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S U M M A R Y

For 3-D inversion of controlled-source electromagnetic (CSEM) data, increasing availability

of high-performance computers enables us to apply inversion techniques that are theoreti-

cally favourable, yet have previously been considered to be computationally too demanding.

We present a newly developed parallel distributed 3-D inversion algorithm for interpreting

CSEM data in the frequency domain. Our scheme is based on a direct forward solver and

uses Gauss–Newton minimization with explicit formation of the Jacobian. This combination

is advantageous, because Gauss–Newton minimization converges rapidly, limiting the number

of expensive forward modelling cycles. Explicit calculation of the Jacobian allows us to (i)

precondition the Gauss–Newton system, which further accelerates convergence, (ii) determine

suitable regularization parameters by comparing matrix norms of data- and model-dependent

terms in the objective function and (iii) thoroughly analyse data sensitivities and interdepen-

dencies. We show that explicit Jacobian formation in combination with direct solvers is likely

to require less memory than combinations of direct solvers and implicit Jacobian usage for

many moderate-scale CSEM surveys. We demonstrate the excellent convergence properties

of the new inversion scheme for several synthetic models. We compare model updates deter-

mined by solving either a system of normal equations or, alternatively, a linear least-squares

system. We assess the behaviour of three different stabilizing functionals in the framework

of our inversion scheme, and demonstrate that implicit regularization resulting from incom-

plete iterative solution of the model update equations helps stabilize the inversion. We show

inversions of models with up to two million unknowns in the forward solution, which clearly

demonstrates applicability of our approach to real-world problems.

Key words: Inverse theory; Numerical approximations and analysis; Electromagnetic theory.

1 I N T RO D U C T I O N

Controlled-source electromagnetic (CSEM) surveying in the fre-

quency domain is an established tool for hydrocarbon exploration

and near-surface investigations in marine (Constable 2010), air-

borne (Siemon et al. 2009) and cross-well (Newman & Alumbaugh

1997) configurations. Interpretation of CSEM data requires multidi-

mensional modelling and inversion techniques. Considerable effort

has been devoted recently to developing algorithms that accurately

recover the electrical conductivity distribution and, at the same

time, are executable on existing computer hardware (Newman &

Alumbaugh 1997; Zhang 2003; Abubakar et al. 2008; Commer

& Newman 2008; Plessix & Mulder 2008; Cox et al. 2010;

Schwarzbach & Haber 2012).

Generally, CSEM inversion iteratively minimizes a penalty func-

tional by successively updating a model of subsurface electrical

∗ Now at: Shell Global Solutions International BV, Kesslerpark 1, 2288 GS
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conductivity. Model updates are based on comparison of observed

and forward-modelled data for the assumed conductivity model,

and on a priori constraints (e.g. Constable et al. 1987; Candansayar

2008; Lelièvre & Oldenburg 2009). Computations of the required

forward solutions typically constitute the most expensive part of

the inversion algorithm (Newman & Boggs 2004; Oldenburg et al.

2008; Brossier et al. 2010; Egbert & Kelbert 2012). Many ex-

isting 3-D EM inversion algorithms use iterative forward solvers

(e.g. Haber et al. 2007; Commer & Newman 2008; Plessix &

Mulder 2008). Iterative techniques require little memory and are

fast for computing single-source solutions, yet very time consum-

ing if many solutions are required, as is the case in 3-D inversion.

They are also difficult to apply for solving the Helmholtz equation

occurring in EM modelling (Mulder 2006; Ernst & Gander 2011;

Um et al. 2012), and solutions may fail to converge.

Forward modelling can also be carried out using direct solvers,

which are typically more robust than iterative solvers for numer-

ically difficult cases, such as models containing air or strongly

non-uniform grids (Gould et al. 2007), and solution times are

far less dependent on grid configuration and conductivity than for
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3-D CSEM inversion using a direct solver 1433

iterative solvers. Direct solvers separate the solution of linear equa-

tion systems into a resource-demanding system matrix factoriza-

tion and comparatively inexpensive forward-backward substitution

steps. For computing multiple solutions, only the forward-backward

substitution needs to be repeated. This makes direct solvers partic-

ularly efficient for multisource problems and inversions that require

many additional forward solutions for computing data sensitivi-

ties. Direct solvers have recently been used for 2.5-D inversion

(Abubakar et al. 2008; Key & Ovall 2011) and 3-D forward mod-

elling (Streich 2009; Um et al. 2010; Schwarzbach et al. 2011;

da Silva et al. 2012), and are also being considered for 3-D EM inver-

sion (Oldenburg et al. 2008; Yang & Oldenburg 2012; Schwarzbach

& Haber 2012).

Most existing inversion schemes have been optimized to work

efficiently with iterative solvers. When using direct solvers, opti-

mization techniques have to be reconsidered. Because every model

update entails new expensive matrix factorizations, it is advanta-

geous to minimize the number of model updates. Therefore, meth-

ods with high convergence rates, such as Newton or Gauss–Newton

schemes (Newman & Hoversten 2000; Haber et al. 2000), are

preferable, even if they require additional work within each iter-

ation to obtain the model update. Furthermore, because multiple

forward solutions can be computed cheaply using direct solvers,

explicit computation of the Jacobian matrix becomes affordable.

The full Jacobian can then be used for improving the minimization

procedure by preconditioning the system of model update equa-

tions and establishing a suitable starting value for the regularization

parameter.

Although using direct solvers for computing forward solutions is

becoming feasible, the system of model update equations inevitably

has to be solved iteratively. For Gauss–Newton minimization, a

system of normal equations is commonly formed and solved us-

ing conjugate-gradient type solvers (Egbert 2012). However, the

system of normal equations may be severely ill-conditioned and

thus difficult to solve iteratively. A least-squares formulation that

is equivalent to the normal equations may be numerically more

favourable (Björck 1996). The computational effort for solving the

least-squares system using the LSQR algorithm (Paige & Saunders

1982) is nearly identical to that required for solving the normal

equation system. Nonetheless, the least-squares formulation has

not been used much for EM inversion (Ajo-Franklin et al. 2007).

In striving to optimize image quality and convergence properties

of the inversion, we compare the two approaches. Furthermore, the

conjugate-gradient or LSQR solvers impose implicit regularization

depending on the number of iterations used. With the full Jacobian

available, varying the number of iterations has little impact on over-

all runtimes, hence the influence of this implicit regularization can

be investigated.

