal sliding mode guidance law was formulated in [12] to achieve the objective of salvo attack.

Using PNG-based time-to-go estimations, sliding mode control was leveraged in [13–15] to reduce the impact time

error. Through line-of-sight (LOS) shaping, impact time constraint was satisfied in [16] by using sliding mode control

to drive the system to converge to the desired polynomial error dynamics. Different from [16], the concept of look angle

shaping was leveraged to cater for impact time control in [17–20]. Combing sliding mode control with the virtual target

concept, a impact time and impact angle constraint guidance law was proposed in [21]. A new impact time and impact

angle control trajectory shaping guidance was suggested in [22] based on the elliptic geometric rule.

By sharing the information on predicted time-to-go among all missiles, a cooperative guidance law was suggested

in [23] for simultaneous attack. A general solution to cooperative guidance problem was provided in [24] based on

coordination algorithms. Following the concept of two-stage guidance, a guidance law to achieve simultaneous attack of

multiple missiles was proposed in [25], where a linear distributed consensus protocol was suggested in the first stage to

generate favored initial conditions for the latter stage.

Note that most previous impact time control guidance laws are dedicated for two-dimensional (2D) engagement

scenarios, thus ignoring the cross couplings between horizontal and vertical channels. It is well known that the

application of 2D guidance laws in realistic 3D engagements is valid for roll-stabilized interceptors. However, designing

3D guidance law is meaningful since it can fully exploit the synergism effect of horizontal and vertical planes. Therefore,

3D guidance law is more beneficial if the effect of cross couplings cannot be neglected. Although the Lyapunov-based

guidance law [10] and the consensus-based guidance law [25] are directly derived using 3D kinematics, they are limited

to address the optimality issue because they were formulated based on nonlinear control approaches rather than the

optimal control framework. Furthermore, these two guidance laws only guarantee asymptotical convergence as proved

by the authors.

Motivated by the aforementioned observations, this Note aims to propose a generalized optimal 3D guidance law for

anti-ship missiles to satisfy the impact time constraint. For this purpose, we utilize a composite guidance command,

similar to [4, 6, 8], consisting of an optimal 3D PNG part and a feedback loop for regulating the impact time error. In

determining the error feedback term, we first generalize the 2D PNG-based time-to-go estimation approach [6] to the

3D homing case. In order to drive the predicted time-to-go to its desired pattern, the optimal error dynamics method,

developed in [8], was utilized to design the error feedback command. The finite-time convergence of the impact time

error and the optimality of the proposed guidance law are also analyzed. Notice that the guidance algorithm developed

can be viewed as an extension of [8] to a realistic 3D scenario with more rigorous analysis about guidance command

and guidance gain selection. Compared with the 2D optimal impact time guidance law [8], the proposed guidance law
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Fig. 1 Three-dimensional homing engagement geometry.

provides more stable acceleration command and requires less energy consumption, especially when the cross coupling

effect is strong.

The remainder of this Note is organized as follows. The problem formulation is described in Sec. II. Section III

presents the details of the proposed 3D impact time guidance law, followed by the property analysis shown in Sec. IV.

Finally, some simulation results and conclusions are offered.

II. Problem Formulation

This section states the problem formulation of this paper. Before introducing the system kinematics, we make three

basic assumptions as follows:

Assumption 1 The target is stationary.

Assumption 2 The missile is assumed as an ideal point-mass model.

Assumption 3 The missile is flying with constant velocity.

Note that these assumptions are widely accepted in impact time guidance law design for anti-ship missiles:

(Assumption 1) Compared to anti-ship missiles, their target’ speed is ignorable. (Assumption 2) Typical philosophy

treats the guidance and control loops separately by placing the guidance kinematics in an outer-loop, generating guidance

commands tracked by an inner dynamic control loop, also known as autopilot. (Assumption 3) The vehicle’s velocity is

generally slowly varying and hence can be assumed as piece-wise constant.
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Under these assumptions, the 3D engagement geometry is shown in Fig. 1, where (XI,YI, ZI ) denotes the inertial

reference coordinate system and V is the missile velocity. The missile-target relative range is denoted as R. The notations

θM and φM stand for two velocity lead angles with respect to the LOS line in pitch and yaw planes, respectively. Note

that both θM and φM can be obtained indirectly from the onboard seeker gimbal angles [26]. The variables θL and

φL represent the LOS angles in azimuth and elevation directions, respectively. The angle σ is missile velocity lead

angle in the engagement plane, e.g., ’total’ velocity lead angle, also known as heading error. The differential equations

describing the 3D kinematics can be formulated as [26]

ÛR = −V cos θM cos φM (1)

ÛθL = −
V

R
sin θM (2)

ÛφL = −
V

R cos θL
cos θM sin φM (3)

ÛθM =
az

V
+

V

R
cos θM sin

2 φM tan θL +
V

R
sin θM cos φM (4)

ÛφM =
ay

V cos θM
−

V

R
sin θM sin φM cos φM tan θL

+

V

R cos θM
sin

2 θM sin φM +
V

R
cos θM sin φM

(5)

where ay and az are missile accelerations in yaw and pitch directions, respectively.

The complementary equation defining the relationship between the heading error and the projected velocity lead

angles can be obtained from Fig. 1 as

cosσ = cos θM cos φM (6)

The aim of this Note is to design a 3D optimal guidance law such that the missile can intercept a stationary target

with a specific impact time td . Our solution to this problem is given by a composite guidance command, consisting of

an optimal baseline 3D PNG and an optimal impact time error feedback term.

III. Three-Dimensional Optimal Impact Time Guidance Law Design and Analysis

This section will present the details of the proposed impact time guidance law. We will first predict the impact time

under 3D PNG and then design an error feedback term using optimal error dynamics.

A. Impact Time Prediction in Three-Dimensional Engagement

In impact time control, accurate impact time prediction is of paramount importance. For this reason, this subsection

will generalize the 2D PNG-based time-to-go estimation [6, 23] to practical 3D scenarios. The classical PNG generates
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the commanded acceleration of the interceptor in proportion to the turning rate of LOS. In a 3D scenario, PNG is

defined in a vector format as [26]

a
PNG
= NΩL × V (7)

where N > 0 denotes the navigation gain. The notations ΩL and V represent the LOS angular rate and missile velocity

vectors, respectively. These two vectors determine the engagement plane of the 3D interception geometry [27]. Since

the relative range is usually not adjustable during terminal guidance phase, the 3D PNG is usually implemented in two

planes in the velocity coordinate as [26]

a
PNG
y = −NV Ûλy sin θM sin φM + NV Ûλz cos θM (8)

a
PNG
z = −NV Ûλy cos φM (9)

where Ûλy and Ûλz are LOS angular velocity vector components in the LOS coordinate, which can be directly measured

using onboard seekers. Since

Ûλy =
V

R
sin θM (10)

Ûλz = −
V

R
cos θM sin φM (11)

Substituting Eqs.(10)-(11) and (8)-(9) into it yields

a
PNG
y = −

NV
2

R
sin φM (12)

a
PNG
z = −

NV
2

R
sin θM cos φM (13)

Differentiating Eq. (6) and substituting Eqs.(4)-(5) and Eqs. (12)-(13) into it results in

Ûσ =
1

sinσ

(

sin θM cos φM ÛθM + cos θM sin φM ÛφM
)

=

1

sinσ

[

−
(N − 1)V

R
sin

2 θM cos
2 φM −

(N − 1)V

R
sin

2 φM

]

= −
(N − 1)V

R sinσ

(

cos
2 φM − cos

2 θM cos
2 φM + sin

2 φM

)

= −
(N − 1)V

R
sinσ

(14)

Dividing Eq. (1) by Eq. (14) yields

dR

dσ
=

R cotσ

N − 1
(15)
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Solving differential equation (15) in terms of σ gives

R =
R0

(sinσ0)
1/(N−1)

(sinσ)1/(N−1) (16)

where R0 and σ0 stand for the initial relative range and velocity lead angle.

Assume that the velocity leading angle satisfies |σ | < π/2, which implies that R is strictly decreasing from Eq. (1).

