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Abstract—Three-dimensional (3-D) orthogonal vector basis
functions are developed for the time-domain finite element solution
of vector wave equations. These basis functions enforce both the
tangential continuity of the electric field and the normal continuity
of the electric flux. The stability of the resulting time-domain
finite element schemes is investigated and demonstrated to be
guaranteed. The use of the proposed basis functions completely
eliminates the matrix solution at each time step required by the
time-domain finite element solution of vector wave equations.
The computational cost thereby scales as ( ) with
and denoting the number of time steps and the number of
unknowns, respectively. Defined over tetrahedral elements, the
proposed basis functions increase the solution efficiency without
compromising the geometry modeling flexibility. Both numerical
results and comparison with traditional vector basis functions
demonstrate the accuracy as well as the efficiency of the proposed
three-dimensional orthogonal vector bases.

Index Terms—Electromagnetic scattering, electromagnetic tran-
sient analysis, finite-element methods, numerical analysis.

I. INTRODUCTION

B ECAUSE of their potential to generate wide-band data
and model nonlinear materials, numerical schemes for

simulating electromagnetic transients have grown increasingly
popular in recent years. These numerical schemes can be
categorized into two classes. Schemes in the first class solve
time-domain partial differential equations [1], [2]. Schemes in
the second class tackle time-domain integral equations (TDIE)
[3]–[5]. Compared to the first class, TDIE-based schemes have
certain advantages when analyzing scattering or radiation by
impenetrable or homogeneous objects that reside in a homo-
geneous and unbounded medium. The reasons are twofold:
First, they limit the unknowns on the surface of the object, and
second, they satisfy the radiation condition naturally via the
Green’s function. However, when the numerical simulation
involves complicated inhomogeneity, the partial differential
equation-based solvers often prove to be more convenient and
efficient. Especially, the finite-difference time-domain (FDTD)
method [1] turns out to be the most popular tool for transient
analysis involving complex inhomogeneous bodies. However,
this method suffers from the well-known staircase problem,
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and its removal requires much more effort in the sacrifice of
computational resources. In contrast, the time-domain finite
element method (TDFEM) can easily handle both complex
geometry and inhomogeneous media, which cannot be achieved
by either the FDTD- or the TDIE-based schemes.

During the past few years, a variety of TDFEM schemes
have been proposed [2], [6]–[19]. These schemes fall into
two categories. One directly discretizes Maxwell’s equations
[6]–[9], [18], which typically results in an explicit, finite differ-
ence-like leap-frog scheme that does not leverage our extensive
knowledge of frequency-domain FE solvers. The other dis-
cretizes the second-order vector wave equation, also known as
the curl-curl equation, obtained by eliminating one of the field
variables from Maxwell’s equations [10]–[16], [19]. Despite its
ability to handle unstructured meshes and its capacity to impose
continuity conditions across material interfaces, the TDFEM
does not enjoy widespread popularity compared to the FDTD
method. There are two major reasons. First, in contrast to the
FDTD for which numerous absorbing boundary conditions
(ABCs) have been extensively developed and investigated,
research on accurate ABCs for the TDFEM is very scant:
for a long time only first- and second-order ABCs have been
implemented [17]–[19]. Second, unlike the FDTD method, the
TDFEM algorithms that are based on the second-order vector
wave equation require the solution of a matrix equation in each
time step. The first situation is changing rapidly. The recently
developed time-domain finite element-boundary integral
method [20], [21] provides a powerful numerical technique for
solving open-region electromagnetic scattering and radiation
problems in the time domain. This method adopts the boundary
integral representation to accurately truncate the computational
domain and the multilevel plane wave time domain algorithm
to efficiently evaluate the boundary integrals. The second issue,
however, has yet to be resolved satisfactorily. Several lumping
techniques [10], [16] have been proposed to render the mass
matrix diagonal to obviate the need for its inversion. Unfortu-
nately, these lumping procedures often introduce significant
errors in the TDFEM solution and, for unstructured meshes,
they are likely to produce zero or negative diagonal elements,
which result in the definite instability [2]. A recently developed
approach [15] avoids lumping altogether by constructing a
set of orthogonal vector basis functions that yield a diagonal
mass matrix. However, only two-dimensional (2-D) orthogonal
vector basis functions have been constructed so far.

