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Abstract 

 In vitro models of ischemia have not historically recapitulated the cellular interactions 

and gradients of molecules that occur in a 3D tissue. This work demonstrates a paper-based 3D 

culture system that mimics some of the interactions that occur among populations of cells in the 

heart during ischemia.  Multiple layers of paper containing cells, suspended in hydrogels, are 

stacked to form a layered 3D model of a tissue. Mass transport of oxygen and glucose into this 

3D system can be modulated to induce an ischemic environment in the bottom layers of the 

stack. This ischemic stress induces cardiomyocytes at the bottom of the stack to secrete 

chemokines that subsequently trigger fibroblasts residing in adjacent layers to migrate toward the 

ischemic region. This work demonstrates the usefulness of patterned, stacked paper for 

performing in vitro mechanistic studies of cellular motility and viability within a model of the 

laminar ventricle tissue of the heart. 

 

1. Introduction 

  

 Ischemia is a condition in which the cells within a tissue are deprived of the nutrients— 

in particular, oxygen and glucose—needed for normal metabolism. Ischemia commonly results 

in vivo from an occluded supply of blood, or from a defect in circulation.
[1]

  In normal tissue, 

blood vessels supply oxygen and glucose to the cells surrounding the vessels, while also 

removing cellular byproducts.  A radial gradient of nutrients forms around the blood vessels, and 

the concentration of these nutrients decreases as the radial distance from the blood vessel 

increases.  This gradient results from two competing processes: i) the diffusive mass transport of 

these nutrients from the blood vessel into the tissue, and ii) the consumption of these nutrients by 

cellular metabolism.  Most tissues in the body have capillaries every ~200 µm to ensure 
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sufficient delivery of oxygen to all cells
[2]

.  Cardiomyocytes are highly active metabolically, 

however, rely on aerobic respiration,
[3]

 and therefore have capillaries spaced ~20 µm apart to 

maintain proper oxygenation.
[4]

     

If a blood vessel occludes, (as, for example, in a myocardial infarction and stroke) the 

overall rate of mass transport can become insufficient to meet the rate of consumption of 

nutrients in the surrounding tissue, and the tissue becomes ischemic.  In addition to a lack of 

nutrients needed for metabolism, the accumulation of cellular byproducts (e.g., carbon dioxide, 

carbonate ions, and lactate) during a period of prolonged ischemia results in acidosis,
[5]

 which in 

turn damages the cellular membranes and mitochondria. Membrane damage leads to the release 

of proteolytic enzymes and contributes to the generation of toxic free radical species.
[6]

 

 Conventional in vitro models for tissues generate an ischemic environment in 2D cultures 

by using a hypoxia chamber and a nutrient-poor culture medium to define the amount of 

nutrients available to cells.
[5, 7-14]

  The culture conditions in these 2D models cannot mimic the 

physiological gradients formed in a tissue because they limit the ability to control interactions 

between cells.  Other models, such as 3D hydrogels, enable physiological gradients to form, but 

are difficult to analyze and to use for creating precise co-cultures.
[4, 15]

  Microfluidic devices can 

recapitulate the cellular environments needed to study ischemia better than conventional culture 

dishes because they can generate precise gradients, induce physiologically relevant flows of 

liquids, and support complicated co-cultures of cells (both in 2D and 3D environments).
[16-26]

 

Despite the sophistication of microfluidic devices, and the generally accepted need for better in 

vitro models to study ischemia, the biology community has not adopted these technologies, since 

they are more difficult to establish, maintain, and analyze than 2D cultures. 
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 Most in vitro model systems lack some, if not all, of the complex interactions that occur 

in an ischemic tissue.
[1, 4, 10, 14, 21, 24]

 There is a need for an ischemia model that, at a minimum, 

allows for: i) co-cultures of multiple types of cells; ii) controlled temporal and spatial gradients 

of nutrients such as oxygen and glucose; and, iii) paracrine signaling between sub-populations of 

cells. Such a model system should also be easy to assemble, inexpensive enough for one-time 

use, compatible with the high-throughput tools already in use, and amenable to rapid analysis of 

data.   