In this contribution, we first review 3-D forward modelling based

on a direct solver, and then present the newly developed distributed

inversion scheme that makes use of direct forward solutions. We

compare the normal equation and least-squares formulations, and

include three different stabilizing functionals of practical interest.

After evaluating the time and memory complexity of explicit Jaco-

bian computation, we analyse the influence of regularization on the

spectra of the Jacobian and Hessian matrices utilized in the two min-

imization schemes. From this analysis, we derive a starting guess for

the regularization parameter, which can easily be computed because

the Jacobian is available. We describe the fully distributed parallel

implementation of the inversion scheme. Finally, we present in-

version results for land CSEM configurations that demonstrate the

excellent convergence behaviour of our algorithm, spectral proper-

ties of the Jacobian and Hessian matrices, and the scalability of our

inversion approach.

2 T H E F O RWA R D A L G O R I T H M

To calculate model responses, we solve the vector Helmholtz equa-

tion for the secondary electric field ES

∇ × ∇ × ES + jωμ0σ
∗ES = − jωμ0(σ ∗ − σ P∗)EP , (1)

where ω denotes angular frequency, the complex conductivity σ ∗ =
σ + jωε includes conductivity σ and permittivity ε, μ0 denotes free-

space magnetic permeability and σ P∗ is the conductivity of a layered

background model. The primary electric field EP is computed for

conductivity σ P∗ using quasi-analytic expressions for 1D media

(Løseth & Ursin 2007; Streich & Becken 2011). Perfect electric

conductor boundary conditions are imposed.

We apply a staggered finite-difference discretization as described

in Streich (2009), resulting in a system of linear equations

AES = b (2)

of size N = 3NxNyNz , with Nα being the number of cells in each

spatial direction. The system matrix A is complex, sparse and sym-

metric positive definite. This allows us to apply an LDLH decom-

position (Amestoy et al. 2006), which has a memory complexity of

≈O(N1.5) (George et al. 1994), followed by forward and backward

substitutions to solve the system 2.

In the limit ω → 0, the geometric term ∇ × ∇ × ES in eq. (1)

dominates over the conductivity-dependent term jωμ0σ
∗ES , espe-

cially in low-conductivity regions such as air, where σ → 0, making

the solution inaccurate (e.g. Smith 1996). To stabilize the system

at low frequencies when using a direct solver, we explicitly enforce

a divergence condition (Schwarzbach 2009; Streich et al. 2010),

resulting in an augmented system of size 4NxNyNz .

3 I N V E R S I O N A L G O R I T H M

3.1 Formulation of the problem

We formulate the discrete non-linear inverse problem as a mini-

mization of the objective function

φ(m) = φd (m) + βφm(m), (3)

where φd and φm are data- and model-dependent terms, respectively.

We choose to minimize the geometric distance between predicted

and observed data, thus the data-dependent term is

φd(m) =
1

2
[f(m) − dobs]H WT

d Wd[f(m) − dobs], (4)

where superscript H denotes the Hermitian transpose. The forward

operator f(m) provides predicted data, given the vector of real model

parameters m of size Nm. The vector dobs contains Nd complex values

of observed data, which may be electric and magnetic field values

specified at measurement locations for electric or magnetic dipole

sources or other, more complex source configurations (Streich et al.

2011). Without loss of generality, we assume that every recorded

field component represents a separate receiver. For Nf frequencies,

Ns sources and Nr receivers, we obtain Nd = NfNsNr. The diagonal

matrix Wd of size Nd × Nd introduces data weights as

Wd = diag

(

1

|dobs
i |ri + η

)

; i = 1, . . . , Nd, (5)
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1434 A.V. Grayver, R. Streich and O. Ritter

where ri is the estimated relative error of the ith datum. A small

constant η, corresponding to the noise floor of the data, is added

to prevent the inversion from overemphasising low-amplitude data

(Pidlisecky et al. 2007). The problem can then be thought of as

a minimization of the weighted distance between predicted and

observed data

min
m

φd (m) =
1

2
||f(m) − dobs||2

Wd
T Wd

. (6)

The second term φm(m) in eq. (3) is a regularization functional

(Tikhonov & Arsenin 1977; Constable et al. 1987; Zhdanov 2002)

that contains a priori assumptions about the model (Lelièvre &

Oldenburg 2009) and stabilizes the ill-posed inverse problem. The

scalar regularization parameter β controls the influence of the reg-

ularization term relative to the data-dependent term. We compare

the performance of three different functionals for our models of

interest. First, we use a Tikhonov stabilizing functional that seeks a

model with minimum L2-norm deviation from a reference model,

φmn
m (m) =

1

2
||m − mref ||22 = min. (7)

Secondly, we test a maximum smoothness condition that minimizes

φsm
m (m) =

1

2
||∇2(m − mref )||22 = min, (8)

where ∇2 is a discretization of the Laplacian. We use a finite-

difference approximation of the Laplacian in 3-D, resulting in a

sparse matrix with a seven-point stencil,

L = ax Lx + ayLy + azLz ∈ R
Nm×Nm . (9)

Separate scalar smoothing parameters ax, ay, az are applied to the

x, y and z spatial components of the discrete Laplacian (Li &

Oldenburg 1996). The smoothing operator L is independent of the

model parameters and constant throughout the inversion. A priori

information about known interfaces can be included into L by re-

ducing the smoothing parameters for the corresponding locations

(Newman & Hoversten 2000).

The third regularizer is a minimum support stabilizing functional

(Portniaguine & Zhdanov 1999; Ajo-Franklin et al. 2007; Carbajal

et al. 2012) that attempts to minimize the size of the anomalous

regions in which the model parameters deviate from the reference

model,

φms
m (m) =

1

2

Nm
∑

j=1

(m j − mref
j )2

(m j − mref
j )2 + e2

. (10)

The constant e stabilizes the functional for (m j − m
re f

j ) → 0 and

controls the compactness of the solution.

3.2 Minimization of the objective function

Various classes of gradient-based minimization techniques are

available, differing generally in how much first- and second-order

derivative information of the objective function is considered. Non-

linear conjugate gradient (NLCG) methods (Rodi & Mackie 2001;

Newman & Boggs 2004; Commer & Newman 2008) that ex-

clusively consider first-derivative information, or limited-memory

quasi-Newton approaches (Plessix & Mulder 2008) that include

sparse approximate second-derivative information, exhibit linear

convergence (Nocedal & Wright 1999). Therefore, despite being

well suited if the forward problem is solved iteratively on low-

memory machines, these techniques are impractical in combination

with direct solvers, because they typically require many inversion

iterations. The number of iterations is proportional to the number of

model updates and thus to the number of LDLH decompositions of

the system matrix in eq. (2) that need to be carried out. Accordingly,

combining such inversion approaches with direct forward solvers

would be prohibitively expensive.

Methods with quadratic convergence, such as Newton techniques,

are theoretically most favourable, because they should only require

few iterations. Nevertheless, full Newton methods are difficult to

apply in practice due to the immense computational effort required

for computing the second derivative of the objective function, and

due to unfavourable numerical properties of the Hessian matrix

(Pratt et al. 1998; Fernández Martı́nez et al. 2012). We, therefore,

use a Gauss–Newton technique, which is a modification of the

full Newton approach that exhibits convergence rates lower than

quadratic, but significantly higher than linear (Nocedal & Wright

1999; Habashy & Abubakar 2004) if the starting model is chosen

appropriately. Newton-based methods also allow us to change the

regularization parameter at each inversion iteration. We can thus

conduct parameter search (Egbert 2012) or apply strategies such

as cooling approaches (Newman & Alumbaugh 1997). This would

not easily be possible with NLCG or quasi-Newton methods, be-

cause varying the regularization parameter would compromise the

orthogonality of search directions (Egbert 2012).

Applying a second-order Taylor expansion to eq. (3) and dropping

second-order terms results in the system of normal equations
[

Re{J̄H J̄} + β∇2
mφm(m)

]

δm = −
[

Re{J̄H Wd [f(m) − dobs]}

+ β∇mφm(m)] . (11)

Here, δm is a model update vector and J̄ = WdJ ∈ C
Nd×Nm is the

weighted sensitivity matrix that represents the partial derivatives of

the data with respect to the model parameters. The matrix on the

left-hand side is the regularized approximate Hessian. The right-

hand side is the negative gradient representing the descent direction.

The first and second derivatives of the stabilizing functional φm(m)

with respect to the model parameters are, for the minimum norm

functional (eq. 7),

∇mφmn
m (m) = (m − mref ), (12a)

∇2
mφmn

m (m) = I. (12b)

For the maximum-smoothness condition (eq. 8) we obtain

∇mφsm
m (m) = LT L(m − mref ), (13a)

∇2
mφsm

m (m) = LT L. (13b)

Whereas the minimum-norm and smoothing regularizers can be

expressed as matrix-vector multiplications of a constant model

weighting matrix Wm with the model vector, this is not the case

for the minimum support functional (eq. 10). Instead, we need to

recompute the entire weighting matrix at the nth iteration using the

latest available inversion model mn−1 (Farquharson & Oldenburg

1998). We can write the first and second derivatives of eq. (10)

as

∇mφms
m (m) = P(m − mref ), (14a)

∇2
mφms

m (m) = P, (14b)

where the elements of the diagonal matrix P are given by

Pi i =
e2

(|mn−1
i − mref

i |2 + e2)2
. (15)
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3-D CSEM inversion using a direct solver 1435

We solve the system of normal equations (eq. 11) using a pre-

conditioned conjugate-gradient (CG) algorithm (Björck 1996). To

precondition the system, we use Jacobi diagonal scaling (Newman

& Boggs 2004), that is, we left-multiply eq. (11) by the inverse of

M = diag
[

Re{J̄H J̄} + β∇2φm(m)
]

. (16)

This preconditioner is most efficient if the Hessian matrix is diag-

onally dominant. Although this condition does not hold in many

practical cases (Pratt et al. 1998), the preconditioner distributes the

model update more uniformly in comparison to updates obtained

without preconditioning; it prevents large updates near the sources

and receivers (Ravaut et al. 2004).

It has been shown (e.g. Björck 1996; Aster et al. 2004; Hansen

2010) that eq. (11) is the system of normal equations for the linear

least-squares problem

(

Ĵ
√

βWm

)

δm = −

(

Wd (f(m) − d̂obs)
√

βWm(m − mref )

)

, (17)

where Wm is a model weighting matrix. For the minimum norm

stabilizer, Wm = I (eq. 12b), for the smoothing stabilizer Wm = L

(eq. 13b) and for the minimum support regularization, Wm =
√

P

(eq. 14b). Alternative to solving the system of normal equations, a

model update can be found by solving the overdetermined system

of eq. (17) using the LSQR algorithm (Ajo-Franklin et al. 2007;

Prieux et al. 2012).

In eq. (17) the complex-valued Jacobian matrix and observed

data vector are decomposed into (Egbert & Kelbert 2012)

Ĵ =
(

Re{J̄}
I m{J̄}

)

∈ R
2Nd ×Nm ; d̂obs =

(

Re{dobs}
I m{dobs}

)

∈ R
2Nd . (18)

The equivalence of this formulation immediately follows from

Re
{

J̄H J̄
}

= ĴT Ĵ. (19)

From the model update δmn obtained from system 11 or 17 at

the nth iteration, a new model is derived as

mn+1 = mn + αδmn, (20)

where the step length α controls the magnitude of the model update.

To find a suitable step length, we initially test α = 1. If this does

not reduce the objective functional φ, we build a local quadratic

approximation φ̃ of the objective function from the value φ(mn)

and the gradient ∇mφ(mn), and determine α such that φ̃(mn +
αδmn) is minimized. If the quadratic approximation fails to reduce

the objective function sufficiently, we test a cubic approximation

(Nocedal & Wright 1999). To allow the inversion to leave local

minima, we permit an increase in the objective function if a suitable

α > 0.1 cannot be found.

3.3 Sensitivity matrix

Sensitivities relate changes in the model to corresponding changes

in predicted data. In the inversion algorithm this relation is the basis

for updating the model to fit the observed data. For a model vector

m and data vector d we write the sensitivity matrix as

Ji, j =
∂di

∂mj

; i = 1, 2, . . . , Nd ; j = 1, 2, . . . , Nm . (21)

We express the Jacobian in block matrix form as

J =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

J1

...

Jk

...

JNf Ns

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (22)

with each block k representing the rows in the Jacobian for all

receivers with respect to one frequency and source. To compute

the Jacobian efficiently, we define for each block an operator Q ∈
R

Nr ×3Nm that interpolates the field values from the gridpoints to the

receiver locations (Newman & Hoversten 2000; Egbert & Kelbert

2012),

fk(m) = QES, (23)

where vector ES is the solution of eq. (2) for one frequency and

source. For the magnetic field components, Q includes the dis-

cretization of the ∇× operator. Taking the derivative of eq. (23)

with respect to the model parameters, we obtain the kth block of the

Jacobian,

Jk =
∂fk(m)

∂m
= QA−1G, (24)

where G ∈ C
3Nm×Nm is given by

G =
[(

∂b

∂m1

−
∂A

∂m1

ES

)

,

(

∂b

∂m2

−
∂A

∂m2

ES

)

,. . . ,

(

∂b

∂mNm

−
∂A

∂mNm

ES

)]

.

(25)

This formulation would require Nm forward solutions to compute

the Jacobian for one frequency and source. Transposing eq. (24),

because A is symmetric, we obtain

JT
k = GT A−1QT , (26)

and recognize that JT
k can be obtained by solving only Nr forward

problems, using the rows of the interpolation operator Q as the

source terms.

To solve eqs (11) or (17) iteratively using Krylov subspace

methods, different strategies for Jacobian computation may be

adopted. In previous CSEM 3-D inversions, explicit computation

of J is avoided (Newman & Boggs 2004; Plessix & Mulder 2008;

Egbert 2012). Instead, the problem is reformulated such that forward

solutions do not produce individual Jacobian entries, but Jacobian-

vector products. A single forward solution is then sufficient to com-

pute the contributions from all receivers for a single source and

frequency (Egbert & Kelbert 2012). However, following this ap-

proach, we would have to compute new Jacobian-vector products

at every iteration of the CG or LSQR algorithm used for solving

eqs (11) or (17). Each CG or LSQR iteration requires evaluations

of two Jacobian-vector products per frequency and source. Thus, if

Niter CG or LSQR iterations generate a sufficiently accurate model

update, the number of forward solutions for one inversion iteration

is O(2NiterNfNs). For anisotropic conductivity, the Jacobian contains

derivatives with respect to each conductivity component, such that

this number of forward solutions needs to be multiplied by the num-

ber of independent conductivity components (Newman et al. 2010).

In inversions we have run, typical numbers for Niter range between

several tens to several hundreds.
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1436 A.V. Grayver, R. Streich and O. Ritter

Table 1. Complexity of the different formulations to calculate model update at each inversion

iteration.

Memory complexity Time complexity

Formulation without storing Jacobian explicitly O[Nf (3N)1.5] O(2Niter Nf Ns)

Calculation of the full Jacobian Nf Ns Nr Nm + O[(3N)1.5] O(Nf Ns Nr)

Alternatively, the Jacobian may be computed explicitly. In this

case, O(NfNsNr) forward solutions need to be evaluated (indepen-

dent of model anisotropy) before starting the CG or LSQR iterations.

Thus, for typical CSEM surveys, the numbers of forward calcula-

tions required by either strategy are of similar order. For land-based

surveys with limited numbers of receivers, explicit Jacobian com-

putation may well require fewer forward computations than the im-

plicit approach. Marine surveys typically include more source and

receiver locations than land surveys. Accordingly, it is likely that

Nr > 2Niter, such that the explicit approach requires more forward

solutions than the implicit one. Nevertheless, if the forward solu-

tions are computed using a direct solver, both approaches require Nf

system matrix factorizations. Because the cost per solution is low

once the factorization is completed, the additional computational

effort for explicit Jacobian computation is limited.

Neither of the strategies is clearly favourable in terms of run-

time, but the two approaches incur different memory costs if a

direct solver is used. If explicit Jacobian computation is avoided,

we would have to store Nf factorizations, requiring to allocate mem-

ory for at least O[Nf (3N)1.5] double-precision complex numbers. In

contrast, the memory complexity of computing and storing the full

Jacobian is NfNsNrNm, plus the memory required for storing one fac-

torization. For the practical surveys we consider (Nd < 105), storing

the Jacobian requires less memory than storing the factorizations

for multiple frequencies. This implies that, if forward modelling

using a direct solver is feasible on a given computer platform, stor-

ing the full Jacobian in memory should also be feasible. Table 1

summarizes the comparison between explicit and implicit Jacobian

computation. To reduce the space required for storing the Jacobian,

approaches such as those presented by Li & Oldenburg (2003); Cox

et al. (2010); Li et al. (2011) may be used.

The availability of the full Jacobian is also useful for model

resolution (Alumbaugh & Newman 2000; Fedi et al. 2005) and

detailed sensitivity analyses. Analysis of linear dependencies in J

can be used to detect redundant data (Björck 1996; Hansen 1998),

and we can investigate data and model weighting schemes based

on the sensitivity distribution, as was shown in Weitemeyer et al.

(2010) and Prieux et al. (2012) for 2-D inversions. Furthermore, the

preconditioner (eq. 16) is trivial to calculate from the full Jacobian

without the necessity to form the approximate Hessian explicitly or

resort to a 1D approximation, as described by Newman & Boggs

(2004).

3.4 Regularization

3.4.1 Effects of regularization on the normal equations and

least-squares systems

The system of normal eqations (eq. 11) is typically ill-conditioned.

For 3-D inverse problems we usually have 2Nd < Nm. Accord-

ingly, the product ĴT Ĵ occurring in the left hand side of eq. (11) is

a singular matrix with a null space of dimension at least Nm −
2Nd. We can show this using singular value decomposition of

Ĵ ∈ R
2Nd×Nm , 2Nd < Nm ,

Ĵ = USVT ; U ∈ R
2Nd ×2Nd , S ∈ R

2Nd×Nm , V ∈ R
Nm×Nm . (27)

The singular values si (i = 1, . . . , 2Nd) are placed on the main

diagonal of S and comprise the spectrum of Ĵ. Matrices U and

V represent left and right singular vectors, respectively, and are

orthonormal (i.e. UT U = I2Nd
and VT V = INm ; Golub & van Loan

1996). Therefore,

ĴT Ĵ =
(

USVT
)T

USVT = VST SVT , (28)

and

diag
(

ST S
)

=
(

s2
1 ≥ s2

2 ≥ . . . ≥ s2
2Nd

≥ 02Nd+1
= . . . = 0Nm

)

. (29)

Because the condition number of a matrix can be expressed as

the ratio of the largest to the smallest singular value, we obtain

cond(ĴT Ĵ) = ∞, and ĴT Ĵ is singular. The last Nm − 2Nd singular

vectors span the null space of the product in eq. (28).

By introducing the simplest regularization in the form of a damp-

ing factor (i.e. the minimum norm regularization described in eq.

7), we obtain

ĴT Ĵ + βI = VST SVT + βVVT = V(ST S + βI)VT , (30)

and

cond(ĴT Ĵ + βI) =
s2

1 + β

β
. (31)

Eq. (30) shows that the regularization acts as a filter suppressing

the contributions of singular values smaller than β and correspond-

ing singular vectors to the model update vector (Hansen 2010). For

more complex stabilizing functionals, eq. (30) will not hold ex-

actly. Nevertheless, similar spectral analysis can be carried out by

transforming the problem into a standard form (Hansen 1998), re-

vealing that the smoothing and minimum support regularizers (eqs

8 and 10) filter the singular values in a similar manner as shown in

eq. (30).

In exact arithmetic, the solutions of the system of normal equa-

tions (eq. 11) and the linear least-squares problem (eq. 17) are iden-

tical (Paige & Saunders 1982). For finite precision computations,

though, eq. (17) may be advantageous, because it does not require

explicit formation of the singular matrix ĴT Ĵ (eq. 28). Similar to the

above analysis of the normal equations, we can show the effect of

regularization for the linear least-squares problem. If Wm = I, the

singular values of the matrix on the left-hand side in eq. (17) are

(Björck 1996)

ŝi =

{
√

si
2 + β if i ≤ 2Nd√
β if i > 2Nd

; i = 1, . . . , Nm, (32)

where si are the singular values of Ĵ. Qualitatively similar relations

hold for Wm �= I (Hansen 1998).

In addition to the regularization in the form of a stabilizing func-

tional, the iterative methods used for solving eqs (11) and (17) have

an implicit regularization effect. The iterative process in the CG

or LSQR algorithm successively builds Krylov subspaces (Egbert

2012). Regularization occurs because the Krylov subspace obtained

at the kth iteration is an approximation to the subspace spanned by

the first k right singular vectors. Because these singular vectors

generally represent the most relevant information (Jupp & Vozoff
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3-D CSEM inversion using a direct solver 1437

1975; Tompkins et al. 2011), the problem is additionally regular-

ized by the iterative process, and the amount of regularization is

controlled by the number of iterations Niter used to obtain model

updates (Hansen 1998). With the Jacobian computed explicitly, ad-

ditional CG or LSQR iterations do not require additional forward

solutions. Therefore, the influence of this implicit regularization

becomes inexpensive to investigate.

3.4.2 Choice of the regularization parameter

Denote R a regularization matrix, a discrete representation of

∇2
mφm(m) and Hd = Re{J̄H J̄} the non-regularized part of the ap-

proximate Hessian matrix. In practice, the absolute values of the

elements in Hd and R may differ by many orders of magnitude.

Therefore, a reasonable range of regularization parameter values

is difficult to locate. The regularization parameter has to be suf-

ficiently large to ensure stabilization of the inverse problem and

consideration of the a priori information imposed by the regular-

ization term, and sufficiently small to minimize bias in the solution

(Hansen 2010). To balance this trade-off, we assume that if

||Hd ||p ≈ ||βR||p (33)

holds for any matrix norm (e.g. p = 1, 2, ∞), the amplitude levels

of the matrix entries and the upper bounds of their spectra are

comparable. To ensure that condition 33 is fulfilled, we choose the

scaling factor

βL p =
||Hd ||p

||R||p

. (34)

For p = 2, the L2 norm of any matrix A is given by (Golub & van

Loan 1996)

||A||2 = smax(A), (35)

where smax is the largest singular value of A. Therefore, using the

scaling of eq. (34) with the L2-norm equalizes the largest singular

values of the Hessian and regularization terms.

Because we precompute the Jacobian, and R is either a diagonal

or very sparse matrix, estimating the L2 norms of Hd and R requires

little computational effort. At every inversion iteration, we estimate

the largest singular values of Hd and R by initiating a Lanczos algo-

rithm with a random, unit-norm RHS vector. The values smax(Hd )

and smax(R) are approximated from matrices produced by succes-

sive Lanczos iterations (Saad 2011). We found that less than 30

iterations are required to determine the largest singular values to an

accuracy of four digits.

The regularization parameter βL2
computed using eq. (34)

weights the data and a priori information equally, and thus rep-

resents a practical upper bound for β. Furthermore, its meaning

is closely related to the spectral properties of the matrices used

in the inversion, which makes the parameter search systematic

and eliminates the need for manual problem-dependent scaling of

the regularization parameter. We have also tested infinity norms

(Newman & Alumbaugh 1997), which are cheaper to compute than

L2 norms. In contrast to the L2 norm, the L∞ norm does not have

a strict relation to the spectrum of the matrix (Golub & van Loan

1996). In our tests, L∞-norm based scaling of the regularization ma-

trix without further manual adjustment of the regularization level

resulted in somewhat lower-quality inversion images.

For the least-squares system (eq. 17), we require analogously to

eq. (34)

√

βL2
=

||Ĵ||2
||Wm ||2

. (36)

Because the Jacobian in eq. (36) is not square, a Lanczos algorithm

cannot directly be applied for computing its largest singular value.

However, because the singular values of the square matrix Hd and

the Jacobian are related through eq. (29), we compute the L2 norm

of the Jacobian as

||Ĵ||2 =
√

||Hd ||2. (37)

The actual regularization parameter β we use in the inversion is

computed at each iteration as

β =
γβL2

nc
iter

, (38)

where γ ∈ [0, 1] is user-defined. The division by nc
iter implements a

cooling approach (Haber et al. 2000). By choosing c > 0, we let the

regularization parameter gradually decrease during the inversion.

Accordingly, singular vectors that correspond to smaller singular

values gradually gain influence on the solution.

3.5 Conductivity bounds

To prevent the inversion from finding physically unreasonable

conductivity values, we apply a bounded logarithmic transform

(Commer & Newman 2008; Abubakar et al. 2008; Kim & Kim

2011) to the model parameters. This also allows us to include effi-

ciently a priori knowledge about the lower and upper conductivity

bounds. We enforce lower and upper bounds a and b by applying

the transformation

xk =
1

p
ln

(

mk − ak

bk − mk

)

; ak < mk < bk, (39)

where subscript k denotes the kth model parameter and will be

omitted for brevity. The positive constant p controls the steepness

of the transformed space, generally becoming steeper as p increases

(Kim & Kim 2011). To minimize bias in the inversion, we mostly

keep a and b constant throughout the model. The original model

parameters (i.e. conductivity) are related to the transformed ones

by

m =
a + b exp(px)

1 + exp(px)
; −∞ < x < ∞. (40)

To carry out the inversion in the transformed space, we recast the

Jacobian in terms of the transformed variables (Commer & Newman

2008) using

J′ =
∂d

∂x
=

∂d

∂m

∂m

∂x
, (41)

where J′ is the transformed Jacobian and

∂m

∂x
=

p(b − m)(m − a)

b − a
. (42)

The model vectors m and mre f are transformed using eq. (39) and

substituted into eq. (11) or (17). The regularization is then directly

applied to the transformed quantities.

3.6 Model updates at source locations

Separation of the EM field into primary and secondary fields allows

us to remove source singularities from the numerical formulation

of the forward problem (see eq. 1). Secondary sources are only

present where (σ ∗ − σ P∗) �= 0; at the source locations, the 3-D

and background conductivities σ ∗ and σ P∗ are equal. If a source

extends laterally over more than one cell that needs to be updated

during the inversion, we introduce singularities there, because lateral
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1438 A.V. Grayver, R. Streich and O. Ritter

conductivity variation cannot be captured by a 1-D background

model. This case is usually avoided for marine or airborne sources

that are located in regions which are fixed during the inversion. In

contrast, for land surveys with kilometre-long galvanic grounded

sources, this problem may seriously deteriorate inversion results and

cause severe near-surface artefacts. To prevent such artefacts, we

include into our conductivity models one layer with small z extent

at the air-ground interface. The sources are located in this thin layer.

After each model update we assign the average conductivity over

this slice to the corresponding layer in the background and 3-D

models. A similar approach was shown to be effective in seismic

inversion (Ravaut et al. 2004).

4 I M P L E M E N TAT I O N

We have implemented the direct-solver-based inversion in a paral-

lel, fully distributed fashion. Good memory scalability is achieved

by having each of the Nproc processes used store only approximately

the 1/Nprocth part of any matrix or vector required by the algorithm.

We use the PETSc library (Balay et al. 2012) for distributed lin-

ear algebra operations. For solving eq. (2), the MUMPS parallel

distributed direct forward solver (Amestoy et al. 2006) is accessed

through its PETSc interface. The Hessian matrix is not formed ex-

plicitly. Instead, the required Hessian-vector products are calculated

by repeated computation of matrix-vector products.

To take further advantage of distributed platforms, we apply a

domain decomposition approach for distributing the computation

of the primary fields EP required in eq. (1). Primary fields in multi-

layered 1D media may be time consuming to compute, particularly

for realistic long-wire sources (Streich & Becken 2011) due to the

necessity of integrating contributions along the source wire. Be-

cause parallel primary field computation requires virtually no com-

munication, parallelizing this task is straightforward and results in

significant speedup.

We have further parallelized the code over frequencies, because

solutions for different frequencies can be obtained independently.

When inverting multifrequency data, we may either have all pro-

cesses work jointly on a single frequency at a time, or form groups of

processes that work on different frequencies simultaneously. Fig. 1

demonstrates that runtimes are significantly shorter for simulta-

Figure 1. Scalability of the MUMPS direct solver for modelling four fre-

quencies in sequence, and simultaneous modelling of different frequencies

for a model of size 70 × 70 × 70 (i.e. the size of the system (2) is ≈106).

The total time includes the time spent on factorization and solutions for 270

RHS.

neous factorizations. This is expected, because the scalability of

direct solvers is limited by their relatively low computation-to-

communication ratio (Pardo et al. 2012). Accordingly, provided

that sufficient memory is available, doing several factorizations in

parallel is preferable to consecutive factorizations.

5 N U M E R I C A L E X P E R I M E N T S

We consider an 8 × 8 × 3-km model of a homogeneous half-space

of 5 �m containing three anomalous objects (Fig. 2). A shallow

50-�m box with dimensions 1.2 × 1.2 × 0.08 km is embedded

with its top at a depth of 0.3 km. Two larger objects of size 2.0 ×
1.2 × 0.8 km are placed at a depth of 1.0–1.8 km. An air layer

of conductivity 10−9 S m−1 is present at the top of the model. We

generate observed data by forward modelling responses on a fine

grid of 80 × 80 × 50 cells. To minimize boundary effects, we

append several boundary cells at each side, growing in size at a

stretching factor of 1.5, such that the grid contains 100 × 100 ×
65 cells in total.

For inversion, the model is discretized into 40 × 40 × 40 cells

with a uniform 200-m cell spacing in the horizontal directions and

increasing cell sizes in the vertical direction. Again, boundary cells

are appended. The inversion domain is limited to the subsurface

region, excluding boundary cells and air, resulting in 54 400 un-

known model parameters. The starting model for all examples is a

homogeneous half-space. Sixteen sources and 64 receivers are de-

ployed at the surface as shown in Fig. 2. We invert the Ex component

for source-receiver distances larger than 500 m at periods of 32, 8

and 1 s, resulting in 2880 complex data values. Two percent random

uniform noise is added to the data. Resistivity values throughout the

model are constrained such that 0.5 < ρ j < 1000 �m; j = 1, . . . ,

Nm. Within each inversion iteration, the number of CG or LSQR it-

erations used to solve either eq. (11) or (17) is 200 unless otherwise

stated. For the regularization parameter (eq. 38), we choose c = 1.

The mean percentage error is calculated using

δ =
1

Nd

Nd
∑

i=1

| f (m)i − dobs
i |

|dobs
i |

× 100. (43)

Inversion results obtained using the approaches described by eqs

(11) and (17) with smoothing regularization (eq. 8), with a scaling

Figure 2. Plan views at (a) z = 380 m and (b) z = 1400 m, and (c) section

through the centre of the model used for demonstrating the inversion. Circles

indicate receivers and triangles indicate transmitters (located at the surface).
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3-D CSEM inversion using a direct solver 1439

Figure 3. Inversion results obtained by solving (a) the system of normal

equations (eq. 11) and (b) the linear least-squares problem (eq. 17), using

smoothing regularization. Triangles and circles indicate transmitters and

receivers, respectively. The true locations of the anomalous objects are out-

lined.

factor γ = 0.1 (eq. 38) are shown in Fig. 3. The computations of

the images displayed in Figs 3(a) and (b) only differ in the equation

used for computing model updates (eq. 11 and 17, respectively), all

other parameters are identical. Both inversions resolve the horizon-

tal positions and sizes of the objects similarly well, and somewhat

overestimate the depth of the thin resistive body. The LSQR mini-

mization recovers the resistivity of the deep resistor better (Fig. 3b),

yet also produces slightly stronger artefacts than the GN minimiza-

tion. These artefacts likely result from overfitting data points at

which noise exceeds target responses.

In Fig. 4, we display inversion results for the minimum norm

stabilizer (eq. 7). Here, most rapid convergence and best resolution

of the anomalous objects was achieved by using a scaling factor γ =
10−4 (eq. 38). This implies that at the nth iteration we effectively

permit contributions from singular values as small as 1/(104niter)

times the largest singular value of the Hessian [or 1/(100niter) for the

Jacobian]; we thus permit high-order, typically small-scale features

in the images. Accordingly, the results are somewhat noisier than

those obtained using a higher level of smoothing regularization

(compare Figs 3 and 4). The depth of the shallow resistor is better

resolved for the minimum norm regularization, whereas the images

of the two large blocks are similar for both stabilizers. Again, the

Figure 4. Inversion results obtained by solving (a) the system of normal

equations (eq. 11) and (b) the linear least-squares problem (eq. 17), using

minimum norm regularization. Triangles and circles indicate transmitters

and receivers, respectively. The true locations of the anomalous objects are

outlined.

LSQR image resolves the resistors better than the one obtained

from the normal equations, but it also is slightly more noisy. The

different strengths of local oscillations in the GN and LSQR images

are likely related to properties of the iterative solution algorithms;

this requires further investigation.

Inversion results for the minimum support stabilizer (eq. 10 with

parameter e = 0.4) are shown in Fig. 5. As for the minimum norm

regularization, we used a scaling factor γ = 10−4. Clearly, the

images are focused, and the recovered objects have sharp edges that

coincide well with the boundaries of the true anomalies, although the

recovered objects are somewhat smaller. This behaviour is expected,

because the minimum support stabilizer minimizes the volume in

which conductivity deviates from that of the initial model and thus

inherently prefers compact images (Minsley 2007). Notably, the

resistivity of the deep resistor is significantly better recovered than

for the other stabilizers, with maximum values of 243 and 251 �m

for the normal equation and LSQR minimizations, respectively.

Convergence rates for the two minimization approaches and all

stabilizing functionals are shown in Fig. 6. Remarkably, all in-

versions require very few iterations to achieve a target misfit of

1.5 per cent, demonstrating the excellent convergence properties

of the Gauss–Newton approach. Although convergence rates are
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1440 A.V. Grayver, R. Streich and O. Ritter

Figure 5. Inversion results obtained by solving (a) the system of normal

equations (eq. 11) and (b) the linear least-squares problem (eq. 17), using

minimum support regularization. Triangles and circles indicate transmitters

and receivers, respectively. The true locations of the anomalous objects are

outlined.

Figure 6. Mean percentage error versus iteration for the the Gauss–Newton

scheme (solid lines) and linear least-squares problem (dashed lines). Differ-

ent colours correspond to the three stabilizers. The black dashed line shows

the noise floor.

similar for the LSQR and normal equation minimizations, the LSQR

minimization reaches the target misfit a few iterations earlier for the

smoothing and minimum norm stabilizers. The situation is nearly

opposite for the minimum support stabilizer. This may be related

to the smoothing and minimum norm stabilizers (eqs 7 and 8)

being quadratic functionals and thus being particularly well-suited

for combination with the LSQR solver (Björck 1996), whereas the

minimum support regularizer (eq. 10) is non-quadratic.

Whereas the total misfit shown in Fig. 6 is useful for analysing

overall convergence, it does not provide information on data fit for

individual receivers. To facilitate analysing the data fit distribution,

we display in Fig. 7 observed fields calculated for the model shown

in Fig. 2, and examples of the starting and final data mismatches

for normal-equation minimization with smoothing regularization.

For the frequency and subset of the sources displayed, the final

misfit is less than the target level at nearly all receivers, including

those within 0.5 km distance from the sources that were excluded

from the inversion. A histogram of the initial and final amplitude fit

(Fig. 8) indicates that the data for all other sources and frequencies

were fit comparably well. Final misfits for the other combinations

of minimization approaches and stabilizers are virtually identical to

those shown in Figs 7 and 8.

To demonstrate the effect of implicit regularization related to the

number of iterations used for the approximate solution of eq. (11)

or (17) at each inversion iteration, we compare in Fig. 9 inversion

models obtained without explicit regularization (parameter β =
0), and with increasing numbers of CG or LSQR iterations. We

used the same noise-contaminated data as for the previous tests.

Clearly, the images become noisier as the number of iterations

increases. This can be expected, because with increasing number of

iterations, smaller singular values, which are likely related to small-

scale oscillatory features in the model (Hansen 1998), increasingly

influence the solution.

Indications of small-scale features should not be contained in

the observed data, unless they are artificially introduced by adding

noise. However, the system of normal equations also is inherently

ill-conditioned (see eq. 29), such that artefacts may appear even

in images of ideal data. To separately analyse the effects of ill-

conditioning of the normal equation system, and of noise present

in the data, we display in Figs 10(a)–(d) inversion results obtained

from noise-free data. For increasing numbers of iterations used

in solving the system of normal equations, these images appear

increasingly noisy, yet the artefacts are not as strong as for the noisy

data (compare Figs 9 a–d and 10 a–d).

For comparison, we show in Figs 10(e)–(h) inversion results for

noisy data and explicit minimum-norm regularization. For this case,

increasing the number of iterations beyond ∼ 300 does not make the

image noisier. Yet, we also do not recover any additional information

once the number of iterations used for solving the system of normal

equations has reached a level at which the corresponding singular

values are dominated by regularization effects. As indicated by eqs

(31) and (38), all singular values smaller than smax(ĴT Ĵ)/(γ niter)

are effectively filtered at the nth iteration; for this example we

used γ = 10−4.

Fig. 11 shows the spectrum of the weighted Jacobian matrix Ĵ

and the product ĴT Ĵ calculated for the starting model used in the

inversions. Singular values from the 345th one are smaller than

10−4smax(ĴT Ĵ), such that their contribution to the images shown

in Figs 10(e)–(h) should be suppressed. This agrees well with the

observation that using more than ∼ 300 CG iterations does not

add detail to the image. In accordance with eqs (27) and (29), the

spectrum of ĴT Ĵ is spread over a much wider range of values than
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3-D CSEM inversion using a direct solver 1441

Figure 7. Amplitudes of the observed field at a period of 32 s (a–d), amplitude ratios between data for the starting model and observed data (e–h) and amplitude

ratios between data for the final model obtained from the normal equations system with smoothing regularization and observed data (i–l), for four sources

indicated by triangles and receivers indicated by circles.
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1442 A.V. Grayver, R. Streich and O. Ritter

Figure 8. Histogram of the amplitude ratios of all data included in the

normal-equation minimization with smoothing regularization, for the initial

(blue) and final (red) iterations. Dashed lines indicate the 2 per cent interval.

that of Ĵ. Nevertheless, somewhat surprisingly, Figs 3–5 demon-

strate that we obtain similar inversion results for both formulations,

without degradation of numerical stability for the normal equation

minimization that requires ĴT Ĵ, as long as we use equivalent regu-

larizations.

5.1 Inversion of a refined model

To demonstrate the capability of the direct-solver-based inversion

algorithm to handle problems with relatively large numbers of un-

knowns, and its scalability when run in parallel, we present an in-

version of a more finely gridded model. The model shown in Fig. 12

is discretized into 80 × 80 × 50 cells. With additional boundary

cells appended at each side, this results in 96 x 96 x 65 ≈ 1.8 mil-

lion unknowns in the system 2. The inversion domain includes the

subsurface region without padding cells and air, and consists of

80 × 80 × 44 cells. To justify the increased number of inversion

unknowns and the associated attempt at achieving higher resolution

(Alumbaugh & Newman 2000; Fedi et al. 2005), we adjust the sur-

vey layout. We use 113 receivers for this experiment, resulting in

5184 complex data values. The larger number of receivers also in-

creases the memory required for storing the Jacobian, thus serving

to demonstrate the memory scalability of our code. The inversion

results for this model agree very well with those obtained for the

coarser grid (compare Figs 3 and 12). The vertical position of the

shallow resistor is better resolved by the fine-grid inversion, which

is probably due to the denser receiver spacing.

5.2 Performance analysis

All inversions were run on a distributed platform consisting of four

interconnected nodes, each equipped with two twelve-core AMD

Opteron 2.2 GHz CPUs and 64 GB of RAM. Systems of similar

or larger size probably are widely available now. We used 16 and

64 processes for the coarse and fine-grid inversions, respectively. In

each case, the processes were distributed uniformly across the four

nodes.

Table 2 summarizes information about the time and memory re-

quirements for inverting the coarse and fine-grid models. For both

models, the total memory required is well below the amount avail-

able on our platform. As anticipated, the system matrix factorization

Figure 9. Results of inverting noise-contaminated data using increasing numbers of iterations when solving (a–d) eq. (11) and (e–h) eq. (17) without explicit

regularization (β = 0).
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3-D CSEM inversion using a direct solver 1443

Figure 10. (a–d) Results of inverting noise-free data without explicit regularization (β = 0), using increasing numbers of iterations for solving eq. (11). (e–h)

Inversion results for noisy data and minimum norm regularization with (γ = 10−4 in eq. 38).

Figure 11. Singular values of the weighted Jacobian matrix Ĵ and the prod-

uct ĴT Ĵ calculated at the starting iteration. For the product ĴT Ĵ, only the

non-zero singular values are shown.

requires the largest amount of memory. To limit memory consump-

tion, we did not run factorizations for multiple frequencies simulta-

neously. The Jacobian matrix and additional vectors only occupied

≈10 and 17 per cent of the total memory for the coarse and finely

gridded models, respectively. The time spent on forward modelling,

which includes matrix factorization and solutions of forward prob-

lems for computing the EM fields and Jacobian, comprises more

than 90 per cent of the total time required for the inversion.

6 C O N C LU S I O N S

We have described a new implementation of a parallel 3-D inversion

scheme, in which the forward modelling engine uses a direct solver.

The high memory demand of the direct solver becomes manage-

able by utilizing modern distributed-memory platforms. To limit the

computational effort necessary when using direct forward solvers,

Gauss–Newton-type inversion strategies that require relatively few

model updates are preferable. Using a direct forward solver, the

Jacobian can be readily computed, and computing it explicitly

provides strong benefits for the inversion. It makes the computation

of an adequate preconditioner for the system of normal equations

simple, and enables us to compute a reasonable starting regular-

ization parameter based on the norms of the matrices involved in

the inversion. In addition, explicit Jacobian computation makes the

computational effort required for iterative solution of the model

update equations nearly independent of the number of iterations.

This has allowed us to investigate the influence of the number of

iterations on the inversion results.

For computing model updates at each iteration, we have compared

the conjugate-gradient solution of the system of normal equations

and the LSQR solution of an equivalent non-square system of equa-

tions. For the models studied, both minimization approaches con-

verge rapidly and provide qualitatively similar results. The LSQR

approach resolves resistive bodies somewhat better, yet also pro-

duces slightly stronger artefacts. This requires further investiga-

tion; in theory, the LSQR system is better conditioned and should

produce less noisy images.
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Figure 12. Inversion results obtained for refined model by solving (a) the

system of normal equations (eq. 11) and (b) the linear least-squares problem

(eq. 17). Smoothing regularization was used. Triangles and circles indicate

transmitters and receivers, respectively. The true anomalous objects are

outlined.

Table 2. Computation times and memory consumption for the case studies

presented.

Coarse grid Fine grid

Grid size 56 × 56 × 55 96 × 96 × 65

Number of unknowns in inversion 54 400 281 600

Number of cores used 16 64

Time per factorization 00:04:10 00:15:15

Time per forward solution 00:00:01 00:00:02,5

Time per inversion iteration 01:05:00 04:20:00

Total memory usage in GB 26 152

For factorization 23.2 126.5

For Jacobian matrix 2.3 22.2

The smoothing, minimum norm and minimum support regular-

ization operators all provide high-quality images. However, the min-

imum norm and minimum support operators require significantly

lower regularization levels than the smoothing stabilizer. This is

likely related to the distribution of singular values for the different

stabilizers. For our synthetic blocky models, the minimum support

stabilizer performs best in recovering absolute resistivity values of

resistive objects.

In addition to explicit regularization imposed by adding regular-

ization operators to the objective function, implicit regularization

due to computing incomplete solutions of the normal equation or

LSQR system serves to stabilize the inversion. Best inversion sta-

bility and highest quality of the obtained images is achieved by

combining the Krylov subspace projection (i.e. iterative solution

with a limited number of iterations) with explicit regularization

constraints.

Although the memory scalability of direct solvers is inherently

limited, our scalability tests demonstrate that the direct-solver-based

scheme is able to handle models of useful sizes using moderate-size

clusters that are now commonly available in many academic and

industrial environments. When used in combination with rapidly

convergent inversion techniques, and with secondary-field approach

in the forward modelling that permits using relatively coarse grids

without sacrificing accuracy, direct solver-based schemes can now

be considered as a viable alternative to iterative solver-based algo-

rithms.
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