Define an auxiliary variable η = sinσ, then, Eq. (1) can be reformulated as

dt

dR
= −

1

V

√

1 − η2

(17)

Integrating the preceding expression using binomial series gives the predicted impact time t f as

t f =
1

V

∫ R0

0

1
√

1 − η2

dR

=

1

V

∫ R0

0

(

1 +
1

2
η2
+

3

8
η4
+

5

16
η6
+ · · ·

)

dR

(18)

Substituting Eq. (16) into Eq. (18) and after integration, we have

t f =
R0

V

[

1 +
η2

0

2 (2N − 1)
+

3η4

0

8 (4N − 3)
+

5η6

0

16 (6N − 5)
+ · · ·

]

(19)

where η0 denotes the initial value of η.

Replacing R0 and η0 with R and η, respectively, gives the predicted time-to-go under 3D PNG as

tgo =
R

V

[

1 +
η2

2 (2N − 1)
+

3η4

8 (4N − 3)
+

5η6

16 (6N − 5)
+ · · ·

]

(20)

By neglecting the higher order terms of η2, we have the approximated time-to-go estimation as

tgo =
R

V

[

1 +
sin

2 σ

2 (2N − 1)

]

(21)

Remark 1 For practical interceptors that provide roll stabilization capability, the 3D guidance problem can be treated

in two separate channels. Accordingly, 3D homing guidance can also be achieved by constructing two separate 2D

PNGs in the pitch and yaw planes of the missile for roll-stabilized airframes. The commanded accelerations in the two

planes are defined as [28]

a
PNG
y = −

NV
2

R
sin φM (22)
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a
PNG
z = −

NV
2

R
sin θM (23)

It follows from Eqs. (12) and (13) that separate 2D PNG is identical to 3D PNG if the cross coupling between

the pitch and the yaw planes is ignorable. However, if the relative motions in the two planes can not be decoupled,

performance degradation of separately implementing 2D PNG is inevitable due to the cross coupling effect.

Remark 2 If we only consider the 2D engagement, pitch plane for example, we have σ = θM and φM = 0. Then, the

predicted time-to-go (20) reduces to

tgo =
R

V

[

1 +
sin

2 θM

2 (2N − 1)

]

(24)

which coincides with the results, derived in [23], when the velocity leading angle is small, e.g., sin θM ≈ θM . Comparing

Eqs. (20) and (24), it can be concluded that the proposed time-to-go estimation extends the 2D algorithm to a projected

plan containing the LOS vector and missile velocity vector in the 3D scenario.

Remark 3 In impact time guidance law design, the desired impact time td should be set to be achievable, e.g., the

problem is well posed. From practical standpoint of view, the desired impact time td is required to be larger than the

predicted impact time t f . For this reason, a suitable choice of td is

td >
R0

V

[

1 +
sin

2 σ0

2 (2N − 1)

]

(25)

B. Impact Time Guidance Law Design

To achieve impact time control, both target interception and zero impact time error are required to be satisfied.

For this reason, we propose a 3D composite guidance law, which is composed of an optimal baseline 3D PNG and an

optimal impact time error feedback term. Instead of using two different biased terms, the proposed guidance law only

utilizes one unique feedback command, which is automatically allocated to both vertical and horizontal planes, as

ay = a
PNG
y + ab sin φM =

(

−
NV

2

R
+ ab

)

sin φM (26)

az = a
PNG
z + ab sin θM cos φM =

(

−
NV

2

R
+ ab

)

sin θM cos φM (27)

where ab denotes the error feedback term to be determined.

Define et = td − tgo − t as the impact time error. Substituting (21) into et and taking its time derivative using Eqs.
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(26) and (27) gives

Ûet = −Ûtgo − 1

= −
ÛR

V
−

ÛR

V

sin
2 σ

2 (2N − 1)
−

R

V

sinσ cosσ Ûσ

2N − 1
− 1

= cosσ

[

1 +
sin

2 σ

2 (2N − 1)

]

−
R cosσ

(2N − 1)V2

[

−
(N − 1)V

2

R
sin

2σ + absin
2σ

]

− 1

= cosσ

[

1 +
sin

2 σ

2 (2N − 1)

]

−
R cosσ sin

2 σ

(2N − 1)V2

[

−
(N − 1)V

2

R
+ ab

]

− 1

= cosσ

[

1 +
sin

2 σ

2 (2N − 1)

]

+

(N − 1) cosσ sin
2 σ

2N − 1
−

R cosσ sin
2 σ

(2N − 1)V2
ab − 1

(28)

Assume that the missile velocity lead angle σ is small. Then, we have sinσ ≈ σ and cosσ ≈ 1 − σ2/2. Using

these two approximations and neglecting higher order terms of σ, Eq. (28) reduces to

Ûet = −
R sin

2 σ

(2N − 1)V2
ab (29)

For system (29), consider the following optimal error dynamics [8]

Ûet +
K

tgo
et = 0 (30)

where K > 0 is the guidance gain to be designed.

Combining Eq. (29) with Eq. (30) gives the guidance command to nullify the impact time error as

ab =
K (2N − 1)V

2

R sin
2 σtgo

et (31)

Substituting Eq. (31) into Eqs. (26)-(27) yields the explicit guidance command as

ay =

[

−
NV

2

R
+

K (2N − 1)V
2

R sin
2 σtgo

et

]

sin φM (32)

az =

[

−
NV

2

R
+

K (2N − 1)V
2

R sin
2 σtgo

et

]

sin θM cos φM (33)

Similar 3D PNG, the proposed guidance law can be formulated as a vector, locating in the engagement plane, as

a =

[

−
NV

2

R
sinσ +

K (2N − 1)V
2

R sinσtgo
et

]

ea (34)

where ea = [0, sin φM/sinσ, sin θM cos φM/sinσ]T denotes the unit vector that specifies the direction of the commanded
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acceleration in the velocity coordinate.

Remark 4 Although the proposed 3D guidance law is derived using stationary targets, the guidance law developed can

be easily adapted to non-maneuvering target scenarios through the well-known predicted interception point concept

[15].

IV. Analysis of the Proposed Guidance Law

This section analyzes the properties of the proposed 3D optimal impact time guidance law in the following aspects.

A. Singularity Issue

From Eq. (31), we can observe that σ = 0 is a singular point, which will result in infinite guidance command.

However, it is easy to verify that this singular point is trivial since the velocity lead angle σ , 0 except for the final

impact point. To see this, taking the time derivative of σ and substituting Eqs. (32)-(33) into it yields

Ûσ = −
(N − 1)V

R
sinσ +

K (2N − 1)V

R sinσtgo
et (35)

By choosing the desired impact time td that satisfies condition (25), we can readily conclude that et,0 > 0, where

et,0 denotes the initial impact time error. With this in mind, one can imply that the term K (2N − 1)Vet/
(

R sinσtgo

)

initially tries to increase the magnitude of the velocity lead angle for reducing the impact time error. Also note that the

PNG term −(N − 1)V sinσ/R is utilized to regulate the velocity lead angle to zero to guarantee target interception. It is

well known that the velocity lead angle under PNG converges to zero only at the time of impact [1]. Therefore, if the

guidance gain K satisfies

K (2N − 1)V

R0 |sinσ0 | t f
et,0 >

(N − 1)V

R0

|sinσ0 | (36)

or the equivalent form

K >
(N − 1) sin

2 σ0t f

(2N − 1) et,0
(37)

the error feedback term ab will play a dominant role initially in the guidance command, thus forcing the magnitude of

the velocity lead angle increases until certain time instant t1. When t ≥ t1, the PNG term will dominate over ab , hence

regulating the magnitude of the velocity lead angle to zero at the time of impact. Note that condition (37) is easily to

be satisfied for practical scenarios. Therefore, the proposed guidance law is nonsingular. An example of the velocity

leading angle response under the proposed guidance law is presented in Fig. 2.
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Fig. 2 An example of velocity leading angle profile.

B. Finite-Time Convergence of Impact Time Error

Under optimal error dynamics (30), it is easy to verify that the closed-form solution of the impact time error is

determined as

et = et,0

(

tgo

t f

)K

(38)

which clearly reveals that the impact time error et will converge to zero at the time of impact if K > 0, thus satisfying

the impact time control requirement. Furthermore, the convergence rate of impact time error is determined by the

guidance gain K: larger K results in faster convergence since tgo/t f ≤ 1.

C. Optimality of the Error Feedback Term

According to Theorem 1 in [8], error dynamics (30) is optimal in terms of performance index

J =
1

2

∫ t f

t

R
2
sin

4σ

(2N − 1)2V4
(

t f − τ
)K−1

ab (τ) dτ (39)

Since the constant terms in the performance index do not affect the optimal pattern, the previously mentioned

performance index is identical to

J =
1

2

∫ t f

t

R
2
sin

4σ
(

t f − τ
)K−1

ab (τ) dτ (40)

It follows from Eq. (40) that the weighting function R
2
sin

4σ/
(

t f − τ
)K−1

gradually decreases with the decrease of

R and σ. This means that the magnitude of the error feedback term ab tends to increase when the missile approaches

the target. This property is, obviously, not desirable to guarantee finite guidance command. For this reason, it is

recommended to choose relatively large guidance gain K such that t
K−1
go is larger than R

2
sin

4σ to compensate for the

decreasing of the weighting function. Notice that the decreasing rates of both relative range and velocity lead angle are
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governed by the PNG term, a suitable choice of K is K > N .

D. Relationship with 2D Optimal Impact Time Guidance Law [8]

When only considering the 2D homing engagement, e.g., pitch plan for example, we have σ = θM and φM = 0.

Then, the proposed 3D impact time guidance law, shown in Eqs. (32)-(33), reduces to

ay = 0 (41)

az = −
NV

2

R
sin θM +

K (2N − 1)V
2

R sin θM tgo
et (42)

which coincides with the generalized 2D optimal impact time guidance law proposed in [8].

It is well-known that the 2D guidance law can be directly applied to 3D scenarios for roll-stabilized airframes by

ignoring the cross-coupling effect between the horizontal and the vertical channels, e.g., assuming θM and φM are small.

Under the condition that the relative motions in the two planes are decoupled, impact time control in a 3D scenario can

be satisfied by using separate 2D guidance laws in the two planes. One feasible strategy to achieve this objective is

to apply the 2D optimal impact time guidance law [8] in the vertical plane for impact time control and utilize the 2D

PNG in the horizontal plane for the homing constraint. With this in mind, the individual 2D guidance command can be

obtained as

a
2D
y = −

NV
2

R
sin φM (43)

a
2D
z = −

NV
2

R
sin θM +

K (2N − 1)V
2

R sin θM tgo
et (44)

Comparing Eqs. (32)-(33) with Eqs. (43)-(44), one can observe that the proposed 3D guidance law automatically

distributes the error feedback command term to both horizontal and vertical plans while the 2D guidance law only

leverages one channel in impact time control. This means that the proposed 3D guidance law fully exploits the the

synergism between these two channels and thus is beneficial when θM , 0 and φM , 0, especially when the effect of

cross coupling is strong. For example, if sin θM cos φM > sin φM , the proposed guidance law will mainly utilize the

vertical plane for impact time control. Similarly, if sin φM is dominant over sin θM cos φM , the horizontal plane will

play an important role in impact time control. This property will be empirically evaluated in simulations. It is worthy

pointing out that the performance of 3D impact time guidance law is close to its 2D counterpart only when φM is small.

As separately implementing 2D guidance law ignores the cross coupling effect, performance degradation is inevitable if

this small angle approximation. For example, if θM approaches to near zero before interception, the pitch guidance

command (44) will suffer from a singular issue, as can be observed from the simulation studies.

Notice that the proposed 3D guidance leverages a kind of automatic command allocation, it is, therefore, helpful in
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saving energy consumption, compared to the separate 2D guidance law. To see this, define E = a
2
y + a

2
z as the quadratic

energy consumption at each time instant, then the required energy of the proposed 3D guidance law can be obtained as

E3D =

[

−
NV

2

R
+

K (2N − 1)V
2

Rsin
2σtgo

et

]2
(

sin
2φM + sin

2θMcos
2φM

)

=

[

−
NV

2

R
+

K (2N − 1)V
2

Rsin
2σtgo

et

]2

sin
2σ

=

(

N
2
V

4

R2

)

sin
2σ −

2KN (2N − 1)V
4
et

R2tgo
+

K
2(2N − 1)2V

4

R2sin
2σt

2
go

e
2

t

(45)

The required energy of utilizing separate 2D guidance law is given by

E2D =

(

−
NV

2

R
sin φM

)2

+

(

−
NV

2

R
sin θM +

K (2N − 1)V
2

R sin θM tgo
et

)2

=

(

N
2
V

4

R2

)

(

sin
2φM + sin

2θM

)

−
2KN (2N − 1)V

4
et

R2tgo
+

K
2(2N − 1)2V

4

R2sin
2θM t

2
go

e
2

t

(46)

Since cos
2σ = cos

2θMcos
2φM ≤ cos

2θM , we have sin
2σ ≥ sin

2θM . Then, it follows from Eq. (47) that

E2D ≥

(

N
2
V

4

R2

)

(

sin
2φM + sin

2θMcos
2φM

)

−
2KN (2N − 1)V

4
et

R2tgo
+

K
2(2N − 1)2V

4

R2sin
2σt

2
go

e
2

t

=

(

N
2
V

4

R2

)

sin
2σ −

2KN (2N − 1)V
4
et

R2tgo
+

K
2(2N − 1)2V

4

R2sin
2σt

2
go

e
2

t

= E3D

(47)

where the equality holds if and only if φM = 0. This expression clearly shows that the proposed 3D guidance law

requires less energy consumption than separately implementing the 2D guidance law.

V. Numerical Simulations

In this section, the effectiveness of the proposed 3D optimal impact time guidance law is demonstrated through

numerical simulations, in which an anti-ship missile is considered to intercept a stationary target. In the considered

scenario, the target is located at (0m, 0m, 0m). The interceptor initially locates at (6000m, 6000m, 0m)with initial velocity

lead angles θM,0 = 10
◦ and φM,0 = 10

◦. The missile flies with constant velocity V = 250m/s. For implementing the

proposed guidance law, the navigation gain of the baseline PNG is set as N = 3. In practice, the achieved acceleration of

the missile is always bounded due to physical limits. For this reason, the magnitudes of both ay and az are constrained

by 100m/s
2 in simulations.
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Fig. 3 Simulation results with respect to different guidance gains K .

A. Characteristics of the Proposed Three-Dimensional Impact Time Guidance Law

This subsection will empirically analyze the properties of the proposed 3D optimal impact time guidance law under

various conditions. It is clear that the guidance gain K plays an important role in the proposed guidance law since

it governs the convergence rate of the impact time error. For this reason, we first perform simulations with various

guidance gains K = 4, 8, 12. In these simulations, the desired impact time is set as td = 45s, which satisfies condition

(25). The simulation results, including interception trajectories, history of relative range and acceleration command,

are presented in Fig. 3. From this figure, it is clear that the proposed 3D guidance law successfully drives the missile

to intercept the stationary target with desired impact time. With higher guidance gain K , the response pattern of the

relative range becomes more curved, thus closer to the desired pattern (td − t)V . That is, higher guidance gain K helps

to increase the convergence speed of the impact time error. However, Fig. 3 (c) reveals that the proposed guidance law

with higher guidance gain K requires more control energy during the initial flight phase. Furthermore, by choosing

K > N , we can clearly note from Fig. 3 (d) that the guidance commands in both vertical and horizontal planes converge

to zero at the time of impact, demonstrating that the proposed guidance law has enough operational margins to cope

with undesired disturbances when the missile approaches the target.