 We previously described a 3D culture system that uses paper as a scaffold to support 

hydrogels containing cells; we refer to this system as “Cells-in-Gels-in-Paper” (or CiGiP).
[27-29]

  

The CiGiP culture system has six advantages over 2D culture and microfluidic-based devices. i) 

The hydrophilic surface and large (~70%) void-volume of the chromatography paper (i.e., a 

“layer”) we use wicks liquids, allowing easy seeding of cell-laden hydrogels into the scaffold 

with a micropipette. ii) The fibers of the paper provide strong mechanical support, and allow for 

the repeated handling of thin (~200 µm) slabs of paper-supported hydrogels.  iii) Individual 

layers are easily assembled to form thicker constructs, which we refer to as “stacks.”  Assembly 

of a stack is modular, and allows us to control the thickness of the overall construct (i.e., the 

number of layers) and the composition of each layer (e.g., different densities of a single type of 

cell, or co-cultures of more than one type of cell).  iv) Wax-printed patterns define an array of 

hydrophilic “zones” (i.e., regions not containing the hydrophobic wax of arbitrary size and 

shape). These zones allow us to perform multiple experiments, in parallel, on a single sheet of 

paper.  v) Intercellular communication can occur between layers—via migration of cells or the 

diffusion of signaling molecules—because each layer of the stack is in conformal contact.  vi) 

Diffusion of nutrients (e.g., oxygen and glucose) into the stack can be controlled by placing the 



 

 

4 

 

stack in a holder composed of an impermeable material; diffusion of nutrients through the stack, 

and the shapes of gradients in the stacks, can be modulated by changing the density of cells in 

each layer.
[29]

 

 We demonstrate the versatility of the CiGiP culture system by modeling cardiac ischemia 

with two different experimental systems. In the first experimental system, we stacked layers 

containing primary neonatal rat cardiomyocytes, and limited the access of nutrients to these cells 

from a single direction (flux from the top of the stack). This experimental design is similar to the 

single cell-type cultures described previously
[29]

 and mimics the region of cardiomyocytes 

between a healthy (top of the stack) and occluded blood vessel (bottom of the stack).   

 In the second experimental system, we stacked layers containing either primary neonatal 

rat cardiomyocytes or primary cardiac fibroblasts to form a co-culture. With this arrangement, 

we demonstrated that increasing the thickness of the stack results in a greater amount of ischemic 

damage in the cardiomyocytes, and subsequently, a greater number of fibroblasts that migrate 

toward the ischemic cardiomyocytes (i.e., against the oxygen gradient).  We also show migration 

of fibroblasts in this co-culture is due, at least partially, to the release of cytokines by the 

ischemic cardiomyocytes. 

  Both of these experimental systems serve as a proof-of-principle, and demonstrate that 

the modularity of the layer-by-layer construction of the CiGiP culture system can probe the 

complex interactions between cells that occur in a tissue-like construct.  We illustrate that 

cardiomyocytes in the CiGiP culture respond to ischemic conditions by undergoing changes in 

morphology, viability, and release of signaling molecules (ischemia-induced cytokines).  These 

signaling molecules, and not just the gradient of nutrients, induce the migration of fibroblasts.  

We demonstrate the migration of the fibroblasts is partially due to signaling of transforming 
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growth factor beta (TGF-). 

  

2. Results and Discussion. 

2.1 Cardiomyocytes cultured in a stack mimic the interface of living and dead tissue.  

 To mimic the environment of a tissue surrounding an occluded coronary artery, we 

prepared a 3D construct of rat neonatal cardiomyocytes, and placed it in a holder that restricted 

the mass transport of nutrients into the stack.  We patterned Whatman 114 chromatography paper 

(thickness 190 μm) with a commercial wax printer, as described previously,
[28, 29]

 to have 20 

circular hydrophilic zones (diameter 3 mm) surrounded by hydrophobic barriers (Fig. 1A).  The 

20 zones allowed us to perform 20 replicate cultures in parallel, and to obtain enough data to 

analyze a single experiment with statistical significance. We seeded each hydrophilic zone of six 

individual layers with primary cardiomyocytes (100,000 cells/zone) suspended in a 2 L 

suspension of Matrigel (Fig. 1B). We cultured these layers for three days in media with 10% 

fetal bovine serum prior to stacking; this period allowed the cells to recover from the cell harvest 

procedure.  The six-layer stack (~1.2 mm in total thickness) formed a tissue-like construct. We 

placed the stack in a custom-made Delrin holder (Fig. 1C); we chose Delrin because it is both 

non-toxic to cells and impermeable to gases and liquids.
[30]

  This holder blocks diffusion of 

nutrients from the bulk medium to the stack, except for at the top of the stack (i.e., “layer 1”) 

where holes in the top plate of the holder are positioned above the zones of the stack of paper.  

