
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Theses and Dissertations (ETDs) 

Winter 1-1-2012 

Three-Dimensional Photoacoustic Computed Tomography: Three-Dimensional Photoacoustic Computed Tomography: 

Imaging Models and Reconstruction Algorithms Imaging Models and Reconstruction Algorithms 

Kun Wang 
Washington University in St. Louis 

Follow this and additional works at: https://openscholarship.wustl.edu/etd 

Recommended Citation Recommended Citation 

Wang, Kun, "Three-Dimensional Photoacoustic Computed Tomography: Imaging Models and 

Reconstruction Algorithms" (2012). All Theses and Dissertations (ETDs). 1024. 

https://openscholarship.wustl.edu/etd/1024 

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has 
been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington 
University Open Scholarship. For more information, please contact digital@wumail.wustl.edu. 

https://openscholarship.wustl.edu/
https://openscholarship.wustl.edu/etd
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/1024?utm_source=openscholarship.wustl.edu%2Fetd%2F1024&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu


Washington University in St. Louis

School of Engineering and Applied Science

Department of Biomedical Engineering

Dissertation Examination Committee:
Mark Anastasio, Chair

Joseph Culver
James Miller
Robert Pless
Lihong Wang

Lan Yang

Three-Dimensional Photoacoustic Computed Tomography: Imaging Models and

Reconstruction Algorithms

by

Kun Wang

A dissertation presented to the Graduate School of Arts & Sciences
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2012
Saint Louis, Missouri



copyright by

Kun Wang

2012



Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Photoacoustic Computed Tomography Imaging Models . . . . . . . . . . 4
2.1 PACT Imaging Models in Their Continuous Forms . . . . . . . . . . . . . . 4
2.2 Continuous-to-Discrete (C-D) Imaging Models . . . . . . . . . . . . . . . . . 6
2.3 Discrete-to-Discrete (D-D) Imaging Models . . . . . . . . . . . . . . . . . . . 7

2.3.1 Finite-Dimensional Object Representations . . . . . . . . . . . . . . . 7
2.3.2 D-D Imaging Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Iterative Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 A Simple Fourier Transform-Based Reconstruction Formula for PACT . 16
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Derivation of the Reconstruction Formula . . . . . . . . . . . . . . . . . . . . 17
3.3 Computer-Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 An Imaging Model Incorporating Ultrasonic Transducer Properties for 3D
PACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Background: Characterization of Transducer Behavior . . . . . . . . . . . . . 26
4.3 Discrete PACT Imaging Models that Incorporate Transducer Response . . . 27

4.3.1 C-D Imaging Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.2 D-D Imaging Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Descriptions of Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . 30

ii



4.4.1 Implementation of the System Matrix . . . . . . . . . . . . . . . . . . 30
4.4.2 Eigenanalysis of the System Matrix . . . . . . . . . . . . . . . . . . . 33
4.4.3 Computer-Simulation Studies and Reconstruction Algorithm . . . . . 33
4.4.4 Empirical Determination of Image Statistics and Resolution Measures 36
4.4.5 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.1 Intrisic Numerical Properties of H . . . . . . . . . . . . . . . . . . . . 38
4.5.2 Results from Noiseless Simulation Data . . . . . . . . . . . . . . . . . 39
4.5.3 Results from noisy simulation data . . . . . . . . . . . . . . . . . . . 40
4.5.4 Results from Experimental Data . . . . . . . . . . . . . . . . . . . . . 43

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Investigation of Iterative Image Reconstruction in 3D PACT . . . . . . 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Background: Imaging Models and Reconstruction Algorithms for 3D PACT . 49

5.2.1 Temporal Frequency-Domain Version of the Discrete Imaging Model . 49
5.2.2 Reconstruction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Descriptions of Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.1 Experimental Data Acquisition . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Implementation of Reconstruction Algorithms . . . . . . . . . . . . . 56
5.3.3 Image Quality Assessment . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.1 Six-Tube Phantom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Whole-Body Mouse Imaging . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Accelerating Image Reconstruction in 3D PACT on Graphics Processing
Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.1 Interpolation-Based D-D Imaging Model . . . . . . . . . . . . . . . . 83
6.2.2 Adjoints of the Interpolation-Based and the Spherical-Voxel-Based

System Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2.3 GPU Architecture and CUDA programming . . . . . . . . . . . . . . 86

6.3 GPU-Accelerated Reconstruction Algorithms . . . . . . . . . . . . . . . . . . 87
6.3.1 Measurement Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.2 Implementation of the FBP Algorithm . . . . . . . . . . . . . . . . . 88
6.3.3 Implementation of Hint and H†

int . . . . . . . . . . . . . . . . . . . . . 90
6.3.4 Implementation of Hsph and H†

sph . . . . . . . . . . . . . . . . . . . . 92
6.4 Descriptions of Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4.1 Computer-Simulation Studies . . . . . . . . . . . . . . . . . . . . . . 94
6.4.2 Experimental Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

iii



6.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.1 Computational Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5.2 Computational Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendix A Implementation of Eqn. (4.21) . . . . . . . . . . . . . . . . . . . 110

Appendix B Implementation of FISTA Algorithm for 3D PACT . . . . . 112

Appendix C Derivation of Equation (6.4) . . . . . . . . . . . . . . . . . . . . 115

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

iv



List of Figures

2.1 A schematic of the PACT imaging geometry. . . . . . . . . . . . . . . . . . 4
2.2 Pressure data generated by continuous imaging model (red dash) and discrete

imaging model using 256 × 256 × 256 voxels (blue solid) and 64 × 64 × 64
voxels (green solid). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The 2D numerical phantom α representing the object function A(r) . . . . . 12
2.4 Images reconstructed by the least squares conjugate gradient algorithm from

voltage data obtained by (a) numerical image model and (b) analytical imag-
ing model. (c) Vertical profiles through the center of subfigure(a)(solid blue),
subfigure(b)(solid green), and Fig. 2.3(dashed red). . . . . . . . . . . . . . . 15

3.1 The numerical phantom is shown in subfigure (a). Images reconstructed by
use of the proposed reconstruction algorithm from noiseless and noisy data
are shown in subfigures (b) and (c), respectively. . . . . . . . . . . . . . . . 22

3.2 Profiles corresponding to the central rows of the images shown in Fig. 3.1-
(b) (subfigure(a)) and Fig. 3.1-(c) (subfigure(b)). The solid line in subfigure
(a), which corresponds to the image reconstructed from noiseless data, almost
completely overlaps with the profile through the numerical phantom. . . . . 23

4.1 Illustration of the dependence of two incident angles θ (elevation) and φ (az-
imuth) on the locations of the photoacoustic source rn and the transducer rs

q.
The transducer possesses a flat square detecting surface. . . . . . . . . . . . 32

4.2 (a) The scanning geometry employed in the computer-simulation studies. (b)
The central horizonal slice through the numerical phantom. . . . . . . . . . 33

4.3 The acousto-electrical impulse response of the ultrasonic transducer. . . . . 34
4.4 The scanning geometry employed in the experimental studies. . . . . . . . . 38
4.5 Normalized eigenspectra of the Hessian matrices for the new system matrix

Hs, and the system matrix assuming point-like transducer H0 for different
transducer sizes a = 0.5, 2, and 4-mm. The scanning radius is (a) Rs = 25-
mm and (b) Rs = 50-mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Images reconstructed from the noiseless data function ua by use of system
matrices (a) H0, (b) Hs, (c) He, and (d) H. . . . . . . . . . . . . . . . . . . 40

v



4.7 (a) Radial image profiles corresponding to the use of He (solid line) and H
(dashed line). The locations of the profiles are indicated by the ‘X’-arrows in
Figs. 3.1-(c) and (d), respectively. (d) Tangent image profiles corresponding
to the use of He (solid line) and H (dashed line). The locations of the profiles
are indicated by the ‘Y’-arrows in Figs. 3.1-(c) and (d), respectively. . . . . 41

4.8 Images reconstructed from the noisy data function ũa by use of (a) H0, β = 0,
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Photoacoustic computed tomography (PACT), also known as optoacoustic tomography, is a

rapidly emerging imaging modality that holds great promise for a wide range of biomedical

imaging applications. Much effort has been devoted to the investigation of imaging physics

and the optimization of experimental designs. Meanwhile, a variety of image reconstruction

algorithms have been developed for the purpose of computed tomography. Most of these

algorithms assume full knowledge of the acoustic pressure function on a measurement sur-

face that either encloses the object or extends to infinity, which poses many difficulties for

practical applications. To overcome these limitations, iterative image reconstruction algo-

rithms have been actively investigated. However, little work has been conducted on imaging

models that incorporate the characteristics of data acquisition systems. Moreover, when

applying to experimental data, most studies simplify the inherent three-dimensional wave

propagation as two-dimensional imaging models by introducing heuristic assumptions on the
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transducer responses and/or the object structures. One important reason is because three-

dimensional image reconstruction is computationally burdensome. The inaccurate imag-

ing models severely limit the performance of iterative image reconstruction algorithms in

practice. In the dissertation, we propose a framework to construct imaging models that

incorporate the characteristics of ultrasonic transducers. Based on the imaging models,

we systematically investigate various iterative image reconstruction algorithms, including

advanced algorithms that employ total variation-norm regularization. In order to acceler-

ate three-dimensional image reconstruction, we develop parallel implementations on graphic

processing units. In addition, we derive a fast Fourier-transform based analytical image

reconstruction formula. By use of iterative image reconstruction algorithms based on the

proposed imaging models, PACT imaging scanners can have a compact size while maintain-

ing high spatial resolution. The research demonstrates, for the first time, the feasibility and

advantages of iterative image reconstruction algorithms in three-dimensional PACT.
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Chapter 1

Introduction

The goals of this dissertation are to develop accurate imaging models and to investigate ad-

vanced image reconstruction algorithms for photoacoustic computed tomography (PACT).

Two features distinguish this dissertation from previous studies of PACT image reconstruc-

tion: (i) a continuous-to-discrete (C-D) imaging model is introduced to describe practical

PACT imaging systems; and (ii) all reconstruction algorithms are developed in the context

of wave propagation in three-dimensional (3D) space. These features not only lead to suc-

cessful applications of advanced image reconstruction algorithms to experimentally measured

data, but also establish a framework of developing more accurate imaging models to further

facilitate PACT image reconstruction. In this chapter, the motivations of this dissertation

are presented.

1.1 Background and Motivation

Photoacoustic imaging (PAI) is a rapidly emerging imaging technique that holds great

promise for biomedical applications [68, 112, 51]. PAI is a hybrid technique that exploits the

photoacoustic effect for signal generation. It seeks to combine the high optical-absorption

contrast of tissues with the high spatial resolution of ultrasonic methods. Accordingly,

PAI can be viewed either as an ultrasound mediated optical imaging modality or an ul-

trasound modality that exploits optical-absorption image contrast [119]. Since the 1990s

there have been numerous fundamental studies of photoacoustic imaging of biological tis-

sues [79, 114, 51, 83, 80, 65, 30], and the development of PAI continues to progress at a

tremendous rate [119, 68, 50, 51, 48, 38, 54, 122, 27].

1



The image formation principles are briefly reviewed as follows. When a short laser pulse

is used to irradiate an object (i.e., biological tissues), the photoacoustic effect results in

the emission of acoustic signals that can be measured outside the object by use of wide-

band ultrasonic transducers. The objective of PAI is to produce an image that represents a

map of the spatially variant absorbed optical energy density of the tissues from knowledge

of the measured acoustic signals. To accomplish this, two forms of implementations have

been proposed: direct imaging and computed tomography [119, 112]. The direct imaging

method usually employs focused ultrasonic transuducers to detect photoacoustic wavefield

along a scanning trajectory and directly forms images by stacking the measured signals in

space according to the scanning trajectory. Dark-field confocal photoacoustic microscopy

(PAM) is an extraordinary successful example of the direct imaging implementation [66,

131]. Alternatively, the computed tomography method often employs unfocused ultrasonic

transducers to sense the photoacoustic wavefield and forms the image of the absorbed optical

energy density distribution with the aid of reconstruction algorithms. In the literature, this

implementation is often referred to as photoacoustic computed tomography (PACT) [113,

122], optoacoustic tomography (OAT) [84, 68, 15], or thermoacoustic tomography (TAT)

if microwave energy is employed instead of optical energy [51, 121]. This dissertation is

devoted to the modeling and image reconstruction algorithm development for the purpose

of computed tomography. However, the modeling techniques also apply to direct imaging to

guide the development of post-processing methods.

From a physical perspective, the image reconstruction problem in PACT can be interpreted

as an inverse source problem [5]. A variety of analytic image reconstruction algorithms

have been developed for PACT with canonical measurement apertures assuming point-like

ultrasound transducers [119, 121, 34, 122, 35, 55, 56, 94, 41] and integrating detectors

[38, 18, 19, 128]. All known analytic reconstruction algorithms that are mathematically

exact and numerically stable require complete knowledge of the photoacoustic wavefield on

a measurement aperture that either encloses the entire object or extends to infinity. In many

potential applications of PACT, it is infeasible to acquire such measurement data. Because

of this, iterative, or more generally, optimization-based, reconstruction algorithms for PACT

are being developed actively [84, 86, 1, 2, 127, 133, 89, 27, 105, 37, 44, 17, 16, 110] that

provide the opportunity for accurate image reconstruction from incomplete measurement
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data. Iterative reconstruction algorithms also allow for accurate modeling of physical non-

idealities in the data such as those introduced by acoustic inhomogeneity and attenuation,

or the response of the imaging system.

1.2 Overview of the Dissertation

The dissertation opens with a discussion of the imaging models of PACT in Chapter 2. The

purpose of this chapter is to place the specialized field of PACT within the broader context

of imaging science.

Chapter 3 derives a novel Fourier transform-based image reconstruction formula for PACT.

This reconstruction formula yields a straightforward numerical implementation that is stable

and is two orders of magnitude more computationally efficient than 3D filtered backprojection

algorithms.

Chapter 4 proposes a framework to construct discrete-to-discrete PACT imaging models that

incorporate the characteristics of ultrasonic transducers. Based on the discrete-to-discrete

imaging models, the transducer diffraction effects can be compensated for by use of iterative

image reconstruction algorithms.

Chapter 5 investigates two iterative image reconstruction algorithms in PACT. This chapter

highlights the regularization strategy that employs a total-variation-norm of the images as

the objective penalty. This regularization strategy can potentially reduce the amount of data

required with minimal sacrifice in image quality.

Chapter 6 discribes the parallel implementations of the filtered backprojection and iterative

image reconstruction algorithms. These parallelization strategies are designed for the use

of graphics processing units and are useful for a wide range of PACT image reconstruction

algorithms.

A summary of the dissertation and closing remarks are presented in Chapter 7.
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Chapter 2

Photoacoustic Computed Tomography

Imaging Models

2.1 PACT Imaging Models in Their Continuous Forms

A schematic of a general PACT imaging geometry is shown in Fig. 2.1. A short laser pulse

is employed to irradiate an object and the thermoacoustic effect results in the generation

of a pressure wavefield p(r, t). The pressure wavefield propagates out of the object and is

measured by use of ultrasonic transducers located on a measurement aperture S ⊂ R
3, which

is a two-dimensional (2D) surface that partially or completely surrounds the object. The

coordinate rs ∈ S will denote a particular transducer location. When the object possesses

Optical pulse

Transducer

locations

Measurement
aperture

Acoustic
signals

Tissue

Figure 2.1: A schematic of the PACT imaging geometry.

homogeneous acoustic properties that match a uniform and lossless background medium,
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and the duration of the irradiating optical pulse is negligible (acoustic stress confinement is

satisfied), the pressure wavefield p(rs, t) at a measurement location rs can be expressed [119]

as:

p(rs, t) =
β

4πCp

∫

V

drA(r)
d

dt

δ
(

t− |rs−r|
c0

)

|rs − r| ≡ HCCA(r), (2.1)

where c0 is the (constant) speed-of-sound in the object and background medium. The func-

tion A(r) is compactly supported, bounded and non-negative, and the integration in Eqn.

(2.1) is performed over the object’s support volume V . We introduce the operator nota-

tion HCC to represent the continuous-to-continuous (C-C) mapping from A(r) to p(rs, t).

Equation (2.1) represents a canonical imaging model for PACT.

The imaging model in Eqn. (2.1) can be expressed in an alternate but mathematically equiv-

alent form as

g(rs, t) =

∫

V

drA(r) δ (c0t− |rs − r|) , (2.2)

where the integrated data function g(rs, t) is related to p(rs, t) as

p(rs, t) =
β

4πCp

∂

∂t

(g(rs, t)

t

)

. (2.3)

Note that g(rs, t) represents a scaled version of the acoustic velocity potential [114, 1]. Equa-

tion (2.2) represents a spherical Radon transform [34, 75], and indicates that the integrated

data function describes integrals over concentric spherical surfaces of radii c0t that are cen-

tered at the receiving transducer location rs.

The inverse problem in PACT is to determine an estimate of A(r) from knowledge of the mea-

sured p(rs, t). Conventional image reconstruction algorithms assume that the full knowledge

of the pressure wavefield p(rs, t) is available, in which case a variety of exact reconstruction

formulae have been proposed [119, 121, 34, 122, 35, 55, 56, 94, 41]. In Chapter 3, a novel

exact reconstruction formula will be proposed, which is also based on the continuous imaging

model Eqn. (2.1).
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2.2 Continuous-to-Discrete (C-D) Imaging Models

In practice, the acoustic wavefield is sensed by use of either piezoelectric transducers [115,

15, 52] or optical transducers [82, 85, 36] placed at a finite number of detecting locations.

At each detecting location, the acoustic wavefield is converted to an electrical signal that

is subsequently sampled and recorded by use of a data acquisition system. Therefore, it is

natural to introduce a vector u ∈ R
M to denote the lexicographically ordered measurement

data, where M = QK with Q and K the number of detecting locations and the number of

temporal samples respectively. Various physical models have been proposed to characterize

the behavior of ultrasonic transducers [67, 90, 49, 117], thus formulating the relation between

u and p(rs, t). In Chapter 4, an impulse response method [102, 63, 97, 91, 40, 116, 29] will be

employed to characterize the transducers’ behavior. This section provides a generic math-

ematical description that formulates the practical PACT image system as a C-D mapping

from A(r) to u.

Mathematically, a C-D version of Eqn. (2.1) can be obtained by introducing a discretization

operator Dστ [9, 104]:

u = DστHCCA(r) ≡ HCDA(r), (2.4)

where Dστ characterizes the temporal and spatial sampling characteristics of the ultrasonic

transducer. Assuming a linear sampling process, Dστ can be defined as

[u]qK+k = [Dστp(r
s, t)]qK+k ≡

∫ ∞

−∞

dt τk(t)

∫

S

drs p(rs, t)σq(r
s), (2.5)

where q = 0, 1, . . . , Q − 1 is the index that specifies the q-th transducer located on the

measurement aperture S, k = 0, 1, . . . , K − 1 is the index of each time sample, and [u]qK+k

denotes the (qK+k)-th element of u. The functions σq(r
s) and τk(t) describe the spatial and

temporal sampling apertures, respectively. They are determined by the sampling properties of

ultrasonic transducers. For example, in the ideal case, where both apertures are described by

Dirac delta functions, the k-th temporal sample recorded by the q-th transducer is equivalent

to the value of the pressure function at time k∆t and location rs
q, i.e,

[u]qK+k = p(rs
q, k∆t), (2.6)
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where ∆t is the temporal sampling interval.

On substitution from Eqn. (2.1) to Eqn. (2.5), the C-D imaging model can be explicitly

expressed as

[u]qK+k =

∫

V

dr A(r) hqK+k(r), (2.7)

where the point response function hqK+k(r) is defined as

hqK+k(r) ≡
β

4πCp

∫ ∞

−∞

dt τk(t)

∫

S

drs σq(r
s)
d

dt

δ(t− |rs−r|
c0

)

|rs − r| . (2.8)

By use of the singular value decomposition of the C-D operator in Eqn. (2.7), a pseudoinverse

solution can be computed numerically to estimate A(r) [9].

2.3 Discrete-to-Discrete (D-D) Imaging Models

When iterative image reconstruction algorithms are employed, a finite dimensional represen-

tation of A(r) [9] is required. In Section 2.3.1, we review some finite dimensional representa-

tions that have been employed in PACT. In Section 2.3.2, computer-simulation studies are

conducted to demonstrate the effects of error in the object representation.

2.3.1 Finite-Dimensional Object Representations

An N -dimensional representation of A(r) can be described as

Aa(r) =

N−1
∑

n=0

[α]nψn(r), (2.9)

where the superscript a indicates that Aa(r) is an approximation of A(r). The functions

{ψn(r)}N−1
n=0 are called expansion functions and the corresponding expansion coefficients form

anN -dimensional vector denoted byα. The goal of iterative image reconstruction algorithms

is to estimate α for a fixed choice of the expansion functions {ψn(r)}N−1
n=0 .
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The most commonly employed expansion functions are uniform image voxels

ψn(x, y, z) =

{

1, if |x− xn|, |y − yn|, |z − zn| ≤ ∆s/2

0, otherwise
(2.10)

where rn = (xn, yn, zn) specify the coordinates of the n-th grid point of a uniform Cartesian

grid of spacing ∆s. In PACT, spherical expansion functions of the form

ψn(x, y, z) =

{

1, if |r− rn| ≤ ∆s/2

0, otherwise
(2.11)

have also proven to be useful [47, 27, 105, 110]. The merit of this kind of expansion function is

that the acoustic wave generated by each voxel can be calculated analytically. This facilitates

determination of the system matrix utilized by iterative image reconstruction methods, as

discussed below. Numerous other effective choices for the expansion functions [58] exist

including wavelets or other sets of functions that can yield sparse object representations

[89].

In addition to an infinite number of choices for the expansion functions, there are an infinite

number of ways to define the expansion coefficients α. Some common choices include

[α]n =

∫

V

drψn(r)A(r), (2.12)

or

[α]n =

∫

V

dr δ(r− rn)A(r). (2.13)

For a given N , different choices of {ψn}N−1
n=0 and α will yield object representations that

possess different representation errors

δA(r) = A(r)− Aa(r). (2.14)

An example of the effects of such representation errors on iterative reconstruction methods

is provided in Section 2.4.
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2.3.2 D-D Imaging Models

Discrete-to-discrete imaging models are required for iterative image reconstruction. These

can be obtained systematically by substitution of a finite-dimensional object representation

into the C-D imaging model in Eqn. (2.4):

ua = HCDAa(r) =

N−1
∑

n=0

[α]nHCD{ψn(r)} ≡ Hα, (2.15)

where the D-D operator H is commonly referred to as the system matrix. Note that the data

vector ua 6= u, due to the fact that a finite-dimensional approximate object representation

was employed. In other words, ua represents an approximation of the measured data. The

system matrix H is of dimension QK ×N , and each element of H, denoted by [H]qK+k,n, is

defined by

[H]qK+k,n =

∫

V

drψn(r)hqK+k(r) ≡ [Dστ

{

pn(rs, t)
}

]qK+k, (2.16)

where hqK+k(r) is defined in Eqn. (2.8) and

pn(rs, t) =
β

4πCp

∫

V

drψn(r)
d

dt

δ(t− |rs−r|
c0

)

|rs − r| . (2.17)

Equation (2.16) provides a clear two-step procedure for computing the system matrix. First,

pn(rs, t) is computed. Physically this represents the pressure data, in its continuous form,

received by an ideal point transducer when the absorbing object corresponds to ψn(r). Sec-

ondly, a discretization operator is applied that samples the ideal data and degrades it by

the transducer response. Alternatively, the elements of the system matrix can be measured

experimentally by scanning an object whose form matches the expansion functions through

the object volume and recording the resulting electrical signal at each transducer location

rs
q, for each value of n (location of expansion function), at time intervals k∆t. For the case

of spherical expansion elements, this approach was implemented in [28].

This two step approach for determining H can be formulated as

H = S ◦H0, (2.18)
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where, ‘◦’ denotes an element-wise product. Each element of H0 is defined as

[H0]qK+k,n = pn(r
s
q, k∆t). (2.19)

The QK × N matrix S can be interpreted as a sensitivity map whose elements are defined

as

[S]qK+k,n =
[Dστ

{

pn(rs, t)
}

]qK+k

pn(rs
q, k∆t)

. (2.20)

Numerical Example: Impact of Representation Error on Simulated Pressure

Data

Consider a uniform sphere of radius R = 5mm as the optical absorber (acoustic source)

that is centered at r. Assuming Dirac delta (i.e., ideal) temporal and spatial sampling, the

pressure data were computed at a measurement location rs that was 65-mm away from the

center of the sphere by use of C-D and D-D imaging models. For the uniform sphere, the

pressure waveform can be computed analytically as

p(rs, k∆t) =

{

βc20
2Cp|rs−r|

(|rs − r| − c0k∆t), if
∣

∣c0k∆t − |rs − r|
∣

∣ ≤ R

0, otherwise
, (2.21)

where ∆t is the sampling interval. The pressure possesses an ‘N’-shape waveform shown as

the dashed red curve in Fig. 2.2. Finite dimensional object representations of the object were

obtained according to Eqn. (2.9) with ψn(r) corresponding to the uniform spheres described

in Eqn. (2.11). The expansion coefficients were computed according to Eqn. (2.12) scaled

by a factor of 6/π. Two approximate object representations were considered. The first

representation employed N = 2563 spherical expansion functions of radius 0.04-mm while

the second employed N = 643 expansion functions of radius 0.16-mm. The resulting pressure

signals are shown as Fig. 2.2, where the speed of sound c0 = 1.521-mm/µs, and ∆t = 0.05-µs.

As expected, the error in the computed pressure data increases as the voxel size is increased.

In practice, this error would represent a data inconsistency between the measured data and

the assumed D-D imaging model, which can result in image artifacts as demonstrated by

the example below.
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Figure 2.2: Pressure data generated by continuous imaging model (red dash) and discrete
imaging model using 256×256×256 voxels (blue solid) and 64×64×64 voxels (green solid).

2.4 Iterative Image Reconstruction

Once the system matrix H is determined, as described in the previous section, an estimate of

A(r) can be computed in two distinct steps. First, from knowledge of the measured data and

system matrix, Eqn. (2.15) is inverted to estimate the expansion coefficients α. Secondly,

the estimated expansion coefficients are employed with Eqn. (2.9) to determine the finite-

dimensional approximation Aa(r). Each of steps introduces errors into the final estimate of

A(r). In the first step, due to noise in the measured data ua, modeling errors in H, and/or

if H is not of full rank, the true values of coefficients α cannot generally be determined.

The estimated α will therefore depend on the definition of the approximate solution and the

particular numerical algorithm used to determine it. Even if α could somehow be determined

exactly, the second step would introduce error due to the approximate finite-dimensional

representation of A(r) employed. This error is influenced by the choice of N and ψn(r), and

is object dependent.
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Due to the large size of H, iterative methods are often employed to estimate α. Iterative

approaches offer a fundamental and flexible way to incorporate a prior information regarding

the object, to improve the accuracy of the estimated α. A vast literature on iterative image

reconstruction methods exists [69, 7, 31, 33] which we leave to the reader to explore. Exam-

ples of applications of iterative reconstruction methods in PACT are described in references

[84, 1, 2, 132, 4, 27, 105, 110]. A numerical example demonstrating how object representation

error can affect the accuracy of iterative image reconstruction is provided next.

Numerical Example: Influence of Representation Error on Image Accuracy

We assume focused transducers are employed that receive only acoustic pressure signals

transmitted from the imaging plane, and therefore the three-dimensional (3D) spherical

Radon transform image model is degraded to a 2D circular mean model. A 2D phantom

comprised of uniform disks possessing different gray levels, radii, and locations, was assumed

to represent A(r). The radius of the phantom was 1.0 in arbitrary units. A finite-dimensional

representation Aa(r) was formed according to Eqn. (2.9) with N = 2562 and ψn(r) chosen to

be conventional pixels described by a 2D version of Eqn. (2.10). The expansion coefficients

[α]n were computed by use of Eqn. (2.13). Figure 2.3 displays the computed expansion

coefficient vector α that has been reshaped into a 256× 256 for display purposes.

0

0.25

0.5

0.75

1

Figure 2.3: The 2D numerical phantom α representing the object function A(r)
.
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A circular measurement aperture S of radius 1.2 that enclosed the object was employed.

At each of 360 uniformly spaced transducer locations {rs
q}Q−1

q=0 on the measurement circle,

simulated voltage data u were computed from the integrated data g by use of the formula

[u]qK+k =
β

4πCpc0

[

g[qK+k+1]/(k + 1)− g[qK+k−1]/(k − 1)

2∆2
t

]

. (2.22)

Here, we assume idealized sampling apertures, i.e, the meaured voltage signals are equivalent

to the values of the pressure function. Two versions of the voltage data were computed,

corresponding to the cases where g was computed analytically or by use of the assumed D-D

imaging model. These simulated voltage data are denoted by uana and unum respectively.

At each transducer location, 300 temporal samples were computed. Accordingly, the voltage

vector ua was a column vector of length 360× 300.

The conjugate gradient algorithm was employed to find the least squares estimate α̂,

α̂ = arg min
α

‖u−Hα‖2, (2.23)

where u = uana or unum. For the noiseless data, the images reconstructed from uana and unum

after 150 iterations are shown as Fig. 2.4-(a) and (b), respectively. The image reconstructed

from the data unum is free of significant artifacts and is nearly identical to the original

object. This is expected because the finite-dimensional object representation was used to

produce the simulated measurement data and establish the system matrix, and therefore

the system of equations in Eqn. (2.15) is consistent. Generating simulation data in this way

would constitute an “inverse crime”. Conversely, the image reconstructed from the data uana

contained high-frequency artifacts due to the fact that the system of equations in Eqn. (2.15)

is inconsistent. The error in the reconstructed images could be minimized by increasing the

dimension of the approximate object representation. This simple example demonstrates the

importance of carefully choosing a finite-dimensional object representation in iterative image

reconstruction.
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2.5 Summary

Photoacoustic computed tomography is a rapidly emerging biomedical imaging modality

that possesses many challenges for image reconstruction. In this chapter, the continuous

imaging models that relate the measured photoacoustic wavefields to the sought-after op-

tical absorption distribution were described in their continuous form. We also described

generic methodologies to construct numerical imaging models for the use of iterative image

reconstruction algorithms.
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Figure 2.4: Images reconstructed by the least squares conjugate gradient algorithm from
voltage data obtained by (a) numerical image model and (b) analytical imaging model. (c)
Vertical profiles through the center of subfigure(a)(solid blue), subfigure(b)(solid green), and
Fig. 2.3(dashed red).
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Chapter 3

A Simple Fourier Transform-Based

Reconstruction Formula for PACT

3.1 Introduction

A variety of image reconstruction algorithms have been proposed for PACT [121, 34, 122,

35, 55, 41, 56, 94, 101]. While iterative image reconstruction methods hold great value due

to their ability to incorporate accurate models of the imaging physics and the instrument

response [84, 127, 133, 89, 105, 37, 44, 17, 16, 110], they can lead to long reconstruction times,

even when accelerated by use of modern computing hardware such as graphics processing

units [110]. This is especially problematic in three-dimensional (3D) implementations of

PACT, in which reconstruction times can be excessively long. Almost all experimental

studies of PACT to date have employed analytic image reconstruction algorithms. Even if

an iterative image reconstruction algorithm is to be employed, it is often useful to employ

an analytic reconstruction algorithm to obtain a preliminary image that can initialize the

iterative algorithm and thereby accelerate its convergence.

Most analytic reconstruction algorithms for PACT with a spherical measurement aperture

and point-like transducers have been formulated in the form of filtered backprojection (FBP)

algorithms. These algorithms possess a large computational burden, requiring O(N5) float-

ing point operations to reconstruct a 3D image of dimension N3. Image reconstruction

algorithms based on the time-reversal principle and finite-difference schemes require O(N4)

operations [19]. Fast reconstruction algorithms for spherical measurement apertures that
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require only O(N3logN) operations have been proposed [56, 94]. However, numerical imple-

mentations of these formulas require computation of special functions and multidimensional

interpolation operations in Fourier space, which require special care to avoid degradation

in reconstructed image accuracy. It is well-known that the temporal frequency components

of the pressure data recorded on a spherical surface are related to the Fourier components

of the sought-after object function [5]. However, to date, a simple reconstruction algorithm

based on this relationship, i.e., one that does not require series expansions involving special

functions or multi-dimensional interpolations, has yet to be developed.

In this chapter, we derive a novel reconstruction formula for two-dimensional (2D) and

3D PACT employing circular and spherical measurement geometries, respectively. The

mathematical forms of the reconstruction formulae are the same in both dimensions and

are surprisingly simple compared with existing Fourier-domain reconstruction formulae for

spherical and circular measurement geometries. The reconstruction formulae are mathemat-

ically exact and describe explicitly how the spatial frequency components of the sought-after

object function are determined by the temporal frequency components of the measured

pressure data. Their discrete implementations require only discrete Fourier transform, one-

dimensional interpolation, and summation operations. A preliminary computer-simulation

study is conducted to corroborate the validity of the reconstruction formula.

3.2 Derivation of the Reconstruction Formula

We consider the canonical PACT imaging model in which the object and surrounding medium

are assumed to possess homogeneous and lossless acoustic properties and the object is illu-

minated by a laser pulse with negligible temporal width. Point-like, unfocused, ultrasonic

transducers are assumed. We also assume that the effects of the acousto-electric impulse

responses of the transducers have been deconvolved [105, 110] from the measured voltage

signals so that the measured data can be interpreted as pressure signals. The 3D problem

is addressed where p(r, t) denotes the photoacoustically-induced pressure wavefield at loca-

tion r ∈ R
3 and time t ≥ 0. However, the analysis and reconstruction formula that follows

remains valid for the 2D case. The imaging physics is described by the photoacoustic wave
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equation [68, 112, 51]:

∇2p(r, t)− 1

c20

∂2p(r, t)

∂2t
= 0, (3.1)

subject to the initial conditions:

p(r, t)
∣

∣

∣

t=0
=
βc20
Cp

A(r);
∂p(r, t)

∂t

∣

∣

∣

t=0
= 0, (3.2)

where ∇2 denotes the 3D Laplacian operator and A(r) is the object function to be recon-

structed that is contained within the volume V . Physically, A(r) represents the distribution

of absorbed optical energy density. The constant quantities β, c0, and Cp denote the thermal

coefficient of volume expansion, speed-of-sound, and the specific heat capacity of the medium

at constant pressure, respectively.

Let p(rs, t) denote the pressure data recorded at location rs ∈ S on a spherical surface S

of radius Rs that encloses V . The continuous form of the imaging model that relates the

measurement data to object function can be expressed as [24]:

p(rs, t) = HCCA ≡
βc20

Cp(2π)3

∫

∞

dk Â(k) cos(c0kt)e
ı̂k·rs

, (3.3)

where k ∈ R
3 is the spatial frequency vector conjugate to r, k ≡ |k|, and Â(k) is the 3D

Fourier transform of A(r). We adopt the Fourier transform convention

Â(k) = F3A(r) ≡
∫

∞

drA(r)e−ı̂k·r (3.4a)

A(r) = F−1
3 Â(k) ≡ 1

(2π)3

∫

∞

dkÂ(k)eı̂k·r. (3.4b)

The imaging model in Eqn. (3.3) can be interpreted as a mapping HCC : O → D between

infinite dimensional vector spaces that contain the object and data functions. We will define

O as the vector space of bounded and smooth functions that are compactly supported within

the volume V . It can be shown that Eqn. (3.3) is equivalent to Eqn. (2.1) [23].
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Let the infinite set of functions {γµ(r)}, indexed by µ, represent an orthonormal basis for

O. The object function A(r) can be represented as

A(r) =

∫

∞

dµ 〈A, γµ〉γµ(r), (3.5)

where the inner product in O is defined as

〈A, γµ〉 ≡
∫

V

drA(r)γµ(r) =
1

(2π)3

∫

∞

dk Â(k)γ̂µ(k), (3.6)

γ̂µ(k) = F3γµ(r), and the quantity on the right-hand side of Eqn. (3.6) follows from fact

that the Fourier transform is an isometry. A trace identity (see Eqn. (1.7) in reference [34]

for the 3D case and Eqn. (1.16) in [35] for the 2D case) can be employed to relate the inner

products in the spaces O and D as:

〈A, γµ〉 =
2C2

p

Rsβ2c20

∫ ∞

0

dt

∫

S

drs t p(rs, t)vµ(r
s, t), (3.7)

where

vµ(rs, t) = HCCγµ =
βc20

Cp(2π)3

∫

∞

dk γ̂(k) cos(c0kt)e
ı̂k·rs

, (3.8)

and the right-hand side of Eqn. (3.7) defines a scaled version of the inner product in D.

On substitution from Eqn. (3.8) into Eqn. (3.7), one obtains

〈A, γµ〉 =
1

(2π)3

∫

∞

dk ŷ(k)γ̂µ(k), (3.9)

where

ŷ(k) ≡ 2Cp

Rsβ

∫

S

drseı̂k·rs

∫ ∞

0

dt tp(rs, t) cos(c0kt). (3.10)

Comparison of Eqns. (3.6) and (3.9) reveals that Â(k) = ŷ(k). By evaluating the Fourier

cosine transform that is present in the right-hand side of Eqn. (3.10), a reconstruction formula

for determining Â(k) can therefore be expressed as

Â(k) =
2Cp

Rsβ

∫

S

drseı̂k·rs

Re
{

F1

{

tp(rs, t)
}

(rs, ω)
∣

∣

ω=c0k

}

, (3.11)
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where F1 denotes the one-dimensional (1D) Fourier transform with respect to time t and

‘Re’ denotes the operation that takes the real part of quantity in the brackets. Subsequently,

A(r) is determined as F−1
3 Â(k).

Equation (3.11) represents a novel reconstruction for PACT and is the key result of this chap-

ter. Unlike previously proposed Fourier-domain reconstruction formulae [74, 56, 94], Eqn.

(3.11) has a simple form and does not involve series expansions utilizing special functions.

The reconstruction formula reveals that the measured data p(rs, t) determine the 3D Fourier

components of the A(r) via a simple process that involves the following four steps: (1) Com-

pute the 1D temporal Fourier transform of the modified data function tp(rs, t); (2) Isolate

the real-valued component of this quantity corresponding to temporal frequency ω = c0k;

(3) Weight this value by the plane-wave eı̂k·rs

; and (4) Sum the contributions, formed in this

way, corresponding to every measurement location rs ∈ S. This reveals the components of

Â(k) residing on a sphere of radius k
c0

are determined by the 1D Fourier transform of tp(rs, t)

corresponding to temporal frequency ω. In this sense, Eqn. (3.11) can be interpreted as an

implementation of the Fourier Shell Identity [5]. Finally, the form of Eqn. (3.11) remains

unchanged in the 2D case, where rs,k ∈ R
2 and S is a circle that encloses the object.

A discrete implementation of Eqn. (3.11) possesses low computational complexity and de-

sirable numerical properties. The 1D fast Fourier transform (FFT) can be employed to

approximate the action of F1 and only a 1D interpolation is required to determine the value

of the Fourier transformed data function corresponding to temporal frequency ω = c0k,

where k corresponds to the magnitude of vectors k that specify a 3D Cartesian grid. From

the values of Â(k) determined on this grid, the 3D FFT algorithm can be employed to es-

timate values of A(r). If the object is represented on a N × N × N grid and the number

of transducer locations and time samples are both O(N), the computational complexity is

limited by the 3D FFT algorithm, i.e., O(N2 logN) in 2D and O(N3 logN) in 3D.

3.3 Computer-Simulation Studies

Images were reconstructed on a uniform 2D grid of spacing 0.1-mm by use of a discretized

form of Eqn. (3.11) coupled with the 2D inverse FFT algorithm. In order to reconstruct

images of dimension 256 × 256, samples of Â(k) were determined on a uniform 2D grid of
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dimension 512 × 512 with a sampling interval of (0.1 × 256)−1-mm−1. The samples of the

data function tp(rs, t) were zero-padded by a factor of 8 prior to estimating its 1D Fourier

transform by use of the FFT algorithm. From these data, nearest neighbor 1D interpolation

was employed to determine the values of the term in brackets in Eqn. (3.11) corresponding

to ω = c0k for the sampled locations k.

The images reconstructed from the noiseless and noisy data sets are shown in Fig. 3.1-(b)

and (c). Profiles corresponding to the central rows of these images are shown in Fig. 3.2.

These results confirm that the proposed reconstruction algorithm can reconstruct images

with high fidelity from noise-free measurement data. Although, a systematic investigation

of the noise propagation properties of the proposed algorithm is beyond the scope of this

Note, Figs. 3.1-(c) and 3.2-(b) suggest that its performance is robust in the presence of noise.

This is to be expected, since all operations involved in the implementation of Eqn. (3.11)

are numerically stable.

3.4 Summary

In summary, we have derived a Fourier-based reconstruction formula for PACT employing

circular and spherical measurement apertures. The formula is mathematically exact and

possesses a surprisingly simple form compared with existing Fourier-domain reconstruction

formulae. The formula yields a straightforward numerical implementation that is stable and

is two orders of magnitude more computationally efficient than 3D filtered backprojection

algorithms. The proposed formula serves as an alternative to existing fast Fourier-based

reconstruction formulae. A systematic comparison of the proposed reconstruction formula

with existing formulae by use of experimental data remains an important topic for future

studies.
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Figure 3.1: The numerical phantom is shown in subfigure (a). Images reconstructed by use of
the proposed reconstruction algorithm from noiseless and noisy data are shown in subfigures
(b) and (c), respectively.
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Figure 3.2: Profiles corresponding to the central rows of the images shown in Fig. 3.1-
(b) (subfigure(a)) and Fig. 3.1-(c) (subfigure(b)). The solid line in subfigure (a), which
corresponds to the image reconstructed from noiseless data, almost completely overlaps with
the profile through the numerical phantom.
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Chapter 4

An Imaging Model Incorporating

Ultrasonic Transducer Properties for

3D PACT

4.1 Introduction

A variety of analytical [121, 34, 122, 35, 55, 41, 56, 94, 101] and iterative [1, 27, 84, 133]

PACT image reconstruction algorithms have been developed. Many of these algorithms are

based on a spherical Radon transform image model and assume that point-like ultrasonic

transducers are employed for data-acquisition. This assumption is appropriate when the size

of the transducer’s detecting surface is sufficiently small and/or the object-to-transducer

distance is sufficiently large. However, the use of small transducers and/or large scanning

distances is undesirable because the signal-to-noise ratio of the recorded photoacoustic signals

will be degraded [125]. When the characteristics of the transducer are not accounted for in

the image reconstruction algorithm, the spatial resolution of the resulting images can be

significantly degraded and image distortions can be present.

An ultrasonic transducer in receive-mode can be characterized by its acousto-electric impulse

response and spatial impulse response [40, 29]. Their effects on the spatial resolution of the

reconstructed images in PACT have been studied previously [70, 5, 51, 25]. The explicit

nature of the spatial resolution degradation depends on the measurement geometry, but it

is generally spatially variant and, therefore, not modeled as a linear shift-invariant system.

Several data-space deconvolution procedures have been proposed [121, 60, 111] for mitigating
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the effects of the transducer response on the PACT measurement data. A discrete imaging

model that took account of the transducer properties was proposed in [60]. However, specific

details about how the object and spatial impulse response were not provided.

It is worth noting that several groups have proposed alternative ultrasound transducer

technologies to circumvent the need to numerically compensate for transducer effects in

the reconstruction algorithm. For example, virtual point detectors have been investigated

[125, 61, 59]. Integrating ultrasound detectors [38, 81] are also being actively explored.

Despite these efforts, the majority of current PACT implementations utilize conventional

piezoelectric ultrasonic transducer technologies. The use of conventional ultrasound trans-

ducers also facilitates hybrid ultrasound-PACT imaging in which the same transducer is

utilized for both the traditional ultrasound imaging and for the PACT [53, 130, 3, 64].

In this chapter, a general PACT imaging model that incorporates the physical response of

an ultrasound transducer is introduced and investigated. The imaging model is presented

in its continuous-to-discrete and discrete-to-discrete forms. Our primary focus is on the

discrete-to-discrete model and its application to iterative image reconstruction. By use of

computer-simulated and experimental PACT measurement data, we demonstrate that use

of the new imaging model in an iterative reconstruction method can improve the spatial

resolution of the reconstructed images as compared to those reconstructed assuming point-

like ultrasound transducers. The singular value decomposition of the imaging model is

computed to investigate how incorporation of the transducer responses in the imaging model

will affect the numerical stability of the image reconstruction problem.

The remainder of the chapter is organized as follows. In Section 4.2 we briefly review

the impulse response method that will be employed to numerically model the ultrasound

transducer response. By use of the impulse response method, continuous-to-discrete and

discrete-to-discrete PACT image models that incorporate the acousto-electric and spatial

impulse responses of a non-ideal ultrasound transducer are established in Section 4.3. Nu-

merical studies that involve computer-simulated and experimental PACT measurement data

are described in Section 4.4, in which an iterative image reconstruction algorithm is utilized

with the new discrete-to-discrete imaging model. In Section 4.5, we compare the spatial res-

olution of the reconstructed images with those reconstructed assuming point-like ultrasound

transducers. The article concludes with a summary in Section 4.6.
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4.2 Background: Characterization of Transducer Be-

havior

Two modeling issues are involved in the characterization of transducer behavior. One is

to model how the mechanical force is converted to electrical signals when acting on the

transducer surface, or the reverse. The energy transformation process can be parametrically

modeled by use of equivalent electric circuit methods [67, 90, 49, 117] or numerically sim-

ulated by use of finite element methods [57, 8, 77] . Another modeling issue is to model

the diffraction effects of the transducer. A typical example is to calculate the transient

radiation resulting from a transducer of finite aperture size. The diffraction effects can be

investigated by use of the finite element methods [57, 8, 77] or impulse response method

[102, 63, 97, 91, 40, 116, 29] . Below, we briefly review the impulse response method devel-

oped in the ultrasound literature.

The impulse response method has been developed to calculate the transient velocity potential

at a field point resulting from a specified velocity motion of an ultrasonic transducer of finite

aperture size. The transducer is treated as a piston mounted in a rigid infinite planar baffle.

By use of the Green’s function method, the time-dependent velocity potential φ(r, t) can be

expressed as [97]:

φ(r, t) =
1

2π

∫

S

drsv(t− |rs − r|/c0)
2π|rs − r| , (4.1)

where c0 is the (constant) speed of sound and S denotes the piston area, rs ∈ S, and v(t) is

the piston velocity that is assumed to be uniform over S. By use of the convolution property

of Dirac delta function, Eqn. (4.1) can be reformulated as

φ(r, t) = v(t) ∗t hs(r, t), (4.2)

where ‘∗t’ denotes linear convolution with respect to time coordinate and hs(r, t) is defined

as

hs(r, t) =

∫

S

drs δ(t− |rs − r|/c0)
2π|rs − r| . (4.3)

The function hs(r, t) is referred to as the spatial impulse response (SIR) in the literature

[102, 63, 97, 91, 40, 116, 29] . A variety of algorithms have been proposed to estimate the
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SIR for transducers of various shapes [100, 118, 88, 45]. The technique that converts the

surface integral to a temporal convolution is referred to as the impulse response method.

4.3 Discrete PACT Imaging Models that Incorporate

Transducer Response

As discussed in Section 2.2, a practical PACT imaging system is properly described as a

continuous-to-discrete (C-D) imaging model. In this section, we propose a C-D imaging

model that incorporates the characteristics of ultrasonic transducers. Also, we construct

a discrete-to-discrete (D-D) imaging model to approximate the C-D model for the use of

iterative image reconstruction algorithms.

4.3.1 C-D Imaging Models

A C-D imaging model that incorporates transducer characteristics can be derived from a

physical perspective. Let u ∈ R
M denote a vector whose elements are the measured electrical

voltage signals arranged in a lexicographical order. HereM = QK with Q andK the number

of detecting locations and the number of temporal samples respectively. We will use [u]m

to denote the m-th element of u. The PACT data acquisition system can be modeled as

[29, 105, 110]

[u]qK+k = he(t) ∗t
1

Sq

∫

Sq

drs p(rs, t)
∣

∣

∣

t=k∆t

, (4.4)

where p(rs, t) is the photoacoustic wavefield defined by Eqn. (2.1), Sq ⊂ S is the surface

area of the q-th transducer, ∆t is the temporal sampling interval, and ‘∗t’ denotes linear

convolution with respect to time coordinate. Here the surface inetgral over Sq characterizes

the diffraction effect of the transducer. The transducer energy transformation process is

assumed to be a linear shift-invariant system whose transfer function is referred to as acousto-

electric impulse response (EIR) [29] denoted by he(t). On substitution of Eqn. (2.1) into Eqn.

27



(4.4), a C-D imaging model that incorporates transducer characteristics can be expressed as:

[u]qK+k = he(t) ∗t
1

Sq

∫

Sq

drs β

4πCp

∫

V

drA(r)
d

dt

δ
(

t− |rs−r|
c0

)

|rs − r|

∣

∣

∣

∣

∣

t=k∆t

. (4.5)

Equation (4.5) can be interpreted in the framework of the generic C-D imaging model de-

scribed in Chapter 2 with a special choice of the spatial and temporal sampling aperture

functions. To show this, we define the spatial sampling aperture σq(r
s) as

σq(r
s) =

{

1/Sq, if rs ∈ Sq

0, otherwise
. (4.6)

Also, we define the temporal sampling aperture τk(t) to be associated with the EIR as

τk(t) = he(k∆t − t). (4.7)

On substitution from Eqns. (4.6) and (4.7) into Eqn. (2.8), one obtains an explicit expression

of the C-D imaging model as

[u]qK+k =

∫

V

dr A(r) hqK+k(r), (4.8)

where the point response function hqK+k(r) is defined as

hqK+k(r) =
β

4πCpSq
he(t) ∗t

∫

Sq

drs d

dt

δ(t− |rs−r|
c0

)

|rs − r| . (4.9)

It is obvious that Eqns. (4.8) and (4.9) are equivalent to Eqn. (4.5).

4.3.2 D-D Imaging Models

Following the generic methodologies discussed in Chapter 2, anN -dimensional representation

of A(r) is introduced as

Aa(r) =

N−1
∑

n=0

[α]nψn(r). (4.10)
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We employed the spherical expansion functions [58, 47] defined by

ψn(r) =

{

1, if |r− rn| ≤ ∆s/2

0, otherwise
, (4.11)

where rn = (xn, yn, zn) specify the coordinates of the n-th grid point of a uniform Cartesian

grid of spacing ∆s. The coefficient vector α is defined as

[α]n =
Vcube

Vvoxel

∫

V

dr ψn(r)A(r), (4.12)

where Vcube and Vvoxel are the volumes of a cubic voxel of dimension ∆s and a sphere of

diameter ∆s, respectively.

On substitution from Eqn. (4.10) into Eqn. (4.8), one obtains a D-D imaging model

ua = Hα, (4.13)

where ua is an approximation of u. The system matrix H is of dimension M × N and its

elements are given by

[H]qK+k,n =
β

4πCpSq
he(t) ∗t

∫

Sq

drs

∫

V

dr ψn(r)
d

dt

δ(t− |rs−r|
c0

)

|rs − r|

∣

∣

∣

∣

∣

t=k∆t

. (4.14)

For the choice of expansion functions as Eqn. (4.11), it can be verified that

β

2Cp

∫

V

dr ψn(r)
d

dt

δ(t− |rs−r|
c0

)

|rs − r| =−
βc30π(t− |rs−rn|

c0
)

Cp|rs − rn|
[

H(t− |r
s − rn|
c0

+
∆s

2c0
)

−H(t− |r
s − rn|
c0

− ∆s

2c0
)
]

=
p0(t)

|rs − r| ∗t δ(t−
|rs − rn|

c0
),

(4.15)

where H(t) is Heaviside step function. The function p0(t) has an ‘N’-shape profile defined as

p0(t) = −βc
3
0π

Cp

t
[

H(t+
∆s

2c0
)−H(t− ∆s

2c0
)
]

(4.16)
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The second equality in Eqn. (4.15) was inspired by the impulse response method discribed

in Section 4.2, which converts the surface integral in Eqn. (4.14) to a temporal convolution.

On substitution from Eqn. (4.15) into Eqn. (4.14), one obtains

[H]qK+k,n = p0(t) ∗t he(t) ∗t
1

Sq

hs
q(rn, t)

∣

∣

∣

t=k∆t

, (4.17)

where hs
q(rn, t) is the SIR defined in Eqn. (4.3) by setting the integral surface to be Sq.

Because a variety of methods have been proposed to calculate the SIR in the ultrasound

literature [40, 97, 63] , conversion from Eqn. (4.14) to Eqn. (4.17) will facilitate the numerical

implementation of the system matrix H.

4.4 Descriptions of Numerical Studies

Numerical studies that employed computer-simulated and experimental PACT measurement

data were conducted, as described below, to investigate the use of the proposed D-D imaging

model for image reconstruction.

4.4.1 Implementation of the System Matrix

The EIR is determined by the physical properties of the ultrasonic transducer and is more

conveniently determined by experiments. In this study, we employed a specific EIR that was

measured as described in [22]. A variety of SIR models have been proposed [40, 97, 63] and

utilized in studies of PACT [6, 29]. In our numerical studies, we adopted the SIR model
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that, for a square transducer of dimension a, is specified as [29]

hs
q(rn, t) =















































c0
2πa2 sin θ|rn−rs

q|

[

( sinφ
cos φ

+ cos φ
sin φ

) c0
sin θ

(t− |rn−rs
q|

c0
) + a

2
( 1

cos φ
+ 1

sin φ
)
]

,

for − tA ≤ t < −tB,
c0

2πa sin θ cos φ|rn−rs
q|
, for − tB ≤ t < tB,

c0
2πa2 sin θ|rn−rs

q|

[

−( sin φ
cos φ

+ cos φ
sinφ

) c0
sin θ

(t− |rn−rs
q|

c0
) + a

2
( 1

cos φ
+ 1

sinφ
)
]

,

for tB ≤ t < tA,

0, otherwise

(4.18)

with

tA =
a

2c0
sin θ(cosφ+ sinφ), (4.19a)

tB =
a

2c0
sin θ(cosφ− sinφ), (4.19b)

where rs
q denotes the location of the center of the q-th transducer, θ and φ are functions of

both rn and rs
q. As indicated in Fig. 4.1, for each pair of locations rn and rs

q, we defined

a local coordinate system whose origin o′ was located at rs
q and z′-axis was normal to the

transducer plane. The direction of the incident wavefield k̂ was defined as

k̂(rs
q, rn) =

rs
q − rn

|rs
q − rn|

. (4.20)

Its projection on the transducer plane was chosen as the x′-axis. The angle θ was the

angle between k̂ and z′-axis and φ = min(φ1, φ2), where φ1 and φ2 were the two angles

between x′-axis and the transducer’s two edges. Equation (4.18) was derived under the

farfield assumption, i.e., |rn − rs| ≈ (rn − rs) · rn/|rn|, for rs ∈ Sq.

To obtain the system matrix H, in principle, we need to implement the two continuous

convolutions in Eqn. (4.17). However, only discrete samples of he(t) are available in practice.

Also, the quantity 1
Sq
hs

q(rn, t) ∗t p0(t) ≡ lq(rn, t) is broadband in temporal frequency space,

which may result in strong aliasing if direct temporal sampling was applied. Consequently,

an anti-aliasing filter was applied to lq(rn, t) and the first convolution operation in Eqn.
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Figure 4.1: Illustration of the dependence of two incident angles θ (elevation) and φ (azimuth)
on the locations of the photoacoustic source rn and the transducer rs

q. The transducer
possesses a flat square detecting surface.

(4.17) was approximated by a discrete convolution as

[

H
]

qK+k,n
≈ ∆t

K−1
∑

k′=0

he
(

(k − k′)∆t

)

l′q(rn, k
′∆t), (4.21)

where l′q(rn, k∆t) is a discrete approximation of lq(rn, t). Additional details regarding imple-

mentation of the system matrix are provided in Appendix-A.

To investigate the effects of EIR and SIR seperately, in the following discussion, we denote

the comprehensive system matrix by H. Meanwhile, we construct another three system

matrices: H0 that assumes ideal point-like transducers, He that only incorporates the EIR

effect, and Hs that only incorporates the SIR effect. More specifically, these system matrices

are defined as

[H0]qK+k,n = p0(t) ∗t
δ(t− |rs − rn|/c0)

2π|rs − rn|
∣

∣

∣

t=k∆t

, (4.22a)

[He]qK+k,n = p0(t) ∗t he(t) ∗t
δ(t− |rs − rn|/c0)

2π|rs − rn|
∣

∣

∣

t=k∆t

, (4.22b)

[Hs]qK+k,n = p0(t) ∗t
1

Sq

hs
q(rn, t)

∣

∣

∣

t=k∆t

. (4.22c)
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4.4.2 Eigenanalysis of the System Matrix

To investigate how incorporation of the transducer SIR in the imaging model will affect the

numerical stability of the image reconstruction problem, we computed the eigenspectrum

of the Hessian matrix H†
sHs. We considered an imaging geometry consisting of 90 square

ultrasonic transducers of dimension a that were uniformly distributed on a ring of radius

Rs. This geometry is depicted in in Fig. 4.2-(a), and was utilized to image thin 3D objects

in the studies described below. We numerically computed the eigenvalues of the Hessian

H†
sHs for different transducer dimensions a = 0.5, 2, and 4-mm and scanning radii Rs = 25

and 50-mm, respectively. For comparison, we also computed the eigenvalues of the Hessian

H†
0H0 for the ideal case.

r

o

s

aperture

Measurement

17.92mm

(a)

Y

X

(b)

Figure 4.2: (a) The scanning geometry employed in the computer-simulation studies. (b)
The central horizonal slice through the numerical phantom.

4.4.3 Computer-Simulation Studies and Reconstruction Algorithm

Computer-simulated Measurement Data: The 3D numerical phantom shown in Fig.

4.2 was taken to represent the object function A(r). Its support volume was 17.92× 17.92×
0.07-mm3 and was represented by 512 × 512 × 2 non-overlapping spherical voxels of radii

0.0175-mm. From this discrete representation of A(r), the noiseless data ua were calculated

numerically by use of Eqn. (4.13) at Q = 360 equally spaced transducer locations over
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the interval [0, 2π) on the 2D measurement geometry shown in Fig. 4.2-(a). The scanning

radius was 25-mm. At each transducer location, K = 512 equally spaced temporal values

of the voltage signal over the interval [8, 25)-µs were computed. Each transducer had a flat

detecting area of dimension 4× 4-mm2 and the speed of sound was described by a constant

value c0 = 1.521-mm/µs. The voltage data were generated by use of H whose he(t) was

measured experimentally [22, 29] and is displayed in Fig. 4.3.

0 1.6 3.2 4.8 6.4

−0.3

0

0.3

Time (µ s)

u(V)

Figure 4.3: The acousto-electrical impulse response of the ultrasonic transducer.

Although the image reconstruction studies described below will employ a different voxel size

in the assumed object representation than that employed to generate the measurement data,

it should be noted that these computer-simulation studies do not comprehensively assess

the impact of modeling errors associated with approximating a C-D imaging model with a

D-D one. However, these computer-simulation studies do serve to demonstrate the potential

improvement in spatial resolution that can be achieved by incorporation of the transducer re-

sponse in the imaging model. Also, as described below, these studies will assess the statistical

properties of images reconstructed by use of a particular iterative reconstruction algorithm.

Images reconstructed from experimental data will corroborate the features revealed by the

computer-simulation studies and are discussed later.

Noise model: With consideration of stochastic measurement noise, the detected voltage

data can be described as

ũa = ua + ñ, (4.23)
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where ñ is an additive noise vector. Here, the tilde indicates a stochastic quantity. We focus

on the SIR effect and thus ua was generated by use of Hs. The noise vector was treated

as an uncorrelated zero-mean Gaussian random vector with a standard deviation σn chosen

according to the rule

σn = 0.03
[

ua
]

max
, (4.24)

where,
[

ua
]

max
denotes the maximum value of all components of the noiseless ua. A total

of 100 noisy versions of ũa were computed as realizations of this stochastic process.

Reconstruction Algorithm: From knowledge of the noiseless and noisy simulated mea-

surement data, images were reconstructed by inverting the D-D imaging model in Eqn. (4.13)

by solving for a penalized least-squares (PLS) objective [32]. Investigation of alternative ob-

jective functions will be discussed in Chapter 5. The optimization problem was formulated

as

α̂ = arg min
α

‖u−Hα‖2 + βR(α), (4.25)

where R(α) is a regularizing penalty term whose impact is controlled by the regularization

parameter β. In this study we employed a quadratic smoothness penalty given by

R(α) =

N−1
∑

n=0

∑

k∈Nn

(

[α]n − [α]k

)2

, (4.26)

where Nn is the set of eight neighbors of the n-th voxel. The system matrix H was con-

structed according to Eqn. (4.21). For the noiseless voltage data generated by H, we com-

pared the reconstructed images obtained by use of H0, He, Hs, and H. We also investigated

the SIR effects in the noisy case where he(t) = δ(t) by comparing the images reconstructed

by use of Hs and H0.

In all cases, the reconstruction algorithm for implementing Eqn. (4.25) was based on the

linear conjugate gradient (CG) method [69, 96, 33]. We calculated the ℓ2-norm of the gra-

dient and terminated the iteration when it was below a prechosen tolerance. We used the

same tolerance in both reconstruction algorithms. The impact of the choice of β on the

reconstructed images was studied by Monte Carlo simulations described in the next sub-

section. The reconstructed object estimates were represented by a 256 × 256 × 1 grid of

non-overlapping spherical voxels of radius 0.035-mm.
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4.4.4 Empirical Determination of Image Statistics and Resolution

Measures

As described above, for each choice of the regularization parameter β, 100 noisy images were

reconstructed for the cases where the EIR effect was excluded and the system matrices Hs

and H0 were employed by the reconstruction algorithm. From each collection of images, the

empirical mean image and the empirical estimate of the image variance map were computed

by

mean
{[

α̂
]

n

}

=
1

J

J
∑

j=1

[

α̂j

]

n
, (4.27a)

variance
{[

α̂
]

n

}

=
1

J − 1





J
∑

j=1

[

α̂j

]

n

2

− 1

J

(

J
∑

j=1

[

α̂j

]

n

)2


 , (4.27b)

where J = 100 is the number of noisy images we reconstructed, α̂j is the reconstructed

image from the j-th realization of noisy data, and n is the voxel index.

We computed the mean variance within a 90× 90 voxel region indicated by the dashed box

in Fig. 4.2-(b). To quantify the spatial resolution of the reconstructed image, we fitted the

rising edge of a prechosen structure in the empirical mean images to a cumulative Gaussian

function C(x) as [103]:

C(x) = I1 +
I2 − I1

2

(

1 + erf

(

x− µ
σ
√

2

))

, (4.28)

where I1 and I2 are the true intensities on the two sides of the boundary with I1 < I2, µ is

the true location of the boundary, and erf(x) is the Gauss error function with the standard

deviation denoted by σ The image resolution was characterized by the full width at half-

maximum (FWHM) value of the fitted error function [133] as FWHM = 2
√

2 ln 2 σ. We

computed the spatial resolutions crossing the two edges marked by the arrows ‘X’ and ‘Y’

in Fig. 4.2-(b) that correspond to radial and tangent directions, respectively. The radial

and tangent directions are relative to the measurement geometry that was a ring in 2D or a

sphere in 3D for this study. Repeating the process for different choices of the regularization

parameters β ranging from 0 to 10 produced a collection of (variance, FWHM) pairs, which
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were plotted to characterize the tradeoffs between spatial resolution and noise levels in the

reconstructed images.

4.4.5 Experimental data

We applied the reconstruction algorithm utilizing the new system matrix H to experimental

data obtained by use of an existing PACT imaging system [14, 15], where the EIR was the

same as the one employed in the simulation studies shown in Fig. 4.3. The measurement

geometry is shown in Fig. 4.4. The to-be-imaged object consisted of a pair of crossing horse

hairs with a thickness of 200-µm and a length of 90-mm mounted on a custom made holder.

The laser pulse was of wavelength 765-nm and was delivered by a bifurcated fiber bundle to

illuminate the bottom half of the object. Two light beams were expanded to a diameter of 40-

mm. A curved transducer array consisting of 64 rectangular detecting elements were focused

at 65-mm that approximately coincided with the intersection of the hairs. Each transducer

element had a flat detecting surface of size 2 × 2-mm2. The object was rotated about the

z-axis as indicated in Fig. 4.4, and photoacoustic pressure measurements were obtained at

72 uniformly-spaced views over a 360◦ interval. The time samples were obtained at 1536

instances at a sampling rate of 20-MHz. We made use of the voltage data obtained by 33

transducers indexed from 31 to 64 shown in Fig. 4.4 for the reconstruction. The region to-be-

reconstructed was of size 13.44×5.6×41.44-mm3 and was represented by 96×40×296-voxels.

Each voxel was of diameter 0.14-mm. We turned off the smoothness regularization term in

Eqn. (5.13), i.e., β = 0, since the noise level was very low in this data set. For comparison,

we also reconstructed images by use of system matrices He, and H0. The algorithms were

terminated for all imaging models after six iterations where the objective functions reduced

to the same level and the images became noisier for more iterations. The reconstructed 3D

image data were visualized by computing maximum intensity projection images by use of

the Osirix software [93].
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Figure 4.4: The scanning geometry employed in the experimental studies.

4.5 Numerical Results

4.5.1 Intrisic Numerical Properties of H

The eigenvalues of H†
sHs for the cases of transducer dimensions a = 0.5, 2, and 4-mm were

numerically computed and plotted in Fig. 4.5. The eigenspectrum of H†
0H0, the Hessian

matrix assuming an ideal point-like transducer, was also computed. Figures 4.5-(a) and (b)

display the eigenspectra corresponding to cases where the radius of the scanning aperture

was Rs = 25-mm and 50-mm, respectively. These plots reveal that the rate of decay of the

eigenvalues of H†
sHs increases as the transducer size a is increased. This confirms that the

image reconstruction problem becomes more ill-conditioned and is therefore more sensitive

to data inconsistencies as the transducer size is increased. Similarly, by comparison of Figs.

4.5-(a) and (b) we observe that the rate of decay of the eigenvalues of H†
sHs is slower for

the larger scanning aperture. This confirms that the ill-conditioning of the reconstruction

problem is generally less severe for larger scanning apertures.
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Figure 4.5: Normalized eigenspectra of the Hessian matrices for the new system matrix
Hs, and the system matrix assuming point-like transducer H0 for different transducer sizes
a = 0.5, 2, and 4-mm. The scanning radius is (a) Rs = 25-mm and (b) Rs = 50-mm.

4.5.2 Results from Noiseless Simulation Data

The computer-simulated noiseless data were generated by use of the system matrix H, from

which the images reconstructed by use of H0, Hs, He and H are shown in Figs. 4.6-(a-d),

respectively. We set the regularization parameter β = 0 for all cases. Reconstruction algo-

rithms were started from the same uniform initial guess and terminated after 150 iterations

when the ℓ2-norms of the objective functions’ gradients were reduced by a factor 10−5 com-

pared to their initial values. As expected, structures within images reconstructed by use

of Hs had uniformly broadened boundaries while the peripheral structures within images

reconstructed by use of He had blurred boundaries along the tangent direction. The images

reconstructed by use of H0 suffer from both degradations. By use of the new system ma-

trix H, the reconstructed images have improved spatial resolution. Ignoring the EIR effect

results in the loss of quantitative information of the reconstructed images. Figures 4.6-(a)

and (b) contain negative values and are shown in a different gray scale from that employed

in Figs. 4.6-(c) and (d). The profiles along the radial and tangent directions, indicated by

‘X’ and ‘Y’ in the images in Figs. 4.6-(c) and (d), are shown in Figs. 4.7-(a) and (b).
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Figure 4.6: Images reconstructed from the noiseless data function ua by use of system
matrices (a) H0, (b) Hs, (c) He, and (d) H.

4.5.3 Results from noisy simulation data

We simulated the noisy data by use of the system matrix Hs that assumed he(t) = δ(t).

Figures 4.8-(a) and (b) display images reconstructed from noisy simulation data by use of

the system matrices H0 and Hs with β = 0. The reconstruction algorithms that employed

H0 and Hs were terminated at 45 and 54 iterations, respectively, which was when the

residues (gradients of the objective functions) were reduced to 0.3% of their initial values.

As was observed in the case of noiseless data, structures within the image reconstructed by

use of H0 (Fig. 4.8-(a)) had blurred boundaries, due to the fact that the transducer SIR

was not modeled in the system matrix H0. On the other hand, the spatial resolution of

the images reconstructed by use of Hs (Fig. 4.8-(b)) appear to suffer much less degradation

40



−8.925 0.035 8.995

0

0.5

1

X (mm)

A

 H

 H
e

(a)

−4.48 0 4.48

0

0.5

1

Y (mm)

A

 H

 H
e

(b)

Figure 4.7: (a) Radial image profiles corresponding to the use of He (solid line) and H
(dashed line). The locations of the profiles are indicated by the ‘X’-arrows in Figs. 3.1-(c)
and (d), respectively. (d) Tangent image profiles corresponding to the use of He (solid line)
and H (dashed line). The locations of the profiles are indicated by the ‘Y’-arrows in Figs.
3.1-(c) and (d), respectively.

in spatial resolution. Additional images reconstructed by use of Hs with regularization

parameters β = 0.5 and β = 1.0 are shown in Figs. 4.8-(c) and (d), respectively. As expected,

increasing β resulted in a decrease in noise level at the expense of spatial resolution. The

root mean square errors of the reconstructed images from the object were calculated within

the region of interest marked by the dashed box in Fig. 4.2, which were 6.28, 7.35, 3.91,

and 5.07 corresponding to the Figs. 4.8-(a) to (d), respectively. Radial and tangent profiles

corresponding to the locations marked ‘X’ and ‘Y’ in Figs. 4.8-(a) and (c), are shown in Fig.

4.9.

The curves of the average variance within the specified region-of-interest versus tangential

or radial resolution measure for the reconstructed images are shown in Fig. 4.10. The same

scanning geometry and acquisition parameters were adopted as described in Section 4.4.3

except that we employed 90 transducers. The left-most point on each curve corresponds

to β = 0. They demonstrate the impact of the regularization parameter β on the tradeoff

between the spatial resolution and variance of the reconstructed images. As predicted by the

eigenanalysis of the Hessian matrices, for β = 0 the reconstruction algorithm that employs

Hs produces images with larger variances than those produced by the algorithm employing

H0. However, the spatial resolution of the images produced by the algorithm employing

Hs is superior to those produced by the algorithm employing H0. When the value of β is
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Figure 4.8: Images reconstructed from the noisy data function ũa by use of (a) H0, β = 0,
(b) Hs, β = 0, (c) Hs, β = 0.5, and (d) Hs, β = 1.0. The noisy data were degraded only by
the SIR.

increased, within the common resolution region of the plot, the curves corresponding to Hs

were lower everywhere than the ones corresponding to H0. This demonstrates that, when

appropriate regularization is employed, an algorithm employing Hs can produce images with

lower noise levels at a matched resolution than can an algorithm employing H0.
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Figure 4.9: (a) Radial image profiles through the noisy images corresponding to the use
of H0, β = 0 (solid line) and Hs, β = 0.5 (dashed line). The locations of the profiles
are indicated by the ‘X’-arrows in Figs. 4.8-(a) and (c), respectively. (b) Tangent profiles
corresponding to the use of H0, β = 0 (solid line) and Hs, β = 0.5 (dashed line). The
locations of the profiles are indicated by the ‘Y’-arrows in Figs. 4.8-(a) and (c), respectively.

4.5.4 Results from Experimental Data

Figure 4.11 from top to bottom displays reconstructed images of the horse hair phantom

corresponding to the planes y = −5.59, −3.85, −0.35, and 2.45-mm. The two columns

correspond to the use of H (left) and He (right), respectively, in the reconstruction algorithm.

All images were shown in the same display window for comparison. We did not compare them

with images reconstructed by use of H0 because the EIR effect distorted the quantitative

values and made them uncomparable in the same grey scale. From Figs. 4.11-(a), (c), (e),

and (g) we observed that the thickness of the reconstructed horse hairs was broadened and

the intensity was faded for the parts further away from the center of measurement geometry.

By use of system matrix H (see the right column), the structural information of the horse

hairs on the peripheral part was preserved. This is consistent with our observations in

the computer-simulation studies. Three dimensional rendered images are shown in Fig.

4.12. Figure 4.12-(a), corresponding to H0, only provided faint structural information while

Figs. 4.12-(b) and (c), corresponding to He and H, revealed better-defined structures.

Figures 4.12-(b) and (c) employed the same grey scale and display window. These images

corrorborate our assertion that compensation for the transducer response in the imaging

model can significantly improve the spatial resolution characteristics of the reconstructed

image. It is likely that errors in the assumed speed of sound and/or errors in the assumed
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Figure 4.10: Variance vs. resolution curves corresponding to use of the system matrices Hs

and H0.

location of the center of the scanning geometry limited the achievable spatial resolution of

the reconstructed images.

4.6 Summary

Because they provide the opportunity for accurate image reconstruction from incomplete

measurement data, iterative reconstruction algorithms for PACT are being developed ac-

tively. Iterative reconstruction algorithms permit utilization of imaging models that can

accurately describe the measurement process. Despite this, many of the reported PACT

image reconstruction algorithms neglect the response of the recording transducer, and rela-

tively little effort in the PACT literature has been devoted towards developing and evaluating

detailed imaging models.

In this work, we developed and evaluated an PACT imaging model that incorporates the

physical response of an ultrasound transducer. This was accomplished by use of the impulse

response method, which is a well-known method for modeling ultrasound transducers using

linear acoustics. The imaging model was utilized in conjunction with an iterative algorithm

to reconstruct images from computer-simulated and experimental PACT measurement data.

These studies confirmed that use of the imaging model in the reconstruction algorithm

could significantly improve the spatial resolution of the reconstructed images as compared

44



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.11: Slices through the 3D images reconstucted from the experimental data set. The
slices are parallel to the x-o-z plane indicated in Fig. 4.4. The images, from top to bottom,
correspond to different locations along y-axis as: (a),(b) y = −5.95 mm, (c),(d) y = −3.85
mm, (e),(f) y = −0.35 mm, and (g),(h) y = 2.45 mm. The left column of images corresponds
to the use of He while the right column corresponds to the use of H.

to those reconstructed assuming a point-like ultrasound transducer. The proposed imaging

model will alleviate the need to utilize small transducers and/or large scanning radii and

may permit construction of more compact imaging systems. Compensation for acoustic

attenuation and heterogeneities in an object’s speed of sound and density may be important

in certain applications of PACT. In principle, they can be incorporated into the framework

of this study. How to construct the system matrix that accounts for more general acoustic

properties of the media remains a topic for future work.
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Figure 4.12: Maximum intensity projection renderings of the experimental phantom image
data reconstructed by use of (a) H0, (b) He and (c) H.
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Chapter 5

Investigation of Iterative Image

Reconstruction in 3D PACT

5.1 Introduction

A variety of analytic image reconstruction algorithms for three-dimensional (3D) photoacous-

tic computed tomography (PACT) have been developed [55, 34, 122, 121]. These algorithms

are of filtered backprojection forms and assume that the underlying model that relates the

object function to measured data is a spherical Radon transform. Analytic image recon-

struction algorithms generally possess several limitations that impair their performance. For

example, analytic algorithms are often based on discretization of a continuous reconstruction

formula and require the measured data to be densely sampled on an aperture that encloses

the object. This is problematic for 3D PACT, in which acquiring densely sampled acoustic

measurements on a two-dimensional (2D) surface can require expensive transducer arrays

and/or long data-acquisition times if a mechanical scanning is employed. Moreover, the sim-

plified forward models, such as the spherical Radon transform, upon which analytic image

reconstruction algorithms are based, do not comprehensively describe the imaging physics or

response of the detection system [105]. Finally, analytic methods ignore measurement noise

and will generally yield images that have suboptimal trade-offs between image variances and

spatial resolution. The use of iterative image reconstruction algorithms [31, 1, 69, 87] can

circumvent all of these shortcomings.

When coupled with suitable PACT imager designs, iterative image reconstruction algorithms

can improve image quality and permit reductions in data-acquistion times as compared with
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those yielded by use of analytic reconstruction algorithms. Because of this, the development

and investigation of iterative image reconstruction algorithms for PACT [84] is an important

research topic of current interest. Recent studies have sought to develop improved discrete

imaging models [127, 28, 17, 105] as well as advanced reconstruction algorithms [89, 37, 108].

The majority of these studies utilize approximate 2D imaging models and measurement ge-

ometries in which focused transducers are employed to suppress out-of-plane acoustic signals

and/or a thin object embedded in an acoustically homogeneous background is employed.

Because image reconstruction of extended objects in PACT is inherently a 3D problem, 2D

image reconstruction approaches may not yield accurate values of the absorbed optical en-

ergy density even when the measurement data are densely sampled. This is due to the fact

that simplified 2D imaging models cannot accurately describe transducer focusing and out-

of-plane acoustic scattering effects; this results in inconsistencies between the imaging model

and the measured data that can result in artifacts and loss of accuracy in the reconstructed

images.

Several 3D PACT imaging systems have been constructed and investigated [52, 28, 15].

These systems employ unfocused ultrasonic transducers and analytic 3D image reconstruc-

tion algorithms. Only limited studies of the use of iterative 3D algorithms for reconstructing

extended objects have been conducted; and these studies employed simple phantom objects

[84, 108, 109, 28]. Moreover, iterative image reconstruction in 3D PACT can be extremely

computationally burdensome, which can require the use of high performance computing plat-

forms. Graphics processing units (GPUs) can now be employed to accelerate 3D iterative

image reconstruction algorithms to the point where they are feasible. However, there remains

an important need for the development of accurate discrete image models and image recon-

struction algorithms for 3D PACT and an investigation of their ability to mitigate different

types of measurement errors found in real-world implementations.

In this chapter, we implement and investigate two 3D iterative image reconstruction methods

for use with a small animal PACT imager. Both reconstruction algorithms compensate

for the ultrasonic transducer responses but employ different regularization strategies. We

compare the different regularization strategies by use of quantitative measures of image

quality. Unlike previous studies, we apply the 3D image reconstruction algorithms not

only to experimental phantom data but also to the data from a whole-body mouse imaging
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experiment. The aim of this study is to demonstrate the feasibility and efficacy of iterative

image reconstruction in 3D PACT and to identify current limitations in its performance.

The remainder of the chapter is organized as follows: In Section 5.2, we establish the nu-

merical imaging model that is employed by the iterative image reconstruction algorithms

and briefly review the three image reconstruction algorithms. Section 5.3 describes the ex-

perimental studies including the data acquisition, implementation details, and approaches

for image quality assessment. The numerical results are presented in Section 5.4, and a

discussion of our findings is presented in Section 5.5.

5.2 Background: Imaging Models and Reconstruction

Algorithms for 3D PACT

Iterative image reconstruction algorithms commonly employ a discrete imaging model that

relates the measured data to an estimate of the sought-after object function. In Section 4.3.1,

we propose a C-D imaging model that incorporates the characteristics of ultrasonic trans-

ducers [105]. A D-D imaging model is constructed to approximate the C-D model in Section

4.3.2. The D-D imaging model was fomulated in time domain while the implementation

was conducted in temporal-frequency domain with the aid of fast Fourier transform (FFT)

algorithm. In order to gain a more straightfoward interpretation of the imaging model, we

reformulate the D-D imaging model in the temporal-frequency domain in Section 5.2.1 for

the case of flat rectangular ultrasonic transducers.

5.2.1 Temporal Frequency-Domain Version of the Discrete Imag-

ing Model

Because a transducer’s EIR he(t) must typically be measured, it generally cannot be de-

scribed by a simple analytic expression. Accordingly, the two temporal convolutions in Eqn.

(4.17) must be approximated by use of discrete time convolution operations. However, both

p0(t) and hs
q(rn, t) are very narrow functions of time, and therefore temporal sampling can

result in strong aliasing artifacts unless very high sampling rates are employed. As described
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below, to circumvent this we reformulated the D-D imaging model in the temporal frequency

domain.

We introduce a function uq(t) to represent the pre-sampled electric voltage signal corre-

sponding to location index q. By use of uq(t), the C-D imaging model Eqn. (4.4) can be

rewritten as

[u]qK+k = uq(t)
∣

∣

∣

t=k∆t

= he(t) ∗t
1

Sq

∫

Sq

drs p(rs, t)
∣

∣

∣

t=k∆t

. (5.1)

In the temporal-frequency domain, Eqn. (5.1) can be expressed as

ũa
q(f) = p̃0(f)h̃e(f)

1

Sq

N−1
∑

n=0

[

α
]

n
h̃s

q(rn, f), (5.2)

where f is the temporal frequency variable conjugate to t and a ‘ ˜ ’ above a function denotes

the Fourier transform of that function defined as:

x̃(f) =

∫ ∞

−∞

dt x(t) exp(−̂2πft). (5.3)

For f 6= 0, the temporal Fourier transform of p0(t) is given by

p̃0(f) = −̂ βc
3
0

Cpf

[

∆s

2c0
cos
(πf∆s

c0

)

− 1

2πf
sin
(πf∆s

c0

)

]

. (5.4)

When the transducer has a flat and rectangular detecting surface of area a × b, under the

far-field assumption, the temporal Fourier transform of the SIR is given by [97]:

h̃s
q(rn, f) =

ab exp(−̂ 2πf |rs
q−rn|

c0
)

2π|rs
q − rn|

sinc
(

πf
axtr

nq

c0|rs
q − rn|

)

sinc
(

πf
bytr

nq

c0|rs
q − rn|

)

, (5.5)

where xtr
nq and ytr

nq specify the transverse coordinates in a local coordinate system that is

centered at the q-th transducer, as depicted in Fig. 5.1, corresponding to the location of a

point source described by a 3D Dirac delta function. The SIR does not depend on the third

coordinate (ztr) specifying the point-source location due to the far-field assumption. Given

the voxel location rn = (xn, yn, zn) and transducer location rs
q = (rs

q, θ
s
q , φ

s
q), expressed in

spherical coordinates as shown in Fig. 5.1, the corresponding values of the local coordinates
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can be computed as:

xtr
nq = −xn cos θs

q cosφs
q − yn cos θs

q sinφs
q + zn sin θs

q , (5.6a)

ytr
nq = −xn sinφs

q + yn cosφs
q. (5.6b)
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Figure 5.1: Schematic of the local coordinate system for the q-th transducer where the ztr-
axis points to the origin of the global coordinate system, the xtr and ytr-axes are along the
two edges of the rectangular transducer respectivley.

Equation (5.2) can be discretized by considering L temporal frequency samples specified by

a sampling interval ∆f that are referenced by the index l = 0, 1, · · · , L − 1. Utilizing the

notation [ũa]qL+l = ũa
q(f)

∣

∣

f=l∆t
yields the D-D imaging model:

ũa = Hα, (5.7)

where H is the system matrix of dimension QL×N , whose elements are defined by

[

H
]

qL+l,n
= p̃0(f)h̃e(f)

h̃s
q(rn, f)

ab

∣

∣

∣

f=l∆f

. (5.8)

The imaging model in Eqn. (5.7) will form the basis for the iterative image reconstruction

studies described in the remainder of the chapter.
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5.2.2 Reconstruction Algorithms

We investigated a 3D filtered backprojection algorithm (FBP) and two iterative reconstruc-

tion algorithms that employed different forms of regularization.

Filtered Backprojection: A variety of FBP type PACT image reconstruction algorithms

have been developed based on the continuous imaging model described by Eqn. (2.1) [55,

34, 122, 121]. If sampling effects are not considered and a closed measurement surface

is employed, these algorithms provide a mathematically exact mapping from the acoustic

pressure function p(rs, t) to the obsorbed energy density function A(r). Since we only have

direct access to electric signals in practice, in order to apply FBP algorithms, we need to

first estimate the sampled values of the acoustic pressure data from the measured electric

signals. In this study, we considered a spherical scanning geometry. For a large scanning

radius, when the object is near the center of the measurement sphere, the surface integral

over Sq in Eqn. (5.1), i.e., SIR effect, is negligible. The remaining EIR effect is described

by a temporal convolution. We employed linear regularized Fourier deconvolution [51] to

estimate the pressure data, expressed in temporal frequency domain as:

p̃(rs, f) =
ũ(rs, f)

h̃e(f)
W̃ (f), (5.9)

where W̃ (f) is a window function for noise suppression. In this study, we adopted the Hann

window function defined as:

W̃ (f) =
1

2

[

1− cos(π
fc − f
fc

)
]

, (5.10)

where fc is the cutoff frequency. We implemented the following FBP reconstruction formula

for a spherical measurement geometry [34]:

A(r) = − Cp

2πβc20R
s

∫

S

drs 2p(rs, t) + t ∂
∂t
p(rs, t)

|r− rs|

∣

∣

∣

∣

∣

t= |r−r
s|

c0

, (5.11)
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where Rs and S denote the radius and surface area of the measurement sphere respectively.

Note that the value of the cutoff frequency fc controls the degree of noise suppression during

the deconvolution, thus indirectly regularizing the FBP algorithm.

Penalized Least-Squares objective with Quadratic Penalty: We employed the least-

squares objective regularized by a quadratic penalty. The optimization problem is formulated

as

α̂ = arg min
α

‖ũ−Hα‖2 + γR(α), (5.12)

where the regularizing penaltyR(α) promotes local smoothness whose impact is controlled by

the regularization parameter γ. We employed a conventional quadratic smoothness Laplacian

penalty given by [31]:

R(α) =
N−1
∑

n=0

{

(

2[α]n − [α]kx1
− [α]kx2

)2

+
(

2[α]n − [α]ky1
− [α]ky2

)2

+
(

2[α]n − [α]kz1
− [α]kz2

)2
}

,

(5.13)

where kx1
and kx2

were the indices of the two neighbor voxels before and after the n-th voxel

along x-axis. Similarly, ky1
, ky2

and kz1
, kz2

were the indices of the neighbor voxels along

y- and z-axis respectively. The optimization algorithm for solving Eqn. (5.12) was based on

the linear conjugate gradient (CG) method [69, 96, 33], and will be referred to as the PLS-Q

algorithm.

Penalized Least-Squares objective with Total Variation Norm Penalty: We also

investigated the least-squares objective regularized by a TV-norm penalty. The optimization

problem is formulated as:

α̂ = arg min
α≥0
‖ũ−Hα‖2 + β|α|TV, (5.14)
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where β is the regularization parameter, and a non-negativity constraint is employed. The

TV-norm is defined as

|α|TV =
N−1
∑

n=0

√

(

[α]n − [α]kx1

)2

+
(

[α]n − [α]ky1

)2

+
(

[α]n − [α]kz1

)2

. (5.15)

We implemented the fast iterative shrinkage/thresholding algorithm (FISTA) to solve Eqn.

(5.14) [10], which will be referred to as PLS-TV algorithm. Implementation of the FISTA

algorithm is described in Appendix B.

5.3 Descriptions of Numerical Studies

5.3.1 Experimental Data Acquisition

Scanning Geometry: The experimental data employed in our studies were acquired by

TomoWave Laboratories, Houston, TX. The small animal PACT imager has been described

in previous publications [29, 14, 15]. As illustrated in Fig. 5.2-(a), the arc-shaped probe

consisted of 64 transducers that spanned 152◦ over a circle of radius 65-mm. Each transducer

possessed a square detecting area of size 2 × 2-mm2. The laser illuminated the object

from rectangular illumination bars in orthogonal mode. During scanning, the object was

mounted on the object holder and rotated over the full 360◦ while the probe and light

illumination stayed stationary. Scans were set to sample at 20-MHz over 1536 samples with

an amplification of 60-dB and 64 averages per acquisition.

Six-tube Phantom: A physical phantom was created that contained three pairs of poly-

tetrafluoroethylene thin walled tubing of 0.81-mm in diameter that were filled with different

concentrations of nickel sulfate solution having absorption coefficient values of 5.681-cm−1,

6.18-cm−1, and 6.555-cm−1. The tubes were held within a frame of two acrylic discs of 1”

diameter that were separated at a height of 3.25” and kept attached by three garolite rods

symmetrically spaced 120◦ apart. The tubing was such that each pair would contain a tube

that would follow along the outside of the phantom and the second would be diagonally

inside. A photograph of the phantom is shown in Fig. 5.2-(b). The entire phantom was
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Figure 5.2: (a) Schematic of the 3D PACT scanning geometry; (b) Photograph of the six-tube
phantom.

encased inside a thin latex membrane that was filled with skim milk to create an optically

scattering medium. A titanium sapphire laser with a peak at 765-nm and a pulse width of

16-ns (Quanta Systems) were employed to irradiate the phantom. The temperature of the

water bath was kept at approximately 29.5◦C with a water pump and heater. A complete

tomographic data set was acquired by rotating the object about 360◦ in 0.5◦ steps. Accord-

ingly, data were recorded by each transducer on the probe at 720 tomographic view angles

about the vertical axis.

Whole-Body Mouse Imaging: A 6 to 7 week old athymic Nude-Foxn1nu live mouse

(Harlan, Indianapolis, Indiana) was imaged with a similar setup to the phantom scan with

a customized holder that provided air to the mouse when it was submerged in water. The

holder was essentially comprised of three parts: 1) a hollow acrylic cylinder for breathing,

2) an acrylic disc with hole for mouse tail and an apparatus to attach the legs, and 3)

pre-tensioned fiber glass rods to connect the two acrylic pieces. The mouse was given pure

oxygen with a flow rate of 2-L/min with an additional 2% isoflurane concentration for initial

anesthesia. During scanning the isoflurane was lowered to be around 1.5%. The temperature

of water was held constant at 34.7◦C with the use of a PID temperature controller connected

to heat pads (Watlow Inc., Columbia, MO) underneath the water tank. A bifurcated optical
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fiber was attached to a ND:YAG laser (Brilliant, Quantel, Bozeman, MT) operating at 1064-

nm wavelength with a energy pulse of about 100-mJ during scans and a pulse duration of

15-ns. The optical fiber outputs were circular beams of approximately 8-cm at the target

with an estimated 25-mJ directly out of each fiber. Illumination was done in orthogonal

mode along the sides of the water tank with in width of 16”. A complete tomographic

data set was acquired by rotating the object about 360◦ in 2◦ steps. Accordingly, data were

recorded by each transducer on the probe at 180 tomographic view angles about the vertical

axis. More details regarding the data acquisition procedure can be found in [14, 15].

5.3.2 Implementation of Reconstruction Algorithms

Six-Tube Phantom: The region to-be-reconstructed was of size 19.8×19.8×50.0-mm3 and

centered at (−1.0, 0,−3.0)-mm. The FBP algorithm was employed to determine estimates of

A(r) that were sampled on a 3D Cartesian grid with spacing 0.1-mm by use of a discretized

form of Eqn. (5.11). The iterative reconstruction algorithms employed spherical voxels of 0.1-

mm in diameter inscribed in the cuboids of the Cartesian grid. Accordingly, the reconstructed

image matrices for all three algorithms were of size 198 × 198 × 500. The speed-of-sound

was set at c0 = 1.47-mm/µs. We selected the Grüneisen coefficient as Γ = βc2/Cp = 2, 000

of arbitrary units for all implementations. Since the top and bottom transducers received

mainly noise for elongated structures that were aligned along z-axis, we utilized only the

data that were acquired by the central 54 transducers.

Whole-Body Mouse Imaging: The region to-be-reconstructed was of size 29.4× 29.4×
61.6-mm3 and centered at (0.49, 2.17,−2.73)-mm. The FBP algorithm was employed to

determine estimates of A(r) that were sampled on a 3D Cartesian grid with spacing 0.14-

mm by use of Eqn. (5.11). The iterative reconstruction algorithms adopted spherical voxels

of 0.14-mm in diameter inscribed in the cuboids of the Cartesian grid. Accordingly, the

reconstructed image matrices for all three algorithms were of size 210 × 210 × 440. The

speed-of-sound was chosen as c0 = 1.54-mm/µs. We selected the Grüneisen coefficient as

Γ = βc2/Cp = 2, 000 of arbitrary units for all implementations. We utilized only the data

that were acquired by the central 54 transducers.
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Parallel Programming by CUDA GPU Computing: Three-dimensional iterative im-

age reconstruction is computationally burdensome in general. It demands even more compu-

tation when utilizing the system matrix defined by Eqn. (5.8), as opposed to the conventional

spherical Radon transform model, mainly because the former accumulates contributions from

more voxels to compute a single data sample. In addition, calculation of the SIR defined by

Eqn. (5.5) introduces extra computation. It can take weeks to accomplish a single iteration

by sequential programming using a single CPU, which is infeasible for practical applications.

Because the calculation of SIR for each pair of transducer and voxel is mutually indepen-

dent, we parallelized the SIR calculation by use of GPU computing with CUDA [98, 20]

such that multiple SIR samples were computed simultaneously, dramatically reducing the

computational time. The six-tube phantom data were processed by use of 3 NVIDIA Tesla

C2050 GPU cards, taking 4.52-hours for one iteration from the data set containing 144 to-

mographic views, while the mouse-imaging data were processed by use of 6 NVIDIA Tesla

C1060 GPU cards, taking 5.73-hours for one iteration from the data set containing 180 tomo-

graphic views. Though for testing we let the reconstruction algorithms iterate for over 100

iterations, both PLS-Q and PLS-TV usually converged within 20 iterations. More details

regarding the GPU-based implementations are provided in Chapter 6.

5.3.3 Image Quality Assessment

Visual Inspection: We examined both the 3D images and 2D sectional images. To avoid

misinterpretations due to display colormap, we compared grayscale images. Also, for each

comparison, we varied the grayscale window to ensure the observations are minimally de-

pendent on the display methods. For each algorithm we reconstructed a series of images

corresponding to different values of regularization parameter over a wide range. To under-

stand how image intensities are affected by the choice of regularization parameter, each 2D

sectional image was displayed in the grayscale window that spanned from the minimum to

the maximum of the determined image intensities.

It is more challenging to fairly compare 3D images by visual inspection. Hence we intended

not to draw conclusions on which algorithm was superior, but instead to reveal the similar-

ities among algorithms when data were densely sampled. Although for each reconstruction

algorithm we reconstructed a series of images corresponding to the values of regularization
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parameter over a wide range, the main structures within the images appeared very similar

in general. Thus we selected a representitive 3D image for each reconstruction algorithms.

These representative images correspond to the regularization parameters whose values were

near the center of the full ranges and have a very close range of image intensities. We

displayed these images in the same grayscale window. For a prechosen grayscale window

[αlow, αup], the reconstructed images were truncated as:

[αdisp]n =











αlow, if [α]n < αlow

αup, if [α]n > αup

[α]n, otherwise.

(5.16)

The truncated data were linearly projected to the range [0, 255] as 8-bit unsigned integers:

[αint8]n = round
(

− 255

αup − αlow
([αdisp]n − αlow)

)

. (5.17)

The 3D image data αint8 were visualized by computing maximum intensity projection (MIP)

images by use of the Osirix software [93].

Quantitative Metrics: Because the six-tube phantom contained nickel sulfate solution

as the only optical absorber, the tubes were interpreted as signals in the reconstructed

images, which were contaminated by random noise, e.g., the electronic noise. Since the tubes

were immersed in nearly pure scattering media, the reconstructed images were expected

to have zero-mean background. In contrary, the whole-body mouse imaging possessed a

nonzero-mean background because the absorbing capillaries within blood-rich structures were

beyond the 0.5-mm resolution limit [15] of the imaging system, resulting a diffuse background.

Consequently, we interpreted the arteries and veins as signals, which were immersed in

nonzero-mean background plus random noise.

Image Resolution: Because both the tubes and blood vessels were fine threadlike objects, we

quantified the spatial resolution by their thickness. To estimate the thickness of a threadlike

object lying along z-axis at certain height, we first selected the 2D sectional image at that

height. Subsequently, we truncated the 2D image into dimension of (2Nr + 1)-by-(2Nr + 1)

pixels; and adjusted the location of the truncated image such that only a continuous group

of pixels corresponding to the structure of interest, or hot spot, was present at the center.
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We then fitted the 2D sectional image to a 2D Gaussian function given by:

G[n1, n2] = G[0, 0] exp(−n
2
1 + n2

2

2σ2
r

), (5.18)

where n1 and n2 denoted the indices of pixels in the 2D digital image with n1, n2 =

−Nr,−Nr + 1, · · · , Nr in units of pixel size, G[0, 0] was the peak value of the Gaussian

function located in the center, and σr was the standard deviation of the Gaussian function

to be estimated. We let Nr = 15 and Nr = 10 for the six-tube phantom and the mouse

imaging respectively. Finally, the estimated σr was converted to full width at half maximum

(FWHM) as the spatial resolution measure, i.e.,

FWHM = 2
√

2 ln 2σr. (5.19)

Contrast-to-noise ratio (CNR): For a prechosen structure, a series of adjacent 2D sectional

images were selected along the structure (i.e, along z-axis) as described above. We collected

the central voxel of each 2D image, forming the signal region-of-interest (s-ROI). The signal

intensity was calculated as:

ᾱs =
1

N s

Ns−1
∑

n=0

[αs]n, (5.20)

where N s denoted the total number of voxels within the s-ROI. For the six-tube phantom,

the s-ROI for each tube contained N s = 200 voxels that extended from z = −10.4-mm

to z = 9.6-mm, while for the mouse-imaging study, the s-ROI for the vessel under study

contained N s = 20 voxels that extended from z = 7.0-mm to z = 9.8-mm. For each s-ROI,

we defined a background region-of-interest (b-ROI) that has the same dimension along z-

axis as the s-ROI. For the six-tube phantom, we randomly selected 50 voxels at every height

that were within a circle of radius 5-mm centered at the hot spot of the signal. Similarly,

for the mouse-imaging study, we randomly selected 15 voxels at every height that were

within a circle of radius 2.1-mm centered at the hot spot of the signal. Correspondingly,

the b-ROI contained N b = 10, 000 and N b = 300 voxels for the six-tube phantom and the

mouse-imaging study, respectively. The background intensity was calculated by:

ᾱb =
1

N b

Nb−1
∑

n=0

[αb]n. (5.21)
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Also, the background standard deviation was calculated by:

σb =

√

√

√

√

1

N b − 1

Nb−1
∑

n=0

(

[αb]n − ᾱb
)2

. (5.22)

Because the reconstructed image is not a realization of an ergodic random process, the value

of σb estimated from a single reconstructed image is not equivalent to the standard deviation

of the ensemble of images reconstructed by use of a certain reconstruction algorithm. Never-

theless, the σb can be employed as a summary measure of the noise level in the reconstructed

images. Consequently, the contrast-to-noise ratio (CNR) was calculated by:

CNR =
|ᾱs − ᾱb|

σb

. (5.23)

Plot of resolution against standard deviation: All three reconstruction algorithms possess

regularization parameters that control the trade-offs among multiple aspects of image quality.

A plot of resolution against standard deviation evaluates how much spatial resolution is

degraded by a regularization method during its noise suppression. To obtain this plot for

each reconstruction algorithm, we swept the value of the regularization parameter. For each

value, we reconstructed 3D images and quantified the spatial resolution and noise level by use

of Eqns. (5.19) and (5.22) respectively. The FWHM values calculated along the structure

of interest were averaged as a summary measure of resolution, denoted by FWHM. The

average was conducted over 20-mm and 2.8-mm for the six-tube phantom and the mouse

imaging respectively. The FWHM was plotted against the standard deviation (σb).

Plot of signal intensity against standard deviation: In addition to the trade-off between res-

olution and standard deviation, regularization parameters also control the trade-off between

bias and standard deviation. In general, stronger regularization may introduce higher bias

while more effectiviely reducing the variance of the reconstructed image. Because the true

values of absorbed energy density were unavailable, we plotted the signal intensity against

the image standard variation that were calculated by use of Eqns. (5.20) and (5.22). From

this plot, we compared the noise level of the reconstructed images with comparable image

intensities and hence with comparable biases.
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5.4 Experimental Results

The data for the six-tube phantom and whole-body mouse imaging were collected at 720 and

180 view angles respectively, and will be referred to as ‘full’ data sets. In order to emulate

the scans with reduced numbers of views, we undersampled the ‘full’ data sets to subsets

with different numbers of view angles that were evenly distributed over 2π. These subsets

will be referred to as ‘N -view data’ sets, where N is the number of view angles.

5.4.1 Six-Tube Phantom

Visual Inspection of Reconstructed Images from Densely-Sampled Data Sets:

From densely-sampled data sets, the MIP images corresponding to the FBP and the PLS-

TV algorithms appear to be very similar as shown in Fig. 5.3. Note that the two images

were reconstructed from different data sets: The image reconstructed by use of the FBP

algorithm is from the full data set, i.e., the 720-view data set, while the one reconstructed

by use of the PLS-TV algorithm is from the 144-view data set. We did not apply iterative

reconstruction algorithms to the 720-view data set mainly because of the computational

burden. Moreover, the images reconstructed from the 144-view data set by use of the PLS-

TV algorithm already appear to be at least comparable with those reconstructed by use of

the FBP algorithm from full data set. Certain features are shared by both images. For

example, both images contain two tubes (indicated by white arrows) that are brighter than

the others, which is consistent with the fact that these two tubes are filled with the solution

of higher absorption coefficient (µa = 6.555-cm−1). The similarities between the two images

are not surprising for two reasons: Firstly, when the pressure function is densely sampled

and the object is near the center of the measurement sphere, where the SIR can be neglected,

we would expect all three algorithms to perform similarly because the imaging models they

are based upon are equivalent in the continuous limit; Also the process of forming the MIP

images strongly attenuates the background artifacts.

However, 2D sections of the 3D images reveal cerrtain favorable characteristics of the PLS-

TV algorithm, as shown in Fig. 5.4. Though we varied the cutoff frequency fc over a wide

range for the FBP algorithm, none of these images has background as clean as the image
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(a) (b)

Figure 5.3: MIP renderings of the six-tube phantom images reconstructed (a) from the 720-
view data by use of the FBP algorithm with fc = 6-MHz; and (b) from the 144-view data
by use of the PLS-TV algorithm with λ = 0.1. The grayscale window is [0,7.0]. Two arrows
indicate the two tubes that were filled with the solution of the highest absorption coefficient
6.555-cm−1.

reconstructed by the PLS-TV algorithm. We notice two types of artifacts in the images

reconstructed by use of the FBP algorithm: the random noise and the radial streaks centered

at the tubes. The former is caused by measurement noise while the latter is likely due to

certain unmodeled system inconsistencies that are referred to as systematic artifacts and will

be addressed in Section 5.5. The regularizing low-pass filter mitigates the random noise but

also degrades the spatial resolution (Fig. 5.4-b-e). The TV-norm regularization mitigates the

background artifacts with minimal sacrifice in spatial resolution. The image reconstructed

by use of the PLS-TV algorithm shown in Fig. 5.4-(f) has at least comparable resolution as

that of the FBP image with fc = 6-MHz (Fig. 5.4-c).

Qualitative Comparison of Regularization Methods: The three reconstruction al-

gorithms are regularized by use of the low-pass filter, the ℓ2-norm smoothness penalty and

the TV-norm penalty, respectively. The impacts of the low-pass filter are revealed in Fig.

5.4. We observe that a slight regularization (i.e., a large value of fc) results in sharp but

noisy images while a heavy regularization (i.e., a small value of fc) produces clean but blurry

images. Also, the intensities of the tubes are lower for a smaller value of fc. Similar effects
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are observed for the PLS-Q algorithm with the ℓ2-norm smoothness penalty as shown in

Fig. 5.6. These observations agree with the conventional understandings of the impacts of

regularization summarized as two trade-offs: resolution versus variance and bias versus vari-

ance [31]. The TV-norm regularization, however, mitigates the image variance with minimal

sacrifice in image resolution as shown in Fig. 5.5. Though the signal intensity is reduced at

β = 0.1 (Fig. 5.5-c and -f), the spatial resolution appears to be very close to that of the im-

ages corresponding to smaller values of β (Fig. 5.5-a and -d). In addition, both the low-pass

filter and the ℓ2-norm penalty have little effects on the systematic artifacts while the TV

algorithm effectively mitigates both the systematic artifacts and the random measurement

noise.

Tradeoff Between Signal Intensity and Noise Level of Reconstructed Images:

The image intensities in tube-A are plotted as a function of z, as shown in Fig. 5.7 where

the location of tube-A is indicated in the 2D image slices as shown in Figs. 5.4 and 5.5. The

profiles corresponding to the FBP algorithm were extracted from images reconstructed from

the 720-view data set while the profiles corresponding to iterative algorithms were extracted

from images reconstructed from the 144-view data set. For each reconstruction algorithm,

two profiles are plotted that correspond to moderate and strong regularization as displayed

in Fig. 5.7-(a) and (b) respectively. As expected, the quantitative values are smaller when

the algorithms are heavily regularized. More importantly, images reconstructed by use of

iterative image reconstruction algorithms quantitatively match with those reconstructed by

use of FBP algorithm from densely sampled data. In addition, the signal intensities vary

gradually along z-axis because the laser was illuminated from the side resulting a higher

energy distribution near the center of z-axis. These plots demonstrate the effectiveness of

PLS-TV algorithm when the object is not piecewise constant.

From the same data sets, the signal intensities are plotted against the image standard devia-

tions in Fig. 5.8-(a). This plot suggests that the images reconstructed by use of the PLS-TV

algorithm have smaller standard deviation while sharing the same bias as those of images

reconstructed by use of the FBP and the PLS-Q algorithms because the same signal inten-

sity indicates the same bias. Note that these curves were obtained from densely sampled

data. Visual inspections suggest the systematic artifacts contribute more to the background

standard deviation measure than does the measurement random noise. Hence, to be more
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precise, this plot demonstrates the PLS-TV algorithm outperforms the FBP and the PLS-Q

algorithms in the sense of balancing the tradeoff between bias and standard deviation when

the signal is present in a uniform background.

Tradeoff Between Resolution and Noise Level of Reconstructed Images: The

plots of resolution (FWHM) against background standard deviation measure (σb) are shown

in Fig. 5.8-(b). Clearly, the spatial resolution of the images reconstructed by use of the PLS-

TV algorithm is higher than that of the images reconstructed by the FBP and the PLS-Q

algorithms while the images having the same background standard deviation. In addition, the

curve corresponding to the PLS-TV algorithm is flatter than those corresponding to the FBP

and PLS-Q algorithm, suggesting that TV regularization mitigates image noise with minimal

sacrifice in spatial resolution. This observation is consistent with our earlier visual inspections

of the reconstructed images. It is also interesting to note that the curve corresponding to

the PLS-Q algorithm intersects the one corresponding to the FBP algorithm, indicating

that conventional iterative reconstruction algorithms may not always outperform the FBP

algorithm.

Reconstructed Images from Sparsely-Sampled Data Sets: Images reconstructed

from the 72-view data set and the 36-view data set are displayed in Figs. 5.9 and 5.10 re-

spectively. The regularization parameters were selected such that the quantitative values

of the images are within the similar range. As expected, from both data sets, the images

reconstructed by use of PLS-TV algorithm appear to have higher spatial resolution as well

as cleaner backgrounds, suggesting the PLS-TV algorithm can effectively mitigate data in-

completeness in 3D PACT.

5.4.2 Whole-Body Mouse Imaging

Visual Inspection of Reconstructed Images from Densely-Sampled Data Sets:

From the 180-view data set, the MIP images corresponding to the FBP and the PLS-TV

algorithms appear to be very similar as shown in Fig. 6.7. In contrast to the images of

the six-tube phantom that have a uniform background, the whole-body mouse images have
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a diffuse background. The diffuse background is due to the measurement random noise

as well as the capillaries that are beyond the resolution limit of the imaging system [15],

thus carrying little information regarding the object. In general, the images reconstructed

by the PLS-TV algorithm appear to have a cleaner background while revealing a sharper

appearing body vascular tree. Besides, the left kidney in the images reconstructed by use of

the PLS-TV algorithm appears to have a higher contrast than the image reconstructed by

use of the FBP algorithm. In addition, comparing with the images reconstructed by use of

direct backprojection from the raw data, (see figure 6 in [14]), both our algorithms appear to

improve the continuity of blood vessels. We believe this is because our algorithms are based

on an imaging model that incorporates the transducer SIR and EIR.

Additional details are revealed in the 2D sectional images as shown in Figs. 5.12 and 5.13.

Obviously, the contrast of the blood vessels in the images reconstructed by use of the PLS-TV

algorithm are higher than those reconstructed by use of the FBP algorithm. In particular,

the PLS-TV algorithm significantly enhanced the appearance of peripheral blood vessels. For

example, within the ROI A in Fig. 5.12, two blood vessels B and C can be detected easily

as two bright spots in zoomed-in image A. However, the two bright spots have much lower

visual contrast in the images reconstructed by use the FBP algorithm. In addition, as shown

in Fig. 5.13, the PLS-TV algorithm effectively mitigates the foggy background as well as

noise with minimal sacrifice in image resolution. However, none of the images reconstructed

by use the FBP algorithm has a background as clean as the images reconstructed by the

PLS-TV algorithm.

Qualitative Comparison of Regularization Methods: Figures. 5.12 and 5.13 demon-

strate how the low-pass filter regularizes the FBP algorithm. Similar to the observations

from the six-tube phantom, a large value of fc results in high spatial resolution, large signal

intensities, and high noise level. For the PLS-TV algorithm, besides the image corresponding

to β = 0.05 shown in Fig. 5.12-(d), images corresponding to β = 0.01 and β = 0.1 are dis-

played in Fig. 5.14. Though the TV regularization also suppresses the background variance

as well as the signal intensities when the regularization is enhanced, the TV regularization

results in minimal sacrifice in spatial resolution.
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Trade-Off Between Signal Intensity and Noise Level of Reconstructed Images:

The s-ROI is defined to be voxels within a blood vessel that extends from z = −9.87-mm

to z = −7.07-mm, including 20 voxels. At the plane of z = −8.74-mm, the blood vessel is

centered at the white dashed box D shown in Fig. 5.14-(a). The signal intensities are plotted

against the image standard deviations in Fig. 5.15-(a). This plot indicates that the signal

intensity in the images reconstructed by use of the PLS-TV algorithm is lower than that of

the FBP algorithm. This reveals that the PLS-TV algorithm can introduce image biases to

achieve the same level of noise suppression. This observation is different than the previous

observations from the six-tube phantom, perhaps because the PLS-TV algorithm somehow

promotes discontinuities in the diffuse background. Nevertheless, the CNR’s of the images

reconstructed by use of the PLS-TV algorithm are higher than those of the FBP algorithms

for the regularization parameters spanning a wide range as shown in Fig. 5.15-(b).

Trade-Off Between Image Resolution and Noise Level of Reconstructed Images:

The plots of resolution against background standard deviation are shown in Fig. 5.16. Similar

to our observations from the six-tube phantom imaging, the spatial resolution of the images

reconstructed by use of the PLS-TV algorithm is higher than that of the images reconstructed

by use of the FBP algorithm when the images have the same background standard deviation.

Also, the curve corresponding to the PLS-TV algorithm is flatter than that of the FBP

algorithm, confirming that the TV regularization mitigates image noise with minimal sacrifice

in spatial resolution.

Reconstructed Images from Sparsely-Sampled Data Sets: Figures 5.17 and 5.18

show sectional images at different locations. Each figure contains subfigures reconstructed

by use of the FBP and the PLS-TV algorithms from the 90-view data set and the 45-view

data set. The observations are in general consistent with those corresponding to densely-

sampled data sets; namely the images reconstructed by use of the PLS-TV algorithm appear

to have higher spatial resolution, higher contrast, and cleaner backgrounds.
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5.5 Discussion and Summary

In this study, we investigated two iterative imaging reconstruction algorithms for 3D PACT:

the penalized least-squares (PLS) with a quadratic smoothness penalty (PLS-Q) and the

PLS with a TV-norm penalty (PLS-TV). To our knowledge, this was the first systematic

investigation of 3D iterative image reconstruction for PACT animal imaging. Our results

demonstrated the feasibility and advantages of 3D iterative image reconstruction algorithms

for PACT. Specifically, the PLS-TV algorithm overall outperforms the FBP algorithm pro-

posed by Finch et al. and the conventional iterative image reconstruction algorithm (e.g.,

PLS-Q) for reconstruction from incomplete data. Although not reported here, we observed

this result to also hold true when other mathematically equivalent FBP algorithms were

employed [122].

In PACT, the majority of studies of advanced image reconstruction algorithms have been

based on 2D imaging models [37, 89, 17, 126]. For a 2D imaging model to be valid in

practice, it is necessary to assume the focused transducers only receive in-plane acoustic

signals. The accuracy of this assumption is still under investigation [92]. However, it is

interesting to note that none of these studies compared the performances of 2D analytic

reconstruction algorithms with those of the iterative algorithms, although the 2D analytic

reconstruction algorithms have been proposed and proved to be mathematically exact [35,

26]. In this work, our studies are based on a 3D imaging model that incorporates ultrasonic

transducer characteristics [105], avoiding heuristic assumptions regarding the transducer

response. Although the FBP algorithm neglects the SIR effect, when the region-of-interest

is close to the center of the measurement sphere, the images reconstructed by use of the

FBP algorithm from densely-sampled data provide an accurate reference image that permits

quantitative evaluation of images reconstructed by use of the PLS-Q and PLS-TV algorithms

when data are incomplete. On the other hand, from densely-sampled data, the images

reconstructed by use of different algorithms are quantitatively consistent, further validating

our 3D imaging model.

The TV-norm regularization penalty has been intensively investigated within the context

of mature imaging modalities including X-ray computed tomography (CT) [87, 39]. In a

study of X-ray CT, the TV-norm regularized iterative reconstruction algorithm has been

demonstrated to achieve the same image quality as those reconstructed by use of analytic
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reconstruction algorithms, while reducing the amount of data required to one sixth of that

the latter requires [39, 12]. However, our images reconstructed from sparsely-sampled data

sets by use of the PLS-TV algorithm contain clear differences from those reconstructed from

densely-sampled data by use of the FBP algorithm. Moreover, from densely-sampled data,

the images reconstructed by use of the PLS-TV algorithm also appear to be different from

those reconstructed by use of the FBP algorithm. Note the streaklike artifacts in the six-

tube phantom images reconstructed by use of the FBP algorithm in Fig. 5.4, which remain

visible even when the number of tomographic views is increased to 720. These artifacts

are likely due to the inconsistencies between the measured data and the numerical imaging

model. Such inconsistencies can be caused by unmodeled heterogeneities in the medium

[43, 42, 95], errors in the assumed transducer response, and uncharacterized noise sources

[123, 124]. These inconsistencies can prevent PACT reconstruction algorithms from working

as effectively as their counterparts in mature imaging modalities such as X-ray CT that are

well-characterized.

There remain several important topics for future studies that may further improve image

quality in 3D PACT. Such topics include the development and investigation of more accurate

imaging models that model the effects of acoustic heterogeneities and attenuation. Also, in

this study, we employed an unweighted least-squares data fidelity term, which is equivalent

to the maximum likelihood estimator assuming that the randomness in the measured data

is due to additive Gaussian white noise [69]. However, additive Gaussian white noise may

not be a good approximation in practice [99]. Identification of the noise sources and char-

acterization of their second order statistical properties will facilitate iterative reconstruction

algorithms that may optimally reduce noise levels in the reconstructed images. Even though

our reconstruction algorithms were implemented using GPUs, the reconstruction time were

still on the order of hours, which is undesirable for future clinical imaging applications of

3D PACT. Therefore there remains a need for the development of accelerated reconstruction

algorithms and their evaluation for specific diagnostic tasks.
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Figure 5.4: Slices corresponding to the plane z = −2.0-mm through the 3D images of the
six-tube phantom reconstructed from (a) the 720-view data by use of the FBP algorithm
with fc = 10-MHz; (b) the 720-view data by use of the FBP algorithm with fc = 8-MHz;
(c) the 720-view data by use of the FBP algorithm with fc = 6-MHz; (d) the 720-view data
by use of the FBP algorithm with fc = 4-MHz; (e) the 720-view data by use of the FBP
algorithm with fc = 2-MHz; and (f) the 144-view data by use of the PLS-TV algorithm with
β = 0.1. All images are of size 19.8× 19.8-mm2. The ranges of the grayscale windows were
determined by the minimum and the maximum values in each image.

69



  0    9.1

A

(a)

 

 

  0    7.2

(b)

 

 

  0    5.9

(c)

  0    8.9

A

(d)

 

 

  0    7.6

(e)

 

 

  0    6.0

(f)

Figure 5.5: Slices corresponding to the plane z = −6.0-mm (top row: a-c) and the plane z =
4.5-mm (bottom row: d-f) through the 3D images of the six-tube phantom reconstructed from
the 144-view data by use of the PLS-TV algorithm with varying regularization parameter
β: (a), (d) β = 0.001; (b), (e) β = 0.05; and (c), (f) β = 0.1; All images are of size
19.8 × 19.8-mm2. The ranges of the grayscale windows were determined by the minimum
and the maximum values in each image.
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Figure 5.6: Slices corresponding to the plane z = −6.0-mm (top row: a-c) and the plane
z = 4.5-mm (bottom row: d-f) through the 3D images of the six-tube phantom reconstructed
from the 144-view data by use of the PLS-Q algorithm with varying regularization parameter
γ: (a), (d) γ = 0; (b), (e) γ = 1.0 × 103; and (c), (f) γ = 5.0 × 103; All images are of size
19.8 × 19.8-mm2. The ranges of the grayscale windows were determined by the minimum
and the maximum values in each image.
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Figure 5.7: Image profiles along the z-axis through the center of Tube-A extracted from
images reconstructed by use of (a) the FBP algorithm with fc = 10-MHz from the 720-view
data (solid line) the PLS-Q algorithm with γ = 1.0 × 103 from the 144-view data (dotted
line), and the PLS-TV algorithm with β = 0.05 from the 144-view data (dashed line).
Subfigure (b) shows the corresponding profiles for the case where each algorithm employed
stronger regularization specified by the parameters fc = 5-MHz, γ = 5.0× 103, and β = 0.1,
respectively.
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Figure 5.8: (a) Signal intensity vs. standard deviation curves and (b) image resolution vs.
standard deviation curves for the images reconstructed by use of the FBP algorithm from
the 144-view data (FBP144), the PLS-Q algorithm from the 144-view data (PLS-Q144), the
PLS-TV algorithm from the 144-view data (PLS-TV144), and the FBP algorithm from the
720-view data (FBP720).
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Figure 5.9: Slices corresponding to the plane z = −2.0-mm through the 3D images of the
six-tube phantom reconstructed from the 72-view data by use of (a) the FBP algorithm with
fc = 3.7-MHz; (b) the PLS-Q algorithm with γ = 1.0× 103; and (c) the PLS-TV algorithm
with β = 0.07. All images are of size 19.8× 19.8-mm2. The ranges of the grayscale windows
were determined by the minimum and the maximum values in each image.
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Figure 5.10: Slices corresponding to the plane z = −2.0-mm through the 3D images of the
six-tube phantom reconstructed from the 36-view data by use of (a) the FBP algorithm with
fc = 3.3-MHz; (b) the PLS-Q algorithm with γ = 7.0; and (c) the PLS-TV algorithm with
β = 0.02; All images are of size 19.8× 19.8-mm2. The ranges of the grayscale windows were
determined by the minimum and the maximum values in each image.
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Figure 5.11: MIP renderings of the 3D images of the mouse body reconstructed from the
180-view data by use of (a) the FBP algorithm with fc = 5-MHz; and (b) the PLS-TV
algorithm with β = 0.05; The grayscale window is [0,12.0].
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Figure 5.12: Slices corresponding to the plane z = −8.47-mm through the 3D images of
the mouse body reconstructed from the 180-view data by use of (a) the FBP algorithm
with fc = 8-MHz; (b) the FBP algorithm with fc = 5-MHz; (c) the FBP algorithm with
fc = 3-MHz; and (d) the PLS-TV algorithm with β = 0.05. The images are of size 29.4×29.4-
mm2. The three zoomed-in images correspond to the ROIs of the dashed rectangle A, and
the images on the orthogonal planes x = 8.47-mm (Intersection line is along the arrow B),
and y = −3.29-mm (Intersection line is along the arrow C), respectively. All zoomed-in
images are of size 4.34 × 4.34-mm2. The ranges of the grayscale windows were determined
by the minimum and the maximum values in each image.
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Figure 5.13: Slices corresponding to the plane y = −3.57-mm through the 3D images of the
mouse body reconstructed from the 180-view data by use of (a) the FBP algorithm with
fc = 8-MHz; (b) the FBP algorithm with fc = 5-MHz; (c) the FBP algorithm with fc = 3-
MHz; and (d) the PLS-TV algorithm with β = 0.05. The images are of size 22.4×29.4-mm2.
The ranges of the grayscale windows were determined by the minimum and the maximum
values in each image.
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Figure 5.14: Slices corresponding to the plane z = −8.47-mm through the 3D images of the
mouse body reconstructed from the 180-view data by use of the PLS-TV algorithm with (a)
β = 0.01; and (b) β = 0.1. The images are of size 29.4 × 29.4-mm2. The three zoomed-in
images correspond to the ROIs of the dashed rectangle A, and the images on the orthogonal
planes x = 8.47-mm (Intersection line is along the arrow B), and y = −3.29-mm (Intersection
line is along the arrow C), respectively. All zoomed-in images are of size 4.34× 4.34-mm2.
The ranges of the grayscale windows were determined by the minimum and the maximum
values in each image.
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Figure 5.15: (a) Signal intensity vs. standard deviation curves for the images reconstructed
by use of the FBP (dashed line) and the PLS-TV (solid line) algorithms from the 180-view
data; (b) CNR vs. the cutoff frequency curve for the FBP algorithm (dashed line) and CNR
vs. the regularization parameter β curve for the PLS-TV algorithm (solid line) from the
180-view data.
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Figure 5.16: Image resolution vs. standard deviation curves for the images reconstructed by
use of the FBP and PLS-TV algorithms from the 180-view data.
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Figure 5.17: Slices corresponding to the plane z = −8.47-mm through the 3D images of
the mouse body reconstructed from the 90-view data (top row: a, b) and the 45-view data
(bottom row: c, d) by use of (a) the FBP algorithm with fc = 5-MHz; (b) the PLS-TV
algorithm with β = 0.03; (c) the FBP algorithm with fc = 5-MHz; and (d) the PLS-TV
algorithm with β = 0.01. The images are of size 29.4 × 29.4-mm2. The three zoomed-in
images correspond to the ROIs of the dashed rectangle A, and the images on the orthogonal
planes x = 8.47-mm (Intersection line is along the arrow B) and y = −3.29-mm (Intersection
line is along the arrow C), respectively. All zoomed-in images are of size 4.34× 4.34-mm2.
The ranges of the grayscale windows were determined by the minimum and the maximum
valuse of each image.
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Figure 5.18: Slices corresponding to the plane y = −3.57-mm through the 3D images of
the mouse body reconstructed from the 90-view data (top row: a, b) and the 45-view data
(bottom row: c, d) by use of (a) the FBP algorithm with fc = 5-MHz; (b) the PLS-TV
algorithm with β = 0.03; (c) the FBP algorithm with fc = 5-MHz; and (d) the PLS-TV
algorithm with β = 0.01. The images are of size 22.4×29.4-mm2. The ranges of the grayscale
windows were determined by the minimum and the maximum values in each image.
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Chapter 6

Accelerating Image Reconstruction in

3D PACT on Graphics Processing

Units

6.1 Introduction

Although photoacoustic wave intrinsically propagates in three-dimensional (3D) space, when

applying to experimental data, most studies have employed two-dimensional (2D) imaging

models by making certain assumptions on the transducer responses and/or the object struc-

tures [127, 89, 37, 44, 17, 43]. An important reason is because the computation required for

3D PACT image reconstruction is excessively burdensome. Therefore, there remains a great

need to develop fast implementations of 3D reconstruction algorithms.

A graphics processing unit (GPU) card is a specialized device specifically designed for parallel

computations [62]. Compute unified device architecture (CUDA) is an extension of the

C/Fortran language that provides a convenient programming platform to exploit the parallel

computational power of GPUs [76]. The CUDA-based parallel programming technique has

been successfully applied to accelerate image reconstruction in mature imaging modalities

such as X-ray computed tomography (CT) [134, 78, 20] and magnetic resonance imaging

(MRI) [98]. In PACT, however, only a few works on utilization of GPUs to accelerate image

reconstruction have been reported [16, 101]. For example, the k-wave toolbox employs the

NVIDIA CUDA Fast Fourier Transform library (cuFFT) to accelerate the computation of

3D FFT [101]. Also a GPU-based sparse matrix-vector multiplication strategy has been
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applied to 3D PACT image reconstruction for the case that the system matrix is sparse and

can be stored in memory [16]. However, there remains an important need to develop efficient

implementations of PACT reconstruction algorithms for general applications in which the

system matrix is too large to be stored.

In this chapter, we propose parallelization strategies, for use with GPUs, to accelerate 3D im-

age reconstruction in PACT. Both filtered backprojection (FBP) and iterative image recon-

struction algorithms are investigated. For use with iterative image reconstruction algorithms,

we focus on the parallelization of projection and backprojection operators. Specifically, we

develop two pairs of projection/backprojection operators that correspond to two distinct

discrete-to-discrete (D-D) imaging models employed in PACT, namely the interpolation-

based and the spherical-voxel-based D-D imaging models. Note that our implementations

of the backprojection operators compute the exact adjoint of the forward operators, and

therefore the projector pairs are ‘matched’ [9].

The remainder of the chapter is organized as follows. In Section 6.2, we briefly review

PACT imaging models in their continuous and discrete forms. We propose GPU-based

parallelization strategies in Section 6.3. Numerical studies and results are described in

Section 6.4 and Section 6.5 respectively. Finally, a brief discussion and summary of the

proposed algorithms are provided in Section 6.6.

6.2 Background

PACT C-C imaging models have been described in Section 2.1. Based on the C-C imaging

models, a variety of analytic image reconstruction algorithms have been developed [55, 34,

122, 121]. For the case of a spherical measurement geometry, an FBP algorithm in its

continuous form is given by Eqn. (5.11) [34]. As discussed in Chapter 4, a C-D imaging

model has been proposed to describe practical PACT imaging systems. In order to conduct

iterative image reconstructions, we approximate the C-D imaging model by a D-D imaging

model that employs uniform spherical expansion functions to represent the object function.

This D-D imaging model in the temporal-frequency domain has been thoroughly described

in Section 5.2.1, and will be referred to as ‘spherical-voxel-based’ D-D imaging model in this

chapter. When the diffraction effects of transducers are not critical, an ‘interpolation-based’
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D-D imaging model can be constructed and has been applied for PACT image reconstructions

[2, 133, 17]. Below the quantities u, H, and α (or ψn) in the two models will be distinguished

by the subscripts (or superscripts) ‘int’ and ‘sph’, respectively. In Section 6.2.1 we briefly

review the ‘interpolation-based’ D-D imaging model. We derived the adjoints of both the

‘interpolation-based’ and the ‘spherical-based’ D-D imaging models in Section 6.2.2. The

basics of GPU architecture and CUDA programming are outlined in Section 6.2.3.

6.2.1 Interpolation-Based D-D Imaging Model

The interpolation-based D-D imaging model provides another approximation to the C-D

imaging model defined by Eqn. (4.5). Following the generic methodology described in Section

4.3.2, the interpolation-based D-D imaging model defines the coefficient vector as samples

of the object function on the nodes of a uniform Cartesian grid:

[

αint

]

n
=

∫

V

dr δ(r− rn)A(r), n = 0, 1, · · · , N − 1, (6.1)

where, rn = (xn, yn, zn)T specifies the location of the n-th node of the uniform Cartesian grid.

The definition of the expansion function depends on the choice of interpolation method [17].

If a trilinear interpolation method is employed, the expansion function can be expressed as

[46]:

ψint
n (r) =

{

(1− |x−xn|
∆s

)(1− |y−yn|
∆s

)(1− |z−zn|
∆s

), if |x− xn|, |y − yn|, |z − zn| ≤ ∆s

0, otherwise
, (6.2)

where ∆s is the distance between two neighboring grid points.

In principle, the interpolation-based D-D imaging model can be constructed by substitution

from Eqns. (6.1) and (6.2) to Eqn. (4.5). In practice, however, implementation of the surface

integral over Sq is difficult for the choice of expansion functions as Eqn. (6.2). Also, im-

plementations of the temporal convolution and HCCψ
int
n usually require extra discretization

procedures. Therefore, utilization of the interpolation-based D-D model commonly assumes

the transducers to be point-like. In this case, the implementation of Hint is decomposed as
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a three-step operation:

uint = Hintαint ≡ HeDGαint, (6.3)

where G, D, and He are discrete approximations of the SRT (Eqn. (2.2)), the differential

operator (Eqn.(2.3)), and the operator that implements a temporal convolution with EIR,

respectively. We implemented G in a way [1, 2, 133] that is similar to the ‘ray-driven’ imple-

mentation of Radon transform in X-ray CT [46], i.e, for each data sample, we accumulated

the contributions from the voxels that resided on the spherical shell specified by the data

sample. By use of Eqns. (2.2), (2.9), (6.1), and (6.2), one obtains:

[

Gαint

]

qK+k
= ∆2

s

N−1
∑

n=0

[

αint

]

n

Ni−1
∑

i=0

Nj−1
∑

j=0

ψint
n (rk,i,j) ≡

[

g
]

qK+k
, (6.4)

where [g]qK+k ≈ g(rs
q, t)|t=k∆t

with rs
q specifying the location of the q-th point-like transducer,

and Ni and Nj denote the numbers of divisions over the two angular coordinates of a local

spherical coordinate system shown in Fig. 6.1-(b). A derivation of Eqn. (6.4) is provided in

Appendix. The differential operator in Eqn. (2.3) is approximated as

[

Dg
]

qK+k
=

β

8πCp∆
2
t

( [g]qK+k+1

k + 1
− [g]qK+k−1

k − 1

)

≡
[

pint

]

qK+k
, (6.5)

where [pint]qK+k ≈ p(rs
q, t)|t=k∆t

. Finally, the continuous temporal convolution is approxi-

mated by a discrete linear convolution as [21]

[

Hepint

]

qK+k
=

K−1
∑

κ=0

[he]k−1−κ[pint]qK+κ ≡ [uint]qK+k, (6.6)

where [he]k = ∆th
e(t)|t=k∆t

.

6.2.2 Adjoints of the Interpolation-Based and the Spherical-Voxel-

Based System Matrices

Iterative image reconstruction algorithms employ numerical implementations of the projec-

tion operator, i.e., the system matrix H, as well as its adjoint, denoted by H† [69]. The
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Figure 6.1: (a) Schematic of the 3D PACT scanning geometry. (b) Schematic of the local
coordinate system for the implementation of interpolation-based D-D imaging model

adjoint is also referred to as the backprojection operator. Note that for most practical ap-

plications, H and H† are too large to be stored in the random access memory of currently

available computers. Therefore, in practice, the actions of H and H† are almost always

calculated on the fly. The same strategy was adopted in this work.

According to the definition of the adjoint operator [9, 21], H†
int = G†D†He†, where

[

He†uint

]

qK+k
=

K−1
∑

κ=0

[he]κ−1−k[u]qK+κ ≡ [p′
int]qK+k, (6.7)

[

D†p′
int

]

qK+k

=
β

8πCp∆
2
tk

(

[

p′
int

]

qK+k−1
−
[

p′
int

]

qK+k+1

)

≡
[

g′
]

qK+k
, (6.8)

and
[

G†g′

]

n

= ∆2
s

Q−1
∑

q=0

K−1
∑

k=0

[

g′
]

qK+k

Ni−1
∑

i=0

Nj−1
∑

j=0

ψint
n (rk,i,j) ≡ [α′

int]n. (6.9)

It can also be verified that the adjoint operator H†
sph is given by:

[

H†
sphũsph

]

n

=

Q−1
∑

q=0

L−1
∑

l=0

[

ũsph

]

qL+l
p̃∗0(f)h̃∗q(rn, f)

∣

∣

∣

f=l∆f

, (6.10)
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where the superscript ‘*’ denotes the complex conjugate. Unlike the unmatched backpro-

jection opertors [129] that are obtained by discretization of the continuous adjoint operator,

utilization of the exact adjoint operator facilitates the convergence of iterative image recon-

struction algorithms.

6.2.3 GPU Architecture and CUDA programming

The key features of GPU architecture and the basics of CUDA programming are briefly

summarized in this section. We refer the readers to [76, 62] for additional details.

A GPU card contains multiple streaming multiprocessors. Each streaming multiprocessor

is configured with multiple processor cores. For example, the Tesla C1060 possesses 30

streaming multiprocessors with 8 processor cores on each; and the Tesla C2050 possesses 14

streaming multiprocessors with 32 processor cores on each [62]. The processor cores in each

multiprocessor execute the same instruction on different pieces of data, which is referred

to as “single instruction, multiple data” (SIMD) model of parallel programming. In order

to fully exploit the computing power of GPUs, one of the major challenges is to design

a parallelization strategy fitting in the SIMD framework such that the largest number of

processor cores can execute the computation simultaneously [76].

A GPU card has six types of memory that have varying capacities and different access rules

and efficiencies: (1) Registers are assigned for each thread and have the fastest access. (2)

Shared memory is assigned for each block and can be efficiently accessed by all threads in the

block if designed appropriately. (3) Constant memory is read-only and can be accessed by all

threads efficiently. (4) Texture memory is also read-only and is optimized for interpolation

operations. (5) Global memory has the slowest access that takes hundreds times more

clock cycles than does the computation of basic arithmetic operations. (6) Local memory

is assigned for each thread but has a slow access as does the global memory. Therefore, an

efficient GPU-based implementation in general requires a limited number of global and local

memory access.

CUDA is a platform and programming model developed by NVIDIA that includes a collection

of functions and keywords to exploit the parallel computing power of GPUs [76]. A CUDA

86



parallel program is composed of a host program and kernels. The host program is executed

by CPUs and launches the kernels, which are custom-designed functions executed by GPUs.

A general parallel programming strategy is to launch multiple instances of a kernel and to

run the multiple instances concurrently on GPUs. In CUDA, each instance of the kernel

is named as a thread and processes only a portion of the data. A hierarchy of threads is

employed: Threads are grouped into blocks, and blocks are grouped into a grid. Therefore,

each thread is specified by a multi-index containing a block index and a thread index within

the block.

6.3 GPU-Accelerated Reconstruction Algorithms

In this section, we propose GPU-based parallelization strategies for the FBP algorithm and

the projection/backprojection operations corresponding to the interpolation-based and the

spherical-voxel-based D-D imaging models.

6.3.1 Measurement Geometry

We employed a spherical measurement geometry shown in Fig. 6.1-(a). The measurement

sphere was of radius Rs centered at the origin of the Cartesian coordinate system (or the

equivalent spherical coordinate system). The polar angle θs ∈ [0, π] was equally divided with

interval ∆θs = π/Nr, starting from θs
min. At each polar angle, a ring on the sphere that was

parallel to the plane z = 0 can be specified, resulting Nr rings. On each ring, Nv ultrasonic

transducers were assumed to be uniformly distributed with azimuth angle interval ∆φs =

2π/Nv. Hereafter, each azimuth angle will be referred to as a tomographic view. At each

view, we assumed that Nt temporal samples were acquired and the first sample corresponded

to time instance tmin. For implementations in temporal-frequency domain, we assumed that

Nf temporal-frequency samples were available and the first sample corresponded to fmin. The

region to be reconstructed was a rectangular cuboid whose edges were parallel to the axes

of the coordinate system and the left-bottom-back vertex was located at (xmin, ymin, zmin).

The numbers of voxels along the three coordinates will be denoted by Nx, Ny, and Nz,

respectively, totally N = NxNyNz voxels. We also assumed the cuboid was contained in
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another sphere of radius R that was concentric with the measurement sphere shown in Fig.

6.1-(b).

6.3.2 Implementation of the FBP Algorithm

Central processing unit (CPU)-based implementations of continuous FBP formulae have been

described in [55, 34, 122, 121]. Though the discretization methods vary, in general, three

approximations have to be employed. Firstly, the first-order derivative term ∂p(rs, t)/∂t

has to be approximated by a difference scheme up to certain order [73]. Secondly, the

measurement sphere has to be divided into small patches, and the surface integral has to be

approximated by a summation of the area of every patch weighted by the effective value of

the integrand on the patch. Finally, the value of the integrand at an arbitrary time instance

t = |rs − r|/c0 has to be approximated by certain interpolation method.

In this study, we approximated the surface integral by use of the trapezoidal rule. As

described earlier, the spherical surface was divided into NrNv patches. For the transducer

indexed by q that was located at rs
q = (Rs, θs

q , φ
s
q), the area of the patch was approximated

by (Rs)2∆θs∆φs sin θs
q . The value at time instance t = |rs

q − rn|/c0 was approximated by the

linear interpolation from its two neighboring samples as:

p(rs
q, t)
∣

∣

∣

t=
|rs

q−rn|

c0

≈
(

k + 1− k̃
)[

p
]

qK+k
+
(

k̃ − k
)[

p
]

qK+k+1
, (6.11)

where k̃ = (|rs
q − rn|/c0 − tmin)/∆t, and k is the integer part of k̃. Here p is a vector of

lexicographically ordered samples of the pressure function p(rs, t), which is estimated from

the measured voltage data vector u. Also, the first-order derivative term was approximated

by:
∂

∂t
p(rs

q, t)
∣

∣

∣

t=
|rs

q−rn|

c0

≈ 1

∆t

(

[

p
]

qK+k+1
−
[

p
]

qK+k

)

. (6.12)
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By use of these three numerical approximations, the discretized FBP formula was expressed

as:

[

α̂fbp

]

n
= −CpR

s∆θs∆φs

πβc30∆t

Nr−1
∑

nr=0

sin θs
q

Nv−1
∑

nv=0

{

(

1.5− k + tmin/∆t

k̃ + tmin/∆t

)

[

p
]

qK+k+1

+
(k + 1 + tmin/∆t

k̃ + tmin/∆t

− 1.5
)

[

p
]

qK+k

}

.

(6.13)

Unlike the implementations of FBP formulas in X-ray cone beam CT [78, 20], we combined

the filter and the linear interpolation. This reduced the number of visits to the global memory

in the GPU implementation described below.

We implemented the FBP formula in a way that is similar to the ‘pixel-driven’ implemen-

tation in X-ray CT [20], i.e., we assigned each thread to execute the two accumulative

summations in Eqn. (6.13) for each voxel. We bound the pressure data p to texture memory

because it is cached and has a faster accessing rate. Therefore our implementation only

requires access to texture memory twice and to global memory once. The pseudo-codes are

provided in Algs. 1 and 2 for the host part and the device part respectively. Note that

the pseudo-codes do not intend to be always optimal because the performance of the codes

could depend on the dimensions of p and α̂fbp. For example, we set the block size to be

(Nz, 1, 1) because for our applications, Nz was bigger than Nx and Ny and smaller than the

limit number of threads that a block can support (i.e., 1024 for the NVIDIA Tesla C2050).

If the values of Nx, Ny, and Nz change, we may need to redesign the dimensions of the grid

and blocks. However, the general SIMD parallelization strategy remains.

Algorithm 1 Implementation of the FBP algorithm (on host)

Input: p
Output: α̂fbp

1: w = −CpR
s∆θs∆φs/(πβc30∆t) {Precalculate the common coefficient}

2: T p← p {Bound data to texture memory}
3: K fbp 〈〈〈 (Ny, Nx), (Nz, 1, 1) 〉〉〉 (ω, D α̂fbp)
4: α̂fbp ← D α̂fbp {Copