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Transition to turbulence in plane channel flow occurs even for conditions under which modes 
of the linearized dynamical system associated with the flow are stable. In this paper an 
attempt is made to understand this phenomena by finding the linear three-dimensional 
perturbations that gain the most energy in a given time period. A complete set of 
perturbations, ordered by energy growth, is found using variational methods. The optimal 
perturbations are not of modal form, and those which grow the most resemble 
streamwise vortices, which divert the mean flow energy into streaks of streamwise velocity 
and enable the energy of the perturbation to grow by as much as three orders of 
magnitude. It is suggested that excitation of these perturbations facilitates transition from 
laminar to turbulent flow. The variational method used to find the optimal 
perturbations in a shear flow also allows construction of tight bounds on growth rate and 
determination of regions of absolute stability in which no perturbation growth is 
possible. 

I. INTRODUCTlON 

Despite decades of research, the problem of transition 
to turbulence in a shear flow has yet to be fully resolved. 
Turbulence develops in laboratory plane Poiseuille flow at 
Reynolds numbers, based on half-channel length and max- 
imum velocity, as low as 1000’ or as high as 8000,2 de- 
pending on the level of noise in the experiment. In plane 
Couette flow, turbulence has been encountered at Reynolds 
numbers as low as 360.3 Classical linear theory, based on 
the existence of exponential temporal modal instability, 
predicts a critical Reynolds number of R,z5772 for Poi- 
seuille flow and stability for all values of R in Couette flow, 
predictions clearly at variance with observations. 

The nature of the disturbances which appear in shear 
flow is also incompletely explained by traditional instabil- 
ity theory. Squire’s theorem4 applied to a viscous flow re- 
quires every unstable three-dimensional (3-D) modal dis- 
turbance to be associated with a more unstable two- 
dimensional (2-D) modal disturbance at a lower Reynolds 
number. This result has been widely interpreted as reduc- 
ing the problem of finding sufficient criteria for instability, 
and therefore the minimum critical Reynolds number, to 
an investigation of two-dimensional disturbances. How- 
ever, the variations that are most often observed in a vis- 
cous shear flow tend to take the form of streaks oriented in 
the streamwise direction. In the experiments of Klebanoff 
et al,’ spacers were added to control these spanwise vari- 
ations since they could not be eliminated. Over the course 
of several years of experiments with forced Tollmien- 
Schlichting waves, Nishioka and his co-workers were un- 
able to eliminate spanwise distortion of the basic flow6 de- 
spite techniques which reduced noise levels in the incoming 
fluid to under 0.05%. 

The possibility of transient growth of disturbances in 
viscous flow has been recognized for over a century.7 Re- 
cently, the initial value problem has attracted the attention 
of researchers studying transition to turbulence in viscous 
shear flows. The justification of these “bypass” approaches, 

so named because they bypass the ideas of traditional in- 
stability theory, is the speculation that transition may re- 
sult if some initial disturbances arising from the finite level 
of noise present in any flow are able to grow sufficiently to 
activate nonlinear mechanisms or to provide new basic 
states for secondary instabilities. These disturbances are 
sometimes called “algebraic instabilities” to distinguish 
them from exponential instabilities. 

For inviscid flows, Ellingsen and Palm* demonstrated 
that the streamwise velocity grows linearly with time for a 
disturbance with no streamwise variation. Given a basic 
velocity U(y) in the x direction, the linearized momentum 
equation for the streamwise velocity component u is 

au 
TpdJ'==O, 

where the prime indicates a derivative in y. The mean mo- 
mentum is transported by the wall normal velocity of this 
disturbance. Because the normal velocity v is independent 
of time, the streamwise velocity increases linearly with 
time. This growth mechanism has been labeled lift-up’ and 
vortex stretching, although it is more accurately referred to 
as vortex tilting, as can be shown by linearizing the inviscid 
vorticity equation, 

For a disturbance independent of the x direction, linear- 
ization leaves only a vortex-tilting term, 

where o is the normal vorticity component and - U’ is the 
vorticity of the mean flow, which is in the cross-stream z 
direction. This mean z vorticity is tilted into they direction 
by the perturbation strain rate av/dz, giving rise to the 
increase of y vorticity. 

Landahl” has shown that inviscid shear flows support 
three-dimensional disturbances whose energy grows at 
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least linearly in time as they lengthen in the streamwise 
direction. The large horizontal velocities generated over 
time by these disturbances are due to the above-described 
vortex-tilting mechanism. In his studies of localized distur- 
bances in plane Poiseuille flow, Henningson” demon- 
strated that as a certain simple disturbance evolves it de- 
velops a streaky character and becomes dominated by 
effects due to vortex tilting. The same is true for a simple 
disturbance developing on a flat-plate boundary layer, as 
observed through both analysis and experiment by Breuer 
and Haritonidis. l2 

In addition to the vortex-tilting mechanism, another 
growth mechanism exists for shear flows, as can be seen 
from the inviscid energy density equation, 

ag i 1 -= -- 
s at 2-1 

Vii dy, (4) 

where 8’ is perturbation energy density and the overbar 
denotes an average in x. This expression indicates that a 
disturbance can extract energy from the mean shear by 
transporting momentum down the mean momentum gra- 
dient through the’action of perturbation Reynolds stress. 
To visualize this mechanism more clearly, note that the 
energy increases when 

is positive over the integral. As perturbation streamlines 
with an initial phase tilt opposite that of the mean shear, 
indicated by (ay/ax)&’ < 0 in (5), are advected by the 
mean shear into a more upright orientation, the perturba- 
tion gains energy. As the shear continues to advect the 
disturbance, its phase becomes tilted in the opposite direc- 
tion, indicated by (ay/ax) @J’ > 0, and the disturbance en- 
ergy is returned to the mean flow.i3 An investigation of 
two-dimensional perturbations which grow the most in L2 

and energy norms for plane Poiseuille and Couette flow 
carried out by Farrell14 showed the Reynolds stress mech- 
anism to be responsible for rapid transient growth in ex- 
ponentially stable two-dimensional viscous shear flow. 