As nutrients diffuse into the stack, they are metabolized by the cardiomyocytes and depleted; this 

depletion of nutrients results in an ischemic environment in the bottom layers.   
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Figure 1. Paper-based Model of Cardiac Ischemia.  A) Image of a layer of wax-patterned 

paper and the top and bottom portions of a custom-made Delrin holder in which the cell 

containing papers are cultured.  The Delrin material is non-toxic to cells and fully insulates the 

cell-containing stack from mass transport of outside nutrients. Scale bar: 8mm.  B) Schematic of 

a single layer of paper containing 20 hydrophilic zones surrounded by a hydrophobic wax-

printed border. Cells suspended in a hydrogel are pipetted into the hydrophilic zones.  C) 

Schematic of a stack of paper in the Delrin holder comprising a top piece containing holes for 

access to culture media and a solid bottom piece.  D) Heat map of the average fluorescence 

intensities of calcein-stained cells in a stack of six layers of paper.  A darker color indicates 

higher levels of calcein, and is proportional to the number of viable cells.  Each layer (clustered 

together as a stack of 20 slices) contains 20 replicate zones initially containing 100,000 neonatal 

rat cardiomyocytes suspended in matrigel. The stack was cultured for seven days prior to 

staining.  E) Total number of viable cells in each zone of the stack for three different time points.  

Error bars are the S.D. of 20 zones.  Means with different letters are significantly different based 

on Holm-Sidak method, (P = <0.001). Detailed statistics of each value available in the SI. 
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 To determine the effect of the ischemia on the cardiomyocytes after seven days of culture 

we peeled apart the layers of the stack, and determined the viability of the cells in each layer 

with calcein AM (a molecule that permeates the cell wall that becomes impermeable and 

fluorescent upon cleavage of the ester groups on the molecule by an esterase that is only present 

in living cells).  We obtained images of each layer with a flatbed fluorescent scanner, and 

measured the average fluorescence intensity of each zone with custom-written script for the 

MatLab software.
[29]

  The software generates heat maps representing a cross-sectional image of 

the fluorescence intensity (from which, we infer the viability) of cells in each layer of the stack 

(Fig. 1D).  A thick black line demarcates the layers within the stack and each layer comprises the 

fluorescence intensity of 20 individual zones cultured in parallel. 

  Figure 1E illustrates the number of viable cardiomyocytes in each layer of three 

independently cultured stacks (n = 20 replicates) after culture intervals of 2-, 4-, and 7-days. The 

number of viable cardiomyocytes was determined by generating a calibration curve for the 

fluorescence intensity of calcein for different numbers of cardiomyocytes (Fig. S1).  In each 

stack, the number of viable cells in the bottom-most layer (layer 6)—that is, the layer furthest 

from the oxygenated medium—was significantly lower  than the number of viable cells in the 

top-most layer (layer 1).  The greatest difference between these two layers occurred after 7 days 

of culture, and resulted in a 90% decrease in the viability of cells in layer 6 compared to those in 

layer 1.  The difference in the number of viable cells between layer 1 and layer 6 increased by 

~30% between day 2 and day 7, and suggests ischemia-induced injury is gradual under these 

experimental conditions and occurs over a period of days.  These data suggest the gradient of 

nutrients formed within the stack mimics infarcted ventricular myocardium when the ischemic 

and non-ischemic cells are in direct contact. Culturing a stack of cardiomyocytes for different 
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periods is potentially useful in comparing the effects of acute and chronic ischemia. 

 To determine if the cardiomyocytes were dying from a lack of nutrients, and not from a 

change of pH in the stack, we measured the pH of each layer with a piece of pH paper 

immediately after destacking. The buffering capacity of the HEPES buffer in the culture media 

was sufficient to prevent the formation of a pH gradient in the stack (i.e., each of the layers, and 

the bulk media, were neutral).  This result suggests that ischemic damage in our system is 

primarily due to a lack of nutrients; effects due to changes in pH could, however, be studied in 

the CiGiP system by lowering the buffering capacity of the HEPES buffer, or by eliminating the 

buffer altogether.   

 One unresolved result from these experiments is that a small sub-population (~10%) of 

cardiomyocytes in the bottom-most layer of the stack (Fig. 1E) survived after long-term ischemic 

culture.  The survival of this sub-population could be due to the diffusion of nutrients through the 

edges of the wax-patterned zones, as described previously.
[29]

  Another possible explanation for 

this result is that neonatal heart tissue primarily relies on glycolysis and lactate oxidation for the 

production of ATP,
[31]

  and in newborn rats, the transition from glycolysis to fatty acid oxidation 

(aerobic metabolism) is incomplete until seven days after birth.
[32]

  The cardiomyocytes isolated 

in our study were harvested from two-day-old rat pups, and are, therefore, less susceptible to 

ischemia than more mature cardiomyocytes. 

 

2.2 Morphology of the cardiomyocytes change in the ischemic layers of a stack.  

 Although sub-populations of cardiomyocytes survive in each layer of the stack after 

prolonged culture, viability is not necessarily indicative of cellular health.  The morphology of 

cardiomyocytes grown in 2D cultures change from an elongated to a rounded shape under 
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ischemic conditions.
[24, 33]

  To determine if the morphology of the cardiomyocytes cultured in the 

CiGiP system changed after prolonged periods of culture, we measured the morphology of a 

representative number of cardiomyocytes in each layer of a six-layer stack after a seven-day 

culture (Fig. 2A).  We obtained confocal images of the cells from a single zone of each layer 

(Fig. 2B) after staining for sarcomeric α-actinin, which is a z-line protein expressed specifically 

in striated muscle and in cardiomyocytes.  We measured the circularity of 9-12 representative 

cardiomyocytes in each layer with imageJ software.
[34]

  The circularity, C, of a cell is defined by 

C = 4AP
–2

, where A is the area and P is the perimeter of the projection of a cell.  A cell that is 

perfectly round, and that exhibits no polarization or spreading, has C = 1.00; a cell that is 

polarized and elongated along a single axis has (with the limit being a single “line”) has C = 

0.00.  

 Figure 2C shows a gradient in the circularity of the cells, with a trend similar to that seen 

in the viability of the cells (Fig. 1E) and suggests these cells are experiencing similar ischemic 

environments.  The differences in circularity between layer 1 (C = 0.12 ± 0.06) and layer 6 (C = 

0.76 ± 0.04) are both dramatic and statistically significant (p < 0.01), and suggest these 

populations of cells have different morphologies. The difference in circularity of the cells in 

layers 1 and 3 is also statistically significant (p < 0.01); the circularity of the cells in layers 4, 5, 

and 6 is not distinguishable (p > 0.05). 

  

2.3 Fibroblasts within a stack migrate toward ischemic layers.  

 Although cardiomyocytes occupy the majority of the volume of the myocardium, cardiac 

fibroblasts contribute up to 66% of the total number of cells in cardiac muscle.
[32]

 Under 

ischemic conditions, metabolically stressed cardiomyocytes produce cytokines that induce  



 

 

11 

 

Figure 2. Effect of Ischemia on Morphology. A-B) Confocal, immunofluorescence images of 

the sarcomeric -actinin in cardiomyocytes within a single zone of layer 1 (the top layer) and 

layer 6 (the bottom layer) of the stack after 7 days of culture. Scale bar: 50 µm.  Inset Scale Bar: 

10 µm. C) Graph of the average circularity of a set of 9-12 cells chosen at random from a single 

zone in each layer of the stack. Error bars are a S.D. of 9–12 cells in each layer, averaged 

between two different stacks. Means with different letters are significantly different based on 

Holm-Sidak method, (P = <0.001). Detailed statistics of each value available in the SI. 
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fibroblasts to both proliferate and migrate into the injured regions—by chemotaxis toward the 

increased concentrations of cytokines—to remodel and repair the area of damage.
[32]

 

 To investigate the migratory response of fibroblasts toward cardiomyocytes in the CiGiP 

culture system, we co-cultured stacks composed of layers containing primary cardiomyocytes, 

primary cardiac fibroblasts, or an immortalized line of (3T3) fibroblasts (Fig. 3A).  Each stack 

contained two layers of cardiomyocytes situated below a layer of primary cardiac fibroblasts and 

an increasing number of layers of 3T3 fibroblasts.  The two types of fibroblasts were always 

seeded into separate layers.  We labeled the primary cardiac fibroblasts with a fluorescent marker 

(Cell Tracker Orange) to distinguish them from the cardiomyocytes and 3T3 fibroblasts when 

invading adjacent layers.  Cell Tracker Orange, like calcein AM, is a cell-permeable probe that 

becomes impermeable and fluorescent when cleaved by esterases in the cells; the Cell Tracker 

Orange also reacts with thiols to provide long-term stability of the fluorophore over days of 

culture.
[18, 35]

  We used 3T3 fibroblasts in these experiments because there were an insufficient 

number of primary fibroblasts available. 

 Increasing the number of layers of fibroblasts in a stack formed three different cellular 

environments, which we call: i) low ischemia, ii) medium ischemia, and iii) high ischemia (Fig. 

3A). We hypothesized that increased ischemic damage of the cardiomyocytes would result in an 

increased number of migrating cardiac fibroblasts.  We measured the fluorescence intensity of 

the cardiomyocyte-containing layers after a 7-day culture, and determined the relative amount of 

migration of the cardiac fibroblasts toward the cardiomyocytes in the three different ischemia 

environments.  In each stack, we found that only the top layer of cardiomyocytes contained 

primary fibroblasts. 
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Figure 3. Migration of Cardiac Fibroblasts in Response to Varying Levels of Ischemia.  A) 

Schematic of three stacks used to induce an environment of low ischemia (left), medium 

ischemia (middle), and high ischemia (right) for two layers containing cardiomyocytes (100,000 

cells/zone) at the bottom of the stack. Each stack contains a different number of layers of 

immortalized 3T3 fibroblast (50,000 cells/zone) placed on top of the stack (the cells in these 

upper layers deplete nutrients diffusing toward the cardiomyocytes). Each stack contained a 

single layer of primary cardiac fibroblasts (10,000 cells/zone) between the 3T3 fibroblasts and 

cardiomyocytes. Cardiac fibroblasts were labeled with Cell Tracker Orange prior to seeding. 

Each stack was cultured for three days. B) Viability (determined with calcein AM) of the top 

layer of cardiomyocytes (e.g., cardiomyocytes in the second from bottom layer of the stack 

shown in A).  C) Relative amount of migration of the cardiac fibroblasts into the top layer of 

cardiomyocytes, determined by the fluorescence intensity of Cell Tracker Orange in the second 

from bottom layer that contains either cardiomyocytes (in matrigel) or only matrigel. Error bars 

are the standard deviation of 10 replicates. Means with different letters are significantly different 

based on Holm-Sidak method, (P = <0.001). Detailed statistics of each value available in the SI.   
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 We observed two results that suggest the cardiomyocytes in the “high ischemia” stacks  

(containing seven layers of fibroblasts) were under a higher nutrient/oxygen stress than the 

cardiomyocytes in the “low ischemia” stacks (containing one layer of fibroblasts): i) the 

cardiomyocytes in the high ischemia stacks are ~75% less viable, as determined with calcein AM 

stain, than cardiomyocytes in the low ischemia stacks, and ii) a larger number of fibroblasts (~ 

2.5-fold) migrated to the layer of cardiomyocytes in the high ischemia stack than in the low 

ischemia stack. 

 Relying on the fluorescence intensities of the viability stains alone is misleading because 

the calcein dye does not distinguish between the cardiomyocytes and fibroblasts cells.  Although 

the medium and high conditions of ischemia appear to contain similar numbers of viable 

cardiomyocytes (Fig. 3B), the number of fibroblasts in the cardiomyocyte layer of the high 

ischemia condition is 30% greater than the cardiomyocyte layer of the low ischemia condition. 

The cardiomyocytes in the high ischemia condition, therefore, are of a lower viability than the 

medium ischemia condition.  These results suggest the level of ischemia imposed on the 

cardiomyocytes directly affected the migration of the cardiac fibroblasts.  

 

2.4 Signaling from Cardiomyocytes induce the migration of fibroblasts to ischemic regions.  

 In a separate set of experiments we compared the migration of cardiac fibroblasts in the 

low ischemia, medium ischemia, and high ischemia stacks under identical experimental 

conditions, but replaced the cardiomyocyte-containing layers in one stack with hydrogel-only 

containing layers. This comparison assessed whether the cardiac fibroblasts were migrating 

toward the cardiomyocytes, or migrating either away from either the immortalized fibroblasts or 

against the oxygen gradient.  Figure 3C illustrates that the number of cardiac fibroblasts that 
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migrated to the adjacent layer below reduces dramatically in the absence of cardiomyocytes: 

greater than 20-fold for the low ischemia condition, 12-fold for medium ischemia condition, and 

3-fold for high ischemia condition.  This reduction in migration of the fibroblasts suggests 

signaling molecules expressed by the cardiomyocytes are chemoattractants and that migration is 

not due to unexpected interactions of the two types of fibroblasts, random movement (i.e., 

chemokinesis), or the oxygen gradient. 

 

2.5 TGF-β neutralizing antibodies decrease the migration of fibroblasts.  

 The accumulation of signaling molecules produced under ischemic conditions is another 

factor that complicates our ability to predict the response of cardiac cells in 2D cultures.  

Increased levels of transforming growth factor-beta (TGF-β), for example, induce hypertrophy in 

cardiomyocytes, cause the chemotaxis of fibroblasts, and activate the elevated secretion of ECM 

by fibroblasts.
[36, 37]

  The addition of a pan-specific antibody (i.e., an antibody that binds to many 

epitopes of the protein) to neutralize TGF-β suppresses chemotaxis of fibroblasts and reduces the 

progression of wound healing in vivo.
[38, 39]

  Treatment of cardiac ischemia with antibodies that 

antagonize TGF-β signaling to reduce the chemotaxis of fibroblasts is not routinely used in 

clinical treatments because the effect(s) of these antibodies on wound healing is not 

understood.
[38, 39]

  The reduced blood flow to ischemic tissues makes it difficult to predict the 

efficacy of directly delivered therapeutics; it is difficult to predict the optimal amount of anti-

TGF- to administer to a patient because the molecule must diffuse to its target site from a 

distant blood vessel.
[40]

  We added pan-specific TGF-β neutralizing antibodies to the culture 

medium to determine if they could diffuse through the stack and alter the behavior of cells.  

Although our system is not a perfect model of a tissue, such diffusive transport is reminiscent of 
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a drug transport to a region of ischemia. 

 To test the effect of TGF-β in our system, we prepared stacks composed of a single layer 

of primary rat cardiomyocytes (100,000 cells/zone) situated below three layers of primary rat 

cardiac fibroblasts (100,000 cells/zone) (Fig. 4A), which were pre-labeled with a fluorescent dye 

(Cell Tracker Orange).  We added different concentrations (0, 50, or 100 µg/mL) of a pan-

specific TGF-β neutralizing antibody (polyclonal rabbit IgG) to the medium of three separate 

stacks (the antibody therefore needed to diffuse into the stacks), cultured the stacks for three 

days, and determined the extent of fibroblast movement from fluorescence images of each layer.  

We found that the number of fibroblasts that migrated into the cardiomyocyte-containing layer 

decreased by 35% when the highest concentration (100 g/mL) of the TGF-β neutralizing 

antibody was added to the media (Fig. 4B).  These results suggest this system could screen 

biopharmaceuticals (specifically therapeutic antibodies) for their ability to alter cellular 

phenotypes and to diffuse through tissue-like constructs.     

 

3. Conclusion 

 This paper demonstrates that the CiGiP culture system supports the co-culture of multiple 

types of cells—primary neonatal rat cardiomyocytes, primary rat cardiac fibroblasts, and 3T3 

fibroblasts—and 3D stacks of cells mimic certain aspects of the pathology of cardiac tissue 

undergoing an ischemic event. The modularity of the system allowed us to: i) control the level of 

ischemia imposed on the cardiomyocytes by changing the thickness of the stack (i.e., the number 

of fibroblast-containing layers), ii) measure the migratory response of fibroblasts caused by 

cardiomyocytes under ischemic distress, and iii) test the effect of different concentrations of a 

protein on the migratory response of the fibroblasts.  
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Figure 4. Role of TGF-β Signaling in Invasion of Cardiac Fibroblasts. A) Schematic of a 

stack consisting of layers of cardiomyocytes and cardiac fibroblasts.  B) Values of fluorescence 

intensity of fibroblasts, labeled with Cell Tracker Orange, that migrated into the adjacent layer of 

cardiomyocytes.  Each condition is in the presence of a different concentration of TGF-β 

neutralizing antibody, for three days in a stacked culture. Error bars are the standard deviations 

for 20 replicates. Means with different letters are significantly different based on Holm-Sidak 

method, (P = <0.001). Detailed statistics of each value available in the SI. 
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 We evaluated the cells in each layer of paper a flatbed gel scanner, which is a high-

throughput technique, but provides low-resolution data, and a confocal microscope, which is a 

low-throughput technique, but provides high-resolution data.  The fluorescent images obtained 

from the gel scanner allowed us to determine the overall viability of the cardiomyocytes in each 

layer and the relative amount of migration the fibroblasts in the stack. The confocal microscope 

allowed us to visualize the morphology of individual cardiomyocytes within each layer.  The 

ability to quantify quickly and easily the migration of fibroblasts provides an opportunity to 

screen new biopharmaceutical candidates in an environment that is more physiologically relevant 

than other commonly used 2D and 3D culture systems.  

 There are a number of drawbacks of the current system which require further 

development of the paper-based scaffolds and the analytical techniques used to analyze the cells 

in each layer of paper: i) The wax-printed, hydrophobic borders of the chromatography paper are 

permeable to liquid when immersed (for hours) and allow diffusion of nutrients laterally into the 

periphery of each zone, as described previously.
[29]

  This unwanted diffusion through the paper 

causes orthogonal gradients of nutrients to form in the stack and contributes to the heterogeneity 

of cells within a given zone.  ii) The fibers of the chromatography paper scatter light, and limit 

the imaging capabilities to fluorescence-based readouts. iii) It is currently difficult to measure the 

concentration of small molecules (e.g., oxygen, glucose, or cytokines) in situ, and destacking the 

layers prior to analysis perturbs these gradients and (possibly) the metabolic state of the cells. iv) 

This system is not easily modified to measure the contractility of cardiomyocytes without 

complex optics (i.e., confocal microscopy); contractility is an important indicator of their 

physiological activity.  
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 We recently developed an alternative scaffold fabricated from paraffin-embossed polymer 

meshes.
[41]

  The new mesh-based scaffolds allow light to pass through its open pores without 

significant scattering and the pores can be filled more easily to make barriers that block the 

lateral diffusion of nutrients within the stack.  Further work with this new scaffold will enable 

more precise gradients to be formed and measured; it is, however, more difficult to use 

technically than the paper-based system described here.  

 The study of non-human cells is necessary because primary human cardiomyocytes are 

difficult to obtain, and cardiomyocytes derived from embryonic- or induced pluripotent stem 

cells do not provide all of the phenotypes expected for mature cardiomyocytes.
[42]

  A limitation 

of the current set of experiments is the use of rat neonatal cardiac cells; general conclusions 

about ischemic tissue cannot be drawn since there are significant differences between rat and 

human cardiomyocytes.
[43]

  We chose neonatal cells because they are more viable and amenable 

to in vitro culture conditions than adult cardiomyocytes. The use of primary adult rat 

cardiomyocytes, however, might provide more relevant data than the use of neonatal cells. Our 

current model of ischemic tissue—the co-culture of fibroblasts and cardiomyocytes—also 

omitted immune cells, which are known to respond to ischemic injury.
[39]

  This particular 

limitation is addressable with the current system by incorporating other layers of paper 

containing immune cells of interest.   

 We believe that CiGiP, despite the limitations listed above, due to the simplicity of the 

system with which it allows the assembly of tissue-like constructs, and the dis-assembly of these 

constructs to analyze sub-populations of cells after culture will open the door to experimental 

tests of complex co-cultures in 3D environments. 
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4. Experimental 

 Fabrication of layers of paper: Layers of paper were prepared using the procedure 

described by Derda et al.
[29]

  We printed wax directly onto sheets of Whatman 114 

chromatography paper using a solid-ink printer (Xerox Phaser 8560). The wax-patterned paper 

was placed in a 150 ºC oven for 2 minutes; this step ensures the wax melted through the 

thickness of the paper.  We cut the paper into individual layers with a laser cutter (Versa Laser).  