This paper presents a set of three-dimensional (3-D) orthog-
onal vector basis functions for the TDFEM solution of vector

0018-926X/03$17.00 © 2003 IEEE



60 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 1, JANUARY 2003

wave equations. The expressions of the proposed basis functions
are described in Section II. Both the completeness and orthog-
onality properties are analyzed. Section III presents the orthog-
onal TDFEM solution based on the proposed basis functions.
The stability of the TDFEM using these orthogonal bases is ex-
amined in Section IV. Section V demonstrates the efficiency and
accuracy of the TDFEM using the orthogonal bases by numer-
ical results and comparison with the TDFEM using traditional
vector basis functions.

II. ORTHOGONAL VECTORBASIS FUNCTIONS

To use the FEM, the computational domain is first subdivided
into small tetrahedral elements. The electric flux within each
element is then expanded as

(1)

where denotes the number of basis functions per element,
and and denote the vector expansion functions and
corresponding expansion coefficients, respectively. To obviate
the need for a matrix solution in each time step, must be
orthogonal:

(2)

where denotes the volume of elementand is the Kro-
necker delta function. Using numerical integration, (2) can be
expressed as

(3)

where denotes the central point of facetof element , and
the coefficients are chosen such that the numerical integra-
tion is at least second-order accurate.

The most widely used vector basis functions for the correct
representation of electric and magnetic fluxes are the Whitney
2-forms, also known as the facet elements, given by

(4)

for facet that connects nodes, , and , where , , and
represent the normalized volume coordinates. It is well known
that the normal component of is continuous across element
boundaries, and its flux is one through facetand zero through
all other facets. Hence, guarantees the normal continuity of
the fluxes across the element interfaces, while allowing for a
tangential discontinuity. Therefore, they can represent the elec-
tric and magnetic fluxes correctly. However, these functions do
not satisfy the orthogonality defined in (3). To make them or-
thogonal, we first construct a set ofbasis functions which are
derived as

(5)

in which denotes the normalization coefficient given by

(6)

The normalization coefficient is chosen to ensure that the com-
ponent of along the normal direction of facetis unity.
Despite the complex form of (5), it can readily be proven that

basis preserves the property of Whitney 2-form, that is, the
normal continuity of the flux across the element boundaries.
Specifically, its flux is through facet and zero through all
other facets. Furthermore, it can be observed thatis purely
normal at the central point of facetand is zero at the central
points of the other facets. Hence,basis constitutes an orthog-
onal set based on the orthogonality defined in (3). However, by
subtracting from the four terms as shown in (5), the basis
function destroys the completeness of the original Whitney
facet elements. This can be seen easily from the vanished tan-
gential components at the central point of each facet. To remedy
this problem, we construct another two sets of basis functions

and :

(7)

in which and denote the unit vectors tangential and normal
to facet , respectively. The and are normalization co-
efficients given by

(8)

which make the projection of along as well as
along to be unity. The introduction of

relative permittivity in (7) permits the discontinuity of the
tangential fluxes across the element interfaces. Otherwise, two
sets of degrees of freedom must be assigned across the element
boundary, which would increase the number of unknowns.
Clearly, both and are orthogonal by themselves and are
mutually orthogonal with each other. In addition, they are
orthogonal with basis functions. Interestingly, the subtracted
terms in basis function from Whitney facet elements, which
make incomplete, are compensated by basesand . As a
consequence, the vector basis functions, , and constitute
an orthogonal as well as a complete set of bases to represent
the electric and magnetic fluxes. The vector plots of these bases
are shown in Fig. 1. Worth to be mentioned is that compared
to the zeroth-order edge elements, the orthogonal vector bases
involve more degrees of freedom. However, the accuracy is
increased at the same time because the expansion (1) enforces
both the tangential continuity of the electric field intensity and
the normal continuity of the electric flux density explicitly at
the central point (interpolation point) of each element facet,
whereas the edge elements enforce only the tangential conti-
nuity explicitly. We should also note that although the proposed
orthogonal vector bases have higher-order terms, they are only
complete to the zeroth order and the integration formula in
(3) only evaluates the terms up to the second-order accurately
and further exploration is needed to understand the effect of
higher-order terms on the accuracy of the solution.
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(a) (b) (c) (d) (e) (f)

Fig. 1. Vector plots of 3-D orthogonal vector basis functions. (a)P . (b)P . (c)P . (d)P . (e)Z . (f) T .

(a) (b)

Fig. 2. Scattering from an empty box of length 1 m, width 0.5 m, and height 0.75 m. (a) Electric field observed atr = 0:17x̂+ 0:4ŷ + 0:16ẑ m. (b) Absolute
error.

III. ORTHOGONAL TDFEM SOLUTION

Consider the problem of modeling the electric fieldgener-
ated by an external source in a volumeenclosed by a surface

. Inside , the electric field satisfies

(9)

subject to a mixed boundary condition on

(10)

where represents the outward unit vector normal to.
In accordance with the variational principle [22], the solution

to the boundary-value problem defined by (9) and (10) is ob-
tained by seeking the stationary point of the functional (see (11)
at the bottom of the page).

Expanding the electric field within each element using the
proposed 3-D orthogonal vector bases, we have

(12)

where , , and denote the corresponding expan-
sion coefficients. Obviously, the above expansion preserves the
tangential continuity of the fields across element interfaces (at
the central points), whereas allows for the correct normal dis-
continuity. By substituting (12) into (11), we obtain the ordinary
differential equation

(13)

where , , and are square matrices, assembled from their
corresponding element matrices given by (14) and (15) at the
bottom of the next page and

(16)

in which denotes , , and , and
denote volume and surface integration,

respectively. In (13), is the unknown vector given by
, and is a vector contributed

by the excitation on , which can be assembled from
.

(11)
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(a) (b)

Fig. 3. Scattering from an empty box of length 1 m, width 0.5 m, and height 0.75 m. (a) Electric field observed atr = 0:4x̂+ 0:43ŷ + 0:68ẑ m. (b) Absolute
error.

(a) (b)

Fig. 4. Scattering from an empty box of length 1 m, width 0.5 m, and height 0.75 m. (a) Electric field observed atr = 0:87x̂+0:47ŷ+0:53ẑ m. (b) Absolute
error.

Since the expansion functions, , and are orthogonal
with each other, matrices and become diagonal. By
adopting central difference to discretize (13) in the axis of time,
the matrix solution in every time step is avoided, yielding a
purely explicit scheme.

The computational cost of solving (13) scales as ,
which is used on a sparse matrix-vector multiplication at each

time step, where denotes the number of time steps andthe
number of unknowns. The efficiency of the orthogonal TDFEM
is comparable to that of the FDTD method. Compared to the im-
plicit TDFEM schemes using iterative solvers [12]–[14], [19],
the orthogonal TDFEM scheme is more efficient, since the com-
putational cost of these implicit schemes scales as
[12], where stands for the number of iterations per time step.

(14)

(15)
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(a) (b)

Fig. 5. Scattering from a perfect conducting sphere of radius 0.8 m. (a) Magnetic field observed atr = �0:01x̂ + 0:035ŷ � 0:96ẑ m with incident pulse
parametert = 165 ns and� = 33:3 ns. (b) Magnetic field observed atr = �0:01x̂+ 0:035ŷ � 0:96ẑ m with incident pulse parametert = 25:99 ns and
� = 5:25 ns.

Many factors affect the number of such as the property of
the matrix to be solved, the length of the time step, the choice
of the iterative solver together with the corresponding precondi-
tioner, and the required accuracy. For a 3-D FEM matrix system
constructed from the zeroth-order vector basis functions (edge
elements), if the conjugate gradient (CG) method with diagonal
preconditioning is used, is usually required to be 10–20
to reach a reasonable accuracy [14], [19]. For a 3-D FEM ma-
trix system constructed from higher-order vector basis functions
[23], the required increases drastically due to the deteriora-
tion of the matrix condition. The reduction of relies on the
construction of robust preconditioners, which has yet to be fully
exploited. On the other hand, although implicit schemes can be
formulated to be unconditionally stable [12], [14], [19], the time
step cannot be chosen arbitrarily large; therefore,cannot be
chosen arbitrarily small. This is because the time step is upper
bounded by Shannon’s sampling limit so that the spectral con-
tent of the temporal signal can be accommodated, and although
the time step is not constrained by the stability criterion, it is
limited by the accuracy requirement. It is observed that in order
to balance both accuracy and efficiency, the time step can only
be chosen a little bit larger than that required by conditionally
stable schemes such as the central differencing scheme [14].

IV. STABILITY ANALYSIS

In accordance with the general approach derived in [24], we
deduce that the stability of the orthogonal TDFEM can be en-
sured as long as the time step satisfies

(17)

in which denotes the spectral radius of matrix. Based on
the construction rules of the 3-D orthogonal bases, it is clear that
the mass matrix is preserved to be positive definite and the
matrix is kept semipositive definite. Therefore, the stability
of the TDFEM scheme based on the proposed 3-D orthogonal
vector bases is always guaranteed.

Fig. 6. Scattering from a dielectric coated sphere of radius 0.8 m. The
dielectric coating has a thickness of 0.2 m and a relative permittivity of
� = 4:0

An example investigated here is an empty box of length 1 m,
width 0.5 m, and height 0.75 m. The computational domain is
discretized into 40 tetrahedra, resulting in 300 unknowns. By an
eigenvalue analysis of matrix , it is revealed that the spec-
tral radius is equal to 2.9110 . Hence from (17), to guarantee
stability, the time step should be less than 0.12 ns. This agrees
with the result from our numerical experiments.