Resonance theory has been used to find initial pertur- 
bations that grow rapidly in time. Direct resonances be- 
tween a single Orr-Sommerfeld mode, which is coupled 
with normal vorticity in the three-dimensional equations, 
and a single Squire mode have been found in Couette 
flow,” Poiseuille flow,16 and boundary layers.“-I9 The 
presence of a direct resonance introduces an algebraic 
growth term into the temporal development of a distur- 
bance, although the disturbance may still decay in time.20 
By solving the linear initial-value problem in plane Poi- 
seuille flow, Gustavsson2’ found that the energy of an ini- 
tial three-dimensional disturbance consisting of one of the 
least-stable Orr-Sommerfeld modes with zero initial vor- 
ticity was capable of large transient growth before the on- 
set of decay. 

In a flow subject to stochastic forcing, disturbances 
may arise that are configured in such a way that they are 
able to gain energy from the mean flow. If these distur- 

bances attain sufficient amplitude, they may ultimately give 
rise to nonlinear equilibrated structures or turbulent 
patches. The search for transient growing perturbations 
can be rationalized by determining the initial conditions 
that gain the most energy over a specified time period. 
Such optimal perturbations indicate the disturbances that 
are most likely to be found in a stochastically driven flow, 
and set tight bounds on the growth capability of all per- 
turbations. 

The same variational techniques used by Farrell14 to 
find the two-dimensional optimal perturbations in a vis- 
cous shear flow can be applied to the three-dimensional 
equations for normal velocity and normal vorticity to de- 
termine the three-dimensional disturbances that grow the 
most on chosen time scales.” In this work, these optimal 
perturbations are studied for Couette, Poiseuille, and Bla- 
sius shear flow profiles. 

II. VARlATlONAL PROBLEM 

Consider a plane channel with steady mean flow U(y) 

in the streamwise (x) direction. The evolution of small 
three-dimensional perturbations to this flow is governed by 
the linearized Navier-Stokes and continuity equations: 

(i+u”) 
ap 1 

ax 
v== --+- Au, 

aY R 

dP 1 
w=-QRAw, 

(64 

(6~) 

au au aw 
-&+-&+~=o' (7) 

where R = U&/v is the Reynolds number, U. is the max- 
imum velocity, h is the channel half-width, Y is the kine- 
matic viscosity, A is the three-dimensional Laplacian, and 
(‘) =d/dy. Time is nondimensionalized by the advective 
time scale h/U,. The no-slip boundary conditions are u = v 
= w =0 at y= f 1. The mean flow profile is U==y for Cou- 
ette flow and U= 1 -y2 for Poiseuille flow. 

Manipulation of this system of equations results in a 
system for two variables, normal velocity v and normal 
vorticity ~=ada~--ai.~/a~:~~ 

(;+.&)A,-U~‘~-;A,v=o, 

(;+U$o-fAti=-U’;, 

(gal 

(8b) 

with boundary conditions v=av/dy=w=O at y= *l. 
Flow variables u, w, and p can be calculated using the 
relationships: 

a2 a2 do a2v 

( ) @+Z? u=Z-axay~ 

(-$+g.)w=-(g+&), 

(9) 

(10) 
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($+&)p==(~+U-&--k*)t-U’$J, (Ila) 

or 

au 
Ap=--21Jtdx. 

Assume a solution in the form 

u(x,y,st> =fCy)exp[i(ax+Pz) +atl, (124 

dx,y,z,t) -3(y)exp[i(ax+Bz) +atl, (12b) 

with the understanding that only the real parts of these 
quantities will be used when considering physical values. 
The following eigenproblem for iTand 63 results: 

{-iaUA+iaU”+[A(A)/R]JiT=crh~ (134 

[ -iaU+ (A/R)]W-$U’iT=oW, (13b) 

with A=d2/dy2-k2 and k2=a2+fi2. 

The equation for v’ is the classical Orr-Sommerfeld 
equation, whose solutions include the two-dimensional 
Tollmien-Schlichting waves. For three-dimensional per- 
turbations we must simultaneously solve the Orr- 
Sommerfeld equation and the normal vorticity equation, 
which is driven by the normal velocity. 

The set of eigenmodes for this problem is discrete and 
complete for bounded flo~s.“‘-~~ We assume that we can 
approximate an arbitrary initial condition with fixed wave 
numbers a and p in the homogeneous streamwise and 
spanwise directions, respectively, by summing a sufficient 
number, 2N, of eigenmodes: 

2N 

u=~?~ 3/i[uJexp(ait)lexp[i(ax+pz)l, 

2N 

(14a) 

o=.jsI yj[wiexP(ojt>lexp[i(ax+pz)l, (lab) 

where the coefficient rp represents the spectral projection 
on mode j. 

The discretized Orr-Sommerfeld and normal vorticity 
equations take the form 

[-g .;][;]=$]. (15) 

The Orr-Sommerfeld operator 2, Squire operator Y, and 
coupling operator % in this equation are 

Y=A-I{-iaUA+iaV+[A(A)/R]], (1W 

Y=[-iaU+(A/R)], (16b) 

U=( -ipU’), (16~) 

where the inverse Laplacian operator A- ’ is rendered well 
posed by inclusion of appropriate boundary conditions. 
The eigenproblem is solved for all 2N eigenmodes at once. 
The eigenmodes that arise from this formulation include 
solutions of the coupled Orr-Sommerfeld/normal vorticity 
problem and solutions of the homogeneous normal vortic- 
ity equation, also known as Squire modes. 

For self-adjoint operators, growth of any initial pertur- 
bation is simply a matter of tracking the individual growth 
of its orthogonal modes. What makes the initial-value 
problem for viscous shear flow interesting is that the set of 
operators involved is not self-adjoint in the norms of phys- 
ical interest, including the energy norm. Although the 
modal analysis of an eigenproblem such as ( 15) is often 
referred to as the “normal mode” approach, the eigenfunc- 
tions resulting from a non-self-adjoint system are not or- 
thogonal. As a result, a perturbation may consist of modes 
that initially destructively interfere, then separate in time 
to reveal considerable growth in integral energy or rms 
amplitude before decay and the eventual domination of the 
least-damped mode set in. 