Prior to usage, we soaked the layers in ethanol to remove any particulates remaining after laser 

cutting, autoclaved them in water (121 ºC for min 15 min), and reheated the sheets in air to 

render the wax hydrophobic (the wax becomes hydrophilic when autoclaved in water). 

 Harvest and culture of cardiomyocytes and cardiac fibroblasts:  All procedures were 

conducted according to the guidelines of the Harvard University Animal Care and Use 

Committee. Primary neonatal rat cardiomyocytes and cardiac fibroblasts were isolated from two-

day old Sprague Dawley rats, as described previously.
[44, 45]

 Left ventricular tissue was isolated 

from the neonatal rat, trypsinized overnight (1mg/mL) on ice.  The cardiac tissue was further 

digested with collagenase (1mg/mL) at 37
o
C for four 15-minute cycles.  After each cycle, the 

supernatant containing cardiomyocytes was collected; after the cycles of digestion were 

completed, the cellular mixture was pre-plated in a tissue culture flask for 45 minutes to select 

for cardiomyocytes.  All cardiomyocytes and cardiac fibroblasts were cultured in M199 culture 

media supplemented with 10% heat-inactivated fetal bovine serum (FBS, Invitrogen, Carlsbad, 

CA), 10 mM HEPES, 0.1 mM MEM non-essential amino acids, 20 mM glucose, 2mM L-

glutamine, 1.5 µm vitamin B-12, and 50 U ml
-1

 penicillin.      

Seeding cells into layers of paper: All cells were suspended in ice-cold Matrigel (diluted 

1:1 with 10% FBS culture media).  Each zone of a layer was spotted with 2 µL of solution using 
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a micropipette.  Cardiomyocytes were seeded at a concentration of either 40,000 cells/zone or 

100,000 cells/zone, as indicated.  Cardiac fibroblasts were seeded at a concentration of either 

10,000 cells/zone or 100,000 cells/zone, as indicated.  The freshly harvested cardiomyocytes and 

cardiac fibroblasts were seeded in the paper layers and cultured for three days prior to any 

experimentation to allow for recovery.  NIH 3T3 fibroblasts (ATCC) were seeded at 50,000 

cells/zone the day prior to an experiment, and cultured in DMEM with 10% calf serum.  After 

seeding of cells, all layers of paper were immediately submerged into pre-warmed (37 
o
C) 

culture media and incubated at 37 °C and 5% CO2. 

Immunostaining, imaging, and analysis: For sarcomeric -actinin staining, the 

cardiomyocytes were first rinsed 3x with 37 ºC 1X PBS before being fixed and permeabilized 

(15 min) in a solution of 1X PBS containing 4% paraformaldehyde and 0.05% Triton X-100.  

The layers were incubated with a blocking solution (5% BSA in 1X PBS) for 30 minutes at room 

temperature before incubation (1 h) with a primary mouse anti-sarcomeric α-actinin antibody 

(Invitrogen) at a dilution of 1:200 in 1X PBS.  Following a three times rinse in 1x PBS, the 

cardiomyocytes were incubated with Alexa Fluor 635 goat anti-mouse secondary antibody 

(Invitrogen) at a dilution of 1:200 for 90 minutes.  Samples were then rinsed three times in 1x 

PBS before mounting on slides with ProLong Gold antifade reagent (Invitrogen).  Images were 

taken with a Zeiss LSM 5LIVE confocal microscope. 

Cardiac fibroblasts or NIH 3T3 fibroblasts were stained with the fluorescent marker (Cell 

Tracker Orange, Invitrogen) according to the manufacturer’s protocol prior to seeding into the 

layers of paper.  Viability of the cells was determined using calcein AM (Invitrogen; 0.4 g/mL 

in culture media); the cells were incubated in the calcein-containing media for 20 minutes at 37 
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o
C and 5% CO2.  After staining with calcein-AM, the cells were washed with DPBS three times 

and imaged a Typhoon 9000 FLA scanner (GE Healthcare).   
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