V. NUMERICAL EXAMPLES

To validate the proposed 3-D orthogonal vector basis func-
tions, we first consider the scattering from an empty box (a di-
electric volume with ) as used in the preceding
section on stability analysis. The box is discretized into 494
tetrahedra generating 2882 unknowns. The parameters defining
the incident Neumann pulse [20], [21] are , ,

m, ns, and
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(a) (b)

Fig. 7. (a) RMS error versus the number of unknowns per cube wavelength. (b) RMS error versus CPU time.

ns. The -component of the electric field observed at
m, m, and

m together with the absolute error
are shown in Figs. 2–4, respectively. Excellent agreement is ob-
served between the calculated and exact results.

Next, we consider the scattering from a perfect conducting
sphere of radius 0.8 m. The computational domain is discretized
into 4307 tetrahedra, yielding 27 885 unknowns. Anpolar-
ized Neumann pulse is normally incident upon the sphere along
the direction. The incident pulse parameters are m,

ns, and ns. Fig. 5(a) shows the incident
as well as the calculated total magnetic field at

m, which agrees very well with the exact re-
sult. Fig. 5(b) shows the calculated magnetic field at the same
observation point except that the incident pulse parameters are
changed to ns and ns. Again, the calcu-
lated field is in excellent agreement with the exact data.

To examine the capability of the proposed basis functions to
model the fields in an inhomogeneous environment, we consider
a dielectric coated sphere of radius 0.8 m. The dielectric coating
has a thickness of 0.2 m and a relative permittivity of .
The computational region is subdivided into 1956 tetrahedra,
generating 12 549 unknowns. The incident pulse parameters are

, , m, s, and
s. The calculated-component of the electric field

at m is displayed in Fig. 6 together
with the exact solution.

Finally, we examine the accuracy and efficiency of the pro-
posed 3-D orthogonal vector bases in comparison with the tra-
ditional zeroth- and first-order vector bases. The numerical ex-
periments are performed on the empty box as depicted in the
first example. The incident pulse is characterized by the same
set of parameters. Three meshes are generated which subdivide
the box into 40, 146, and 494 tetrahedra, respectively. For each
mesh, calculations are carried out using the orthogonal, the ze-
roth-, and the first-order vector basis functions. The CG solver
with diagonal preconditioning is employed to solve the matrix in
each time step for the calculations using the zeroth- or first-order
vector bases. The central differencing scheme is used to carry

Fig. 8. RMS error versus CPU time with the zeroth- and the first-order results
generated by uncontionally stable TDFEM schemes.

out the time discretization. The root mean square (rms) error,
normalized by the maximum amplitude, in the-component of
the magnetic field observed at m
is plotted as a function of the unknown density in Fig. 7(a).
The RMS error with respect to the computing time is plotted
in Fig. 7(b). It is evident that to achieve a required accuracy,
the TDFEM that adopts 3-D orthogonal vector bases is more
efficient. Next, to compare with the unconditionally stable im-
plicit TDFEM schemes, the Newmark method with parameter

, [12], [14], [19] is utilized to perform the
time discretization for the calculation based on the zeroth- and
the first-order vector basis functions. Fig. 8 shows the calcu-
lated RMS error versus the CPU time. Once again, the supe-
rior efficiency of the TDFEM scheme using the proposed 3-D
orthogonal vector bases is demonstrated clearly. (Note that the
first-order TDFEM can be made faster using more advanced di-
rect solvers such as the multifrontal algorithm used in [21] or it-
erative solvers with a better preconditioner, which has not been
fully studied in TDFEM.)
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VI. CONCLUSION

This paper presents 3-D orthogonal vector basis functions for
the TDFEM solution of vector wave equations. The use of the
proposed basis functions completely eliminates the matrix solu-
tion at each time step. Defined over tetrahedral elements, these
basis functions permit the accurate modeling of complex ge-
ometry. In contrast to the traditional vector bases, these orthog-
onal bases enforce both the tangential continuity of the field
and the normal continuity of the flux explicitly at the interpo-
lation points. The stability of the resulting TDFEM scheme is
shown to be ensured. The accuracy and efficiency of these basis
functions are demonstrated by numerical results together with
the comparison with the traditional vector basis functions. It is
hoped that the proposed 3-D orthogonal vector basis functions
will contribute to the future popularity of the time-domain finite
element method.
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