The non-self-adjoint nature of the three-dimensional 
problem in the L2 norm is apparent from ( 15), which is 
non-self-adjoint whenever the coupling operator ‘X is non- 
zero or either the Orr-Sommerfeld operator Z or the 
Squire operator Y (or both) is non-self-adjoint. It is ap- 
parent that ( 15) is self-adjoint in the limit a=0 if % ~0 
because both 3 and Y become self-adjoint in this limit. 
Transient growth of perturbations has already been dem- 
onstrated for the two-dimensional problem, in which %? 
=0 and Y is non-self-adjoint.14T26 As we shall see, a non- 
zero coupling term can result in very strong growth even 
for perturbations in the limit a=O, where the Orr- 
Sommerfeld and Squire operators become self-adjoint. 

Given the possibility of transient perturbation growth 
in a viscous shear flow, it is of interest to determine the 
configuration which grows optimally in some sense. Devel- 
opment of the variational problem to obtain the optimal 
perturbations follows the approach taken by Farrell.14 A 
norm to measure growth must first be chosen; we select the 
perturbation energy density as a physically interesting 
measure of perturbation magnitude. Assuming unit mass 
density, the kinetic energy density of a three-dimensional 
perturbation confined to a single wave number in the x and 
z directions is 

(u2+u2+w2)dzdx dy, (17) 

where a =2?r/a and b = 2r/fi are the wavelengths in x and 
z directions and V=2ab is the integration volume. Veloc- 
ities u, v, and w are physical quantities that are obtained by 
taking the real part of the complex quantities that we have 
been calculating; for example, 

u=Re{6’(y,t)exp[i(ax+fiz)]) 

=f{u^exp[i(a.x+fiz)] +$ exp[ -i(ax+/3z)]). 

(18) 

Eliminating u2+w2 from (17) using (9) and (10) and 
integrating over x and z results in an expression for the 
energy density in terms of normal velocity u and normal 
vorticity w: 

29~; J:, [ $;+$($$+36)]dy. (19) 
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To obtain the energy density in matrix form, we first 
rewrite the normal velocity and normal vorticity as 

v=Viy exp[i(ax+Bz)], V~mj=UImjeXP(Ujt) 

where f20) 

o=fkgexp[i(ax+flz)], R~mj=iTmjeXP(~jt). 

The indices are m between 1 and N, referring to values at 
finite-difference locations ym+l=mAys where Ay=Z/(N 
f 1), and mode number j between 1 and 2N. The spectral 
projection, y, is a column vector indexed by the mode 
number j. The energy density can now be written in matrix 
form as 

?T =$ y*v:vz/+; y* -- - y+ y*qf&y 1 ( 
av;r av, 
ay ay )I 

= V-r Y. (21) 
-1.0 

The matrix E is Hermitian, and defines a positive definite 
quadratic form on the spectral projection y. 

The linear perturbation with wave numbers a and p 
that results in the maximum energy at time r given unit 
initial energy can now be determined. This is a variational 
problem whose functional is 

F=y*E,y+4y*Eoy-11, (22) 

where il is the Lagrange multiplier for the fixed initial 
energy. The Euler-Lagrange equation for this functional is 

FIG. 1. Eigenvalues of the Orr-Sommerfeld equation for Poiseuille flow 
at R=5000, a= 1.48, and N= 199, including both symmetric and anti- 
symmetric modes. The eight modes whose eigenvalues are boxed contrib- 
ute the most to the 2-D energy optimal with growth period r=14.1. 
Analysis of the pseudospectra for Poiseuille flow’” shows that these anti- 
symmetric modes nearest the intersection of A, P, and S branches have 
eigenvalues that are highly sensitive to perturbations, indicating near lin- 
ear dependence of the eigenfknctions. 

E,y+W,y=O, (23) 

a generalized eigenproblem whose eigenvalues il are the 
ratios of energy at time r to energy at time 0 corresponding 
to eigenvectors y, the spectral projection of the perturba- 
tions associated with ;1. Arranging the spectral projection 
in order of decreasing eigenvalue orders the necessarily 
orthogonal initial perturbations by energy growth over 
time r. Note that optimal perturbations with wave num- 
bers (a,p> will have the same growth as those with wave 
numbers (a, -j3). 

ence approximation for the Orr-Sommerfeld operator Y 
was chosen through a comparison of Orr-Sommerfeld ei- 
genvalues for Poiseuille flow to those obtained by Orszag.“’ 
Squire modes were verified by comparison to the temper- 
ature modes derived by Davey and Reid3’ for Couette flow, 
using the substitution suggested by Gustavsson and 
Hultgren. I5 

The eigenmodes of the linear dynamical system are 
only of interest to the optimal excitation problem in that 
they provide a convenient way to find the propagator” 
33’ (r,O) that moves initial conditions forward in time from 
0 to 7: 

The Orr-Sommerfeld eigenvalues near the intersection 
of the A, P, and S branches for Poiseuille flow at R = 5000 

with discretization N=49 show the signature pattern for 
the &rite-difference operator with low resolution.3’ Despite 
inaccuracies in the eigenvalues of certain individual modes, 
we find that as the discretization resolution is increased the 
representation ( 12) yields convergent propagators for rep- 
resenting the initial-value problem over the time scales of 
interest in this work. The maximum energy growth values 
reported in the tables are converged values from extrapo- 
lation at three levels of discretization between N=48 and 
199. 

(24) 

In the context of this work, the modal decomposition plays 
no intrinsic role beyond that of providing a convenient 
representation of the propagator. Therefore, demonstrating 
convergence of 3 (r,O) is sufficient for our purposes. We 
note that there is an alternative approach to i%nding the 
propagator and its adjoint, without reference to modes, 
which involves numerical integration in time of the dy- 
namic equations and the adjoint of the dynamic 
equations.“* 

The procedure for finding optimal perturbations is im- 
plemented using finite differences, and the QR algorithm is 
employed to solve the eigenproblems. A nine-point differ- 

d 

-0.8 

0.0 

I I I I 
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x 
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I x 

1. q = 
I q 

“x q x q 

q 
81 

x lrdx 
x 

q 
z 

0.2 0.4 0.8 0.8 

cr 

The spectral projection y for the two-dimensional op- 
timal perturbation in Poiseuille flow shows that the Orr- 
Sommerfeld modes which are primarily represented in the 
composition of the optimal are the modes near the inter- 
section of the A, P, and S branches, as indicated in Fig. 1. 
In a study of the pseudospectra of the Orr-Sommerfeld 
operator, Reddy et al.26 identify the modes near this inter- 
section as having eigenvectors that are nearly linearly de- 
pendent. The linear dependence of modes plays an impor- 
tant role in transient growth of disturbances in general and 
of disturbances in Poiseuille flow in particular. 
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x X 

t = 0. t = 4.35 

IVIm.,= I W/Bx I m*z = 1.0 I “I,,= 4.704 

Et/E0 = 1.0 Et/E, = 2.6 

8. 
X x 

t = 8.70 t = 13.05 

I Y Imu” 18.540 1 vlmU= 4.472 

Et/E, = 13.0 Ed% = 2.3 

FIG. 2. Development of the perturbation streamfunction rj for the best 
growing 2-D energy optimal in Couette flow with R=lOOO, located at 
U= 1.21, r=8.7. The streamfunction rj is defined by -&J//ay=u and 
q/ax=8 

The optimal perturbations which are of interest in- 
clude those capable of the greatest energy growth at a spec- 
ified Reynolds number, those capable of the greatest 
growth rate, and those which define curves of specified 
energy growth. To locate these disturbances in (a,/?,~) 
space, drivers for finding a root given a bracketed interval 
and for maximizing a function in a single or multiple 
dimensionsS2 were incorporated into the computer code. 

III. OPTIMAL PERTURBATIONS IN COUETTE FLOW 

We begin our search for linear perturbations that grow 
rapidly in a Couette flow by looking at the 2-D energy 
optimals previously investigated by Farrell.14 Fixing the 
Reynolds number at R = 1000 and the spanwise wave num- 
ber at fi=O, a search over streamwise wave numbers a and 
growth periods r reveals that a 2-D perturbation with a 
= 1.21 grows the most, with energy increasing by a factor 
of 13 over r=8.7 advective time units. The development of 
the perturbation streamfunction shown in Fig. 2 demon- 
strates the down-gradient Reynolds stress mechanism of 
growth described in the Introduction. 

The existence of a perturbation with energy growth of 
an order of magnitude in less than ten advective time units 
is impressive for a flow that does not support exponential 
instability at any Reynolds number. Now we shall see how 
much growth is possible from three-dimensional distur- 
bances in the same flow. 

The first 3-D disturbance we consider is one that does 
not vary in the downstream direction (a =O> . The maxi- 
mum energy growth achievable by this type of disturbance, 
obtained using the variational method, is an increase by a 
factor of 1166, reached in 138 time units with p= 1.66. The 
development of the streamfunction and streamwise veloc- 
ity of this perturbation, shown in Figs. 3 and 4, respec- 
tively, make clear that this is a streamwise vortex. The 

1.l 
d--I-z:==., 

,‘,-Y=~z:-~.-, \ 
, ~,:-..~-z.-..:,~,~ Y +:‘,‘.--=,.;,,*,, 

r-rcr3. 

‘11’11’ I--, L8t’;r, ;o:tI: \_ J #,11,,1 ,I’,,“.-- -:s,:‘,zt , :\.:.zz= \ . ...---*: ?,;,I; 0 0 
.--.__L- 0 -._____-- -1 .ll -1.‘ p , , 

8. I .89 1.19 1. 1.89 3.79 
2 Z 

t= 0. t = 69.0 

Ivlmu=16~/821,,= 1.0 I v I,.,= 0.522 

Et/E, = 1.0 Et/E, = 600.4 

3.79 1. 1.m 3.79 

2 Z 

t = 136.0 t = 207.0 

I v lmsx= 0.271 I v lrnlX== 0.140 

Et/E, = 1166.2 Et/E, = 977.7 

FIG. 3. Development of the perturbation streamfunction J, for the best 
growing perturbation independent of x in Couette flow with R= 1000, 
located at B= 1.66, r=138. The streamfunction II, is defined by -&j//a’ 
= w and awaz= V. 

growth of streamwise velocity streaks resulting from the 
vortex-tilting mechanism is stopped only by the effects of 
viscosity. When the normal velocity u is dissipated to levels 
at which the transport of momentum is unable to counter 
the dissipation of U, the disturbance begins to decay slowly. 
At this point, the streamwise velocity u has grown larger 
than v by a factor of order O(R), with an attendant in- 
crease in energy, as pointed out by Kim and Moser.33 

1.1 

Y 

1. 1.89 
Z 

0: 3:79 
Z 

t= 0. 

I u I,.,= .ze-01 

Et/E0 = 1.0 

t = 69.0 

I u I =&= 39.6 

Et/E, = 600.4 

1:m $79 I‘ 
z 2 

t = 136.0 t = 207.0 

lu Imur= 46.8 I u Imax= 42.2 

Et/E, = 1166.2 Et/E, = 977.7 

FIG. 4. Development of the perturbation streamwise velocity u for the 
best growing perturbation independent of x in Couette flow with R 
= 1000, located at /L?= 1.66, r= 138. Values are normalized by the maxi- 
mum value of u at time t=O. 
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X X 

t = 0. t = 10.00 

IvI,,= 1.0 I VI,,= 3.625 

Et/& = 1.0 Et/& = 49.0 

Y 

-1 .a 
e. 6.L13 13.66 1. 6.81 13.66 

X X 

t = 20.00 t = 30.00 

I VI,,= 3.120 I v I ==I= 0.550 

Et/E, = 312.5 Et/E, = 205.2 

FIG. 5. Development of the normal velocity v at z=O for the perturbation 
with maximum energy growth at r=20 in Couette flow with R=lOiIO, 
located at a=0.46, /3=1.9. 

Is it possible to find a disturbance with more growth 
potential than the streamwise vortex? A search for the 
global optimal for Couette flow at R = 1000 using the vari- 
ational method reveals a perturbation with (r=O.O35 and 
/3= 1.60 that grows to 1185 times its initial energy in 117 
time units. This perturbation primarily gains energy using 
the vortex-tilting mechanism, but obtains an additional in- 
crement of growth from the 2-D Reynolds stress mecha- 
nism (4) due to a favorable initial phase tilt opposite that 
of the mean shear. Its eventual decay is faster than that of 
the streamwise vortex because advection ultimately results 
in a phase orientation for which energy is transferred back 
into the mean flow by up-gradient Reynolds stress, an ac- 
tive decay mechanism. 

We have seen that certain perturbations that are elon- 
gated in the streamwise direction have the potential to 
grow robustly in Couette flow. However, these perturba- 
tions require a rather long time to develop fully. It would 
also be interesting to determine the maximum growth that 
can be achieved on shorter time scales. Setting the growth 
period to r=20, corresponding to ten channel width ad- 
vection times at the speed of the mean shear, a perturba- 
tion is found whose energy grows by a factor of 312. The 
best growth over five time units is 26 times the initial en- 
ergy. These perturbations again grow by a combination of 
2-D Reynolds stress and vortex-tilting mechanisms, with 
the 2-D mechanism becoming more important as the 
growth period becomes shorter. 

The development of the strongest optimal at r=20 is 
illustrated in the cross sections shown in Figs. 5-7. Degen- 
erate oblique perturbations with =tp are summed to sym- 
metrize the perturbation in the y-z plane. The shorter 
streamwise length of this disturbance allows it to develop 
rapidly by taking advantage of the 2-D Reynolds stress 
mechanism (note the initial slant of the contours of u in 
Fig. 5) in addition to the vortex-tilting mechanism that 
causes the growth of u in Fig. 7. 

1 * 
i I.6 
Z 

t = 0. 

IVlmP 1.0 

Et/E, = 1.0 

Z 

t = 10.00 

Ivl,,= 3.036 

Et/E, = 49.0 

~~~ ~~~! 

~~~~~~~~~~~~i 

i:*!!ii!tjj:;;; 
1.6s 3.31 1. 3.31 
Z Z 

t = 20.00 t = 30.00 

1 VI,,= 2.689 I v I 0.564 mur= 
Et/E, = 312.5 Et/E, = 285.2 

FIG. 6. Development of the velocities in the y-z plane at x=0 for the 
perturbation with maximum energy growth at T=20 in Couette flow with 
R= 1000, located at a=0.46, ,8= 1.9. 

Table I lists the values of growth period r, wave num- 
bers a! and fi, and energy growth at r for each of the five 
cases described above. The energy growth with time of 
these optimals is plotted in Fig. 8. Note the greater rate of 
decay of the global optimal compared to the streamwise 
vortex, as described above, and the rapidity of short-term 
growth of the r=20 and r=5 optimals. The best two- 
dimensional optimal perturbation is seen to produce far 

Y Y 

-I., -1.1 
a. I .*s 5.11 1. 1.65 

Z Z 

t = 0. t 10.00 = 
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FIG. 7. Development of the perturbation streamwise velocity u at x=0 
for the perturbation with maximum energy growth at ~=20 in Couette 
flow with R= loo0, located at a=O.46, s= 1.9. Values are normalized by 
the maximum value of v at time t=O. 
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TABLE I. optimal perturbations in Couette flow at R = 1000. 

7 a P WEo 

Global optimal 117 0.035 1.60 1185 
Best streamwise vortex 138 0 1.66 1166 
Best optimal at 1-=20 20 0.46 1.9 312 
Best optimal at r=5 5 1.6 2.9 26.4 

Best 2-D optimal 8.7 1.21 0 13.0 

less growth, indicative of the inappropriateness of inter- 
preting Squire’s theorem as placing a bound on general 3-D 
disturbance growth. 

The trend of optimal perturbations to assume shorter 
streamwise wavelengths for growth on shorter time scales 
is illustrated in Fig. 9. 

Recall that the solution of the energy growth eigen- 
problem results in 2N perturbations orthogonal in the en- 
ergy inner product [cf. (21)], which are ordered in growth 
potential over a chosen time interval. If there are other 
types of perturbations whose growth approaches the best 
growing optimal, we would expect to occasionally see these 
perturbations in the laboratory. Figure 10 displays the first 
50 eigenvalues, ordered in magnitude, from the eigenprob- 
lem for the Couette flow global optimal at a=0.03$, P 
= 1.60. The second best optimal under these conditions 
grows by an order of magnitude less than the global opti- 
mal. 

The global optima for Reynolds numbers from 31 to 
4000 are listed in Table II. Note that the spanwise wave 
number for these disturbances is nearly constant at fi= 1.6, 
while in the streamwise direction the length increases as R 

for high Reynolds number flows. For highly viscous flows, 

1200. 
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P 
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0. 
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Time 

FIG. 8. Energy growth versus time for the global optimal, the streamwise 
vortex, and 2-D perturbation which grow the most, and perturbations 
which grow the most in 5 and 20 advective time units in Couette flow with 
R= 1000. 

I I I 

I 
7-120 

FIG. 9. Energy growth versus streamwise wave number a for optimal 
perturbations in Couette flow with R=lOOO and llxed spanwise wave 
number p= 1.60, illustrating the streamwise shortening of the best grow- 
ing perturbations as the growth period decreases. 

the pure streamwise vortex is again the optimal. The time 
for maximum growth to occur increases as R, and the 
maximum energy growth is proportional to R2. These re- 
lations are the same as those found by Gustavsson2i for 
perturbations in Poiseuille flow forced by a single Orr- 
Sommerfeld mode. 

20 30 40 50 

Number 

FIG. 10. Energy growth eigenvalues for the global optimal in Couette 
flow with R=lOOO, showing that the energy growth of the next most 
potent perturbation is smaller by an order of magnitude. 
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TABLE II. Global optima for Couette flow. 

4000 467 0.0088 1.60 18 956 

2000 234 0.0175 1.60 4739 

1000 117 0.035 1.60 1184.6 

500 59 0.067 1.60 296.0 

250 30.2 0.12 1.61 73.9 

125 16.1 0.144 1.63 18.55 

62.5 8.2 0.0024 1.65 4.87 

31.25 3.21 0 1.62 1.50 

The highly streaky disturbances that gain the most 
energy in Couette flow will not develop nonlinearly into 
turbulence on their own.‘i However, streamwise vortices 
have been observed by Yang34 and Hamilton3’ to undergo 
secondary instability leading to transition when the vortex 
Reynolds number, defined as 

R, = l-Y27~v, (25) 

where I is the vortex circulation and Y is the kinematic 
viscosity, exceeds a value of roughly 10. If transition to 
turbulence occurs when an initially small disturbance 
grows to an amplitude 0( 1)) perhaps instigating secondary 
instabilities leading to breakdown, then the smallest distur- 
bance energy that would make transition possible at a 
given Reynolds number can be estimated by the reciprocal 
of the energy growth for the global optimum, and the dis- 
turbance root mean square velocity required for transition 
would be proportional to l/R. 

Another subject of interest is the maximum rate of 
energy growth of a small perturbation in a flow. The en- 
ergy method36*37 was used by Howard3s to determine the 
following bound for the energy growth of an arbitrary dis- 
turbance: 

(26) 

where -;1 is the lower bound for the most negative eigen- 
value of the deformation rate tensor of the basic flow, 
D,~~(aUi/axj+aU,/axi), and m is the minimum of the 
functional P= ( 1 Vu I’>/( 1 u 1’). For Couette flow, /2= l/2 
and m= (~/2)~. 

A stronger bound on the minimum critical Reynolds 
number was determined by Joseph3’ by solving the varia- 
tional problem 

1 

Rp=m”m 

- SUiUjD~ dx 

S (&+/ax,> 2 dx 
(27) 

for arbitrary fields u satisfying V*u=O in the volume and 
u=O on the boundaries. The least eigenvalue of this prob- 
lem is R,=20.66, which is associated with a disturbance 
varying only in the y-z plane whose spanwise wave number 
is fi= 1.56. 

By looking for optimal perturbations which grow the 
most on a very short time scale (7=0.01 and 0.001 were 
used in practice), we can determine the most rapidly grow- 
ing perturbation for any Reynolds number. This defines a 
constructive bound on energy growth, which is plotted in 
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FIG. 11. Energy growth rate bounds for Couette flow. The solid line is 
the constructive bound on energy growth rate determined by optimal 
excitation techniques, the dashed line is Howard’s energy integral bound, 
and the line at 1.0 is the absolute upper bound on energy growth rate, The 
optimal excitation curve meets the lower axis at R=20.7, the minimum 
critical Reynolds number found by Joseph. 

FIG. 12. Zero growth curves (solid) for Couette flow with R=21, 1000, 
and 4000, and 100X growth curves (dashed) for R= 1000 and 4000. The 
zero growth curve for.R=21 encloses the streamwise vortex with /3= 1.56 
associated with Joseph’s minimum critical Reynolds number. 
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FIG. 13. Development of the perturbation streamfunction + for the glo- 
bal optimal in Poiseuille flow with R =5000, located at a=O, 8=2.044, 
and r=379. 

Fig. 11 along with the bound defined by Howard in Eq. 
(26). Note that the optimal excitation bound predicts ab- 
solute stability for R < 20.7, in agreement with Joseph. 

Using the optimal excitation technique, we can also 
sketch out curves in wave-number space that define regions 
of absolute stability, outside of which no perturbations can 
grow. Figure 12 shows these zero growth curves for Rey- 
nolds numbers of 21, 1000, and 4000. Also plotted are 
100 x curves for R = 1000 and 4000, within which pertur- 
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FIG. 14. Development of the perturbation streamwise velocity u for the 
global optimal in Poiseuille Bow with R=5000, located at a=O, j3 
=2.044, and r=379. Values are normalized by the maximum value of u 
at time t=O. 
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FIG. 15. Development of the perturbation streamfunction tc, for the best 
growing 2-D energy optimal in Poiseuille flow with R=.5000, located at 
a= 1.48, r=14.1. 

bations capable of energy growth of two orders of magni- 
tude or more are possible. The zero growth curve for R 

=21 encloses the spanwise disturbance with /3=1.56 
associated with Joseph’s minimum critical Reynolds num- 
ber. 

It is clear on exploring wave-number space for growing 
perturbations that the optimal energy growth is a smooth 
function of time and wave number. This raises a question 
of the relative importance of locations in (a$,R) space at 
which resonance between a single Orr-Sommerfeld mode 
and a single Squire mode generates an algebraic growth 
term. To see whether resonance is descriptive of the opti- 
mal perturbation at a resonance point, we consider the 
optimal at R= 125, a=0.095 64, and 8~2.4982 (equiva- 
lent to the R=500, k=5 resonance point in the geometry 
used by Gustavsson and Hultgren”). The eigenvalues for 
the first Orr-Sommerfeld and Squire modes are indeed 
equivalent for this problem, with Ci=l.O36, and the opti- 
mal excitation does indeed select this resonance, assigning 
these two modes coefficients two orders of magnitude 
greater than any other mode. The maximum energy 
growth attained by this perturbation is 14 times its initial 
energy at r= 12. When we move away from this point in 
wave-number space, however, the energy growth does not 
drop off, as would odcur if resonance between two modes 
were the only mechanism for obtaining growth in the flow. 
Instead, similar or improved energy growth is obtained by 
shifting the weight of the coefficients to other modes. The 
best growth available for this Reynolds number is achieved 
by a perturbation with a=0.144 and /3== 1.63, which grows 
by a factor of 18.6 in 16 advective time units. 

IV. OPTIMAL PERTURBATIONS IN POISEUILLE FLOW 

In Poiseuille flow, the global optimal perturbation is 
found to be a streamwise vortex, with a=O. Maximum 

1645 Phys. Fluids A, Vol. 4, No. 8, August 1992 K. M. Butler and B. F. Farrell 1645 



x 
10-p 

10-10 

10-l' 

lo-'2 

1 o-13 

1 o-14 

lo-‘1 

IO-‘8 - 

0 10 20 40 40 
Number 

FIG. 16. Energy growth eigenvalues for the global optimal in Poiseuille 
flow with R = 5000, showing that there are two strongly growing pertur- 
bation types. 

energy growth for R = 5000 is determined to be 4897 times 
the initial energy, reached in 379 advective time units for a 
spanwise-varying perturbation with 8=2.044. The devel- 
opment of streamfunction and streamwise velocity for this 
perturbation are shown in Figs. 13 and 14; note that the 
parabolic shape of the mean flow leads to the growth of u 
in antisymmetric pairs of peaks about the y=O axis. The 
best 2-D optimal for the same flow (Fig. 15) grows by only 
46 times over 14 time units. As with Couette flow, the 3-D 
perturbations which gain the most energy over shorter 
time periods have shorter streamwise wavelengths to take 
advantage of the 2-D Reynolds stress growth mechanism. 