Now, let us investigate the performance of the proposed 3D impact time guidance law with respect to different

desired impact time td = 40s, 60s, 80s. For implementing the proposed guidance law, the guidance gain of the impact

time error feedback term is chosen as K = 12. Fig. 4 (a) compares the interceptor trajectory for these three different

impact time constraints. This figure clearly shows that the interceptor takes a longer flight path with a larger desired

impact time. The history of the relative range with the three cases of desired impact time td is presented in Fig. 4 (b),

which reveals that the proposed guidance law satisfies the impact time constraint precisely. The impact time error of the

proposed guidance law turns out to be less than 0.01s with different impact time constraints in our simulations. From

this figure, it is obviously that longer convergence phase is required to regulate the impact time error with larger desired

impact time td under the same initial conditions. The missile acceleration command produced by the proposed guidance

13
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Fig. 4 Simulation results with respect to different desired impact time td .

law with different td is provided in Fig. 4 (c). Clearly, more energy consumption is required during the initial phase for

a larger td . For this reason, the duration of initial acceleration saturation of td = 80s is longer than that of td = 40s and

td = 60s.

B. Comparison with Two-Dimensional Impact Time Guidance Law [8]

To further show the advantages of the proposed 3D impact time guidance law, comparisons with generalized

2D optimal impact time guidance law [8] are conducted in this subsection. For the purpose of comparison, three

different initial conditions are considered as: (1) θM,0 = 40
◦, φM,0 = 0

◦; (2) θM,0 = 40
◦, φM,0 = 40

◦; and θM,0 = 40
◦,

φM,0 = 80
◦. It is clear that case 1 is a 2D homing scenario occurs in the vertical plane; case 2 considers moderate

level of coupling effect between two planes; and case 3 corresponds to the strong cross coupling scenario. For fair

comparison, the guidance gain of the impact time error feedback term for both guidance laws is set as K = 12.

The simulation results, including interception trajectories, relative range and acceleration command, are shown

in Fig. 5 with desired impact time td = 45s. From the first row of Fig. 5, one can observe that these two guidance

laws generate exactly the same results for case 1, as we expected. The reason is that the proposed 3D impact time

guidance law reduces its 2D counterpart if we only consider the vertical plane as we discussed before. For case 2, since

sin θM cos φM < sin φM , the proposed 3D guidance law will mainly utilize the horizontal plane to regulate the impact

time error, as shown in the second row of Fig. 5. As we utilize the same guidance gain K for both guidance laws, the

impact time error dynamics under the two guidance laws is the same. For this reason, the convergence patterns of the

relative range under both guidance laws show similar characteristics, as can be confirmed from Fig. 5 (e). From Fig.

5 (f), we can observe that the proposed 3D guidance law leverages both vertical and horizontal channels for impact

and automatically distribute the error feedback command into these two channels. As a comparison, the 2D impact

time guidance law only utilizes the vertical plane in impact time control. As for the strong cross coupling engagement

scenario of case 3, both guidance laws successfully drive the missile to intercept the target with desired impact time

constraint, as shown in the third row of Fig. 5. However, the 2D impact time guidance law shows oscillating patterns
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Fig. 5 Comparison results with 2D optimal impact time guidance law.
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Table 1 Control effort comparisons.

Case 1 Case 2 Case 3

2D Guidance 18733 18951 62803

3D Guidance 18733 13080 9926

when the interceptor is close to the target, which is not desirable for onboard control systems. The control effort
∫ t f

t0

[

a
2
y (t) + a

2
z (t)

]

dt obtained from both 2D and 3D impact time guidance laws for these three different cases are

summarized in Table 1. From this table, we can readily note that the proposed 3D impact guidance law helps to reduce

the energy consumption except for the particular case 1. This confirms the theoretical findings presented in the previous

section.

VI. Conclusions

The homing guidance problem for impact time control against a stationary target in 3D scenarios is discussed in

this Note. The proposed optimal guidance law is composed of two different parts: an baseline 3D PNG and an impact

time error feedback error. The baseline PNG is utilized for target interception while the feedback command regulates

the impact time error to zero in finite time. To determine the error feedback term, we also generalize the original 2D

time-to-go estimation algorithm to the realistic 3D engagement. Compared to the 2D generalized optimal impact time

guidance law [8], the proposed approach is proved to be helpful in energy saving and fully exploits the the synergism

between the horizontal and the vertical channels.
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