Figure 16 shows the optimal growth eigenvalues, or- 
dered in magnitude, for the Poiseuille flow global optimal 
at R=5000, a=O, and 8=2.044. Unlike Couette flow, Po- 
iseuille flow supports a second set of strongly growing per- 
turbations, whose energy growths are roughly half of those 
of the best energy optimals. This class of optimals, the 
strongest growing of which is shown in Figs. 17 and 18, fits 
two streamwise vortices into the channel width, resulting 
in symmetric peaks in u. 

Table III shows the maximum energy growth for the 
global optimals, the strongest optimals over shorter time 
periods, and the best two-dimensional optimal. The peak 
energies for the antisymmetric and symmetric global opti- 
mals are compared in this table to those found analytically 
by Gustavsson 21 for perturbations with zero initial normal 
vorticity forced by the least-damped symmetric and anti- 
symmetric Orr-Sommerfeld modes, respectively. This lat- 
ter approach has apparently captured much of the energy 
growth capability of the best-growing perturbation. The 
modal spectral projection of the’ antisymmetric global op- 
timal indicates that a contribution is also made by the 
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FIG. 17. Development of the perturbation streamfunction r) for the best 
growing symmetric optimal in Poiseuille Row with R=5000, located at 
a=O, p=2.644, and r=270. 

second-least-damped OrrSommerfeld mode, with smaller 
contributions from the third- and fourth-least-damped 
modes. 

The perturbations which will be observed in a labora- 
tory flow depend on the initial conditions themselves as 
well as on their growth potential. The geometry or interior 
noise in an experiment may select perturbations that grow 
robustly but not necessarily optimally. For example, the 
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FIG. 18. Development of the perturbation streamwise velocity ZL for the 
best growing symmetric optimal in Poiseuille flow with R=5000, located 
at a=O, p~2.644, and r=270. Values are normalized by the maximum 
value of v at time t=O. 
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TABLE III. Optimal perturbations in Poiseuille flow at R =5ooO. 

7 a B WEo 

Antisymmetric global optimal 379 0 2.044 4897 
Gustavsson-antisymmetric peak 420 0 1.98 4448 
Symmetric global optimal 270 0 2.644 2819 
Gustavsson-symmetric peak 286 0 2.60 2708 

Best optimal at r=20 20 0.93 3.1 512 

Best optimal at 7=5 5 3.6 7.3 49.1 
Best 2-D optimal 14.1 1.48 0 45.7 

experimental spanwise variations whose effects were inves- 
tigated by Asai and Nishioka6 are symmetric in y, and are 
thus reminiscent of the second class of energy optimals for 
Poiseuille flow described here. 

V. OPTIMAL PERTURBATIONS IN A BLASIUS 
BOUNDARY LAYER 

Clearly the vortex-tilting and Reynolds stress mecha- 
nisms are capable of generating growth of perturbations in 
any sufficiently inviscid shear flow. A third shear flow pro- 
file of interest is the Blasius profile, which represents a 
boundary-layer flow. 

For the semi-infinite domain of a boundary-layer flow, 
the number of discrete modes is finite, and a continuous 
spectrum is required to represent an arbitrary initial 
condition.40 The normal velocity component of a distur- 
bance which is independent of the streamwise coordinate x 
consists solely of the continuous spectrum.i7 Results for 
Gouette and Poiseuille flow, however, lead us to anticipate 
that the optimal perturbations in this flow will be confined 
to the shear region near the wall. The Blasius boundary 
layer is therefore modeled as a channel flow with channel 
width sufficient to adequately represent the optimal pertur- 
bation. Increasing the channel width above some level for 
a given optimal perturbation, keeping discretization fixed, 
is indeed found to leave the energy growth eigenvalues 
unchanged. This level is selected as the proper channel 
width for this perturbation, and the continuous spectrum is 
represented as the discrete set of modes for that channel. 
The energy growth eigenvalues are also found to converge 
to the same values when the upper no-slip channel wall 
boundary is replaced with the traditional Blasius upper 
boundary condition of u-exp( - ky). 

For simplicity, parallel flow is assumed. The Reynolds 
number, R&, is based on the free-stream velocity ll, and the 
displacement thickness St = 1.7208 (C-Q/ Us) 1’2, where x0 is 
the distance downstream from the leading edge of the 
plate. The Orr-Sommerfeld eigenproblem for Blasius flow 
was verified by comparison to Jordinson’s results for tem- 
poral modes41 

The global optimals for this flow are streamwise vor- 
tices. For R6= 1000, the global optimal has spanwise wave 
number p=O.65 and growth time 7=778, at which time its 
energy has increased by a factor of 1514. Streamfunction 
and streamwise velocity plots are shown in Figs. 19 and 20. 
The location of maximum streamwise velocity growth is 
closer to the wall than the location of maximum normal 
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velocity U. This concurs with the observation of Hultgren 
and Gustavsson17 that such an effect is to be expected for 
elongated structures in boundary-layer flow, since, as dem- 
onstrated in ( 1 >, the rapid growth of u in time is due to the 
vu’ term and U’ is decreasing rapidly away from the wall. 

Figure 21 presents a plot of the energy growth eigen- 
values /z for the optimal perturbation in Blasius flow. A 
comparison of the energy growth of the strongest-growing 
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J?IG. 20. Development of the perturbation streamwise velocity u for the 
global optimal in Blasius flow with R8= 1000, located at a=O, 8=0.65, 
and 7=778. Values are normalized by the maximum value of u at time 
t=o. 

K. M. Butler and B. F. Farrell 1647 



0 10 20 30 40 50 
Number 

FIG. 21. Energy growth eigenvalues for the global optimal in Blasius flow 
with R,= 1000, showing that the energy growth of the next most potent 
perturbation is two orders of magnitude smaller. 

disturbance to the energy growth of the other disturbances 
suggests that other types of perturbations are much less 
likely to appear in a boundary-layer flow. 

The optimal perturbations for Blasius flow are found to 
share many characteristics with optimals from Couette and 
Poiseuille flows. For global optimals, the spanwise wave 
number is independent of R, at /3=0.65, the time period r 
for maximum energy growth scales with R8, and the max- 
imum energy growth, E,/Eo, scales with Ri. Table IV com- 
pares the statistics of the global optimal with those of op- 
timals with shorter growth periods and the best 2-D 
optimal, which is again found to produce much less growth 
than the 3-D elongated optimal disturbances with varia- 
tions in the cross-stream direction. 

VI. DISCUSSION 

The streamwise vortex, which emerges from the three- 
dimensional optimal perturbation problem as the distur- 
bance capable of the greatest energy growth, has interest- 
ing properties. The streamwise vorticity components are 
decoupled from the large increases in streamwise velocity 
U, and are capable only of decay. By itself, the streamwise 
vortex is passive to nonlinear development, as pointed out 
by Gustavsson.” However, the ubiquity of streaks in ex- 
periments, manifested as spanwise variations in streamwise 

TABLE IV. Optimal perturbations in Blasius flow at Rs= 1000. 

7- a P -&‘Eo 

Global optimal 778 0 0.65 I514 

Best optimal at T= 100 100 0.15 0.96 652 

Best optimal at ~=20 20 0.87 1.7 78 

Best 2-D optimal 45 0.42 0 28 

velocity, indicates that perturbations elongated in the 
streamwise direction are generally present in the back- 
ground noise. Once generated, perturbations with stream- 
wise vorticity have a profound effect on the flow through 
the development of powerful streaks. These streaks may 
themselves be unstable to secondary instabilities, or they 
may provide a base for strong transient growth of other 
types of perturbations. 

Since there is a limited subset of perturbation types 
that grow robustly in a shear flow, we expect to see streaks 
generated by the streamwise vortex recur frequently and 
persistently. It is not surprising that experimentalists en- 
counter difficulties in eliminating these streaks from their 
experiments. 

Traditional instability theory assumes the perturbation 
of importance in a flow is the mode of the associated lin- 
earized dynamic system with largest exponential growth 
rate. The problem with this approach is that it fails to take 
account of the fact that the equations that describe the 
development of a small disturbance are not self-adjoint. 
From a modal perspective, growth results when initially 
the nonorthogonal modes destructively interfere, then sep- 
arate as they evolve to constructively interfere, potentially 
revealing large growth. The very slow growth of the expo- 
nentially growing mode for Poiseuille flow at high Rey- 
nolds numbers {maximum energy growth rate of 
20-0.015)~ and the decay of all modes for Poiseuille flow 
below R,~Fi'72 and for Couette flow at all R make no 
practical difference in the types of perturbations which 
grow the most in these flows. It is perhaps more instructive 
in these types of problems to talk about physical mecha- 
nisms of growth, such as vortex tilting and down-gradient 
momentum flux due to Reynolds stress, than to consider 
the problem in terms of modal structure. 

The failure to take the nonorthogonality of the modes 
of the linearized dynamical system into account can lead to 
some misleading conclusions about the behavior of small 
disturbances in a parallel shear flow. Squire’s theorem, 
which requires the growth of a three-dimensional modal 
perturbation to be less than that of an associated two- 
dimensional modal perturbation at a smaller Reynolds 
number,4 appears to justify concentrating on 2-D distur- 
bances while ignoring 3-D disturbances in the linear anal- 
ysis. The problem with this interpretation arises from the 
implicit limitation of Squire’s theorem to consideration of a 
single mode. An arbitrary initial condition is actually made 
up of many nonorthogonal modes, the combination of 
which can result in far more dramatic growth for 3-D 
linear disturbances than for 2-D disturbances, as this work 
demonstrates. 

The growth of three-dimensional secondary instabili- 
ties on a two-dimensional basic flow has been widely stud- 
ied as a possible path to turbulence.42 This theory relies on 
the existence of a steady or quasisteady finite-amplitude 
2-D structure in the flow, whose origin for subcritical Rey- 
nolds numbers must involve a finite initial disturbance. The 
potential for 2-D optimal perturbations to provide the re- 
quired 2-D basic flow on a rapid (advective) time scale was 
suggested by Farrell’sI linear study and verified nonlin- 
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early by Butler.22>43 However, comparison of the energy 
growth of the best 2-D optimal perturbations to that of the 
best 3-D optimals (see Fig. 8 and Tables I, III, and IV) 
strongly favors the 3-D structure. It would be interesting to 
explore the nature of secondary instability growth on basic 
flows suggested by the types of disturbances shown to re- 
sult from optimal perturbation theory. 

In order to discuss the potential contribution of the 
initial-value problem to transition to turbulence in viscous 
shear flows, we must consider finite-amplitude distur- 
bances. Because of this limitation, the importance of tran- 
sient behavior has often been overlooked. This same limi- 
tation applies, however, when we use classical instability 
theory to try to explain the behavior of real fluids. We are 
not as interested in infinitesimal disturbances as we are in 
the nonlinear turbulent or equilibrated flow that emerges in 
a finite time. In problems for which the fastest growing 
instability has a large growth rate (i.e., comparable to the 
inverse of the advective time scale), the behavior during 
early stages of transition to turbulence ‘is often well de- 
scribed by instability theory. Channel flows, with primary 
exponential modes corresponding to instabilities that grow 
on viscous scales or are in fact least-damped decaying dis- 
turbances, are not such problems. Experiments demon- 
strate the sensitivity of these flows to the level of noise in 
the apparatus. Understanding of these flows may be best 
approached by considering the types of perturbations that 
grow the most robustly. 

The optimal perturbation technique has provided us 
with examples of small disturbances that grow rapidly and 
robustly in a specified mean shear flow. Even if the exact 
optimal initial conditions are not reproduced in a real flow, 
we have found the characteristics of disturbances that can 
be expected to grow well; namely, these disturbances are 
elongated in the streamwise direction with spanwise widths 
comparable with the width of the shear layer, they have 
streamwise vorticity, and they may have phase orientation 
opposite that of the mean shear. The slow variation of 
optimal energy growth with wave number suggests that 
biases in the spectrum of the imposed perturbation field in 
a given experimental apparatus can play a significant role 
in selecting wave numbers of perturbations active in the 
early stages of transition, as the wave numbers defining the 
global optimal for a flow are not strongly preferred. The 
distribution and amplitude of such initial conditions in a 
flow due to interior stochastic driving or to boundary forc- 
ing is an interesting topic for future research, as is the 
susceptibility of these disturbances to secondary growth of 
other perturbations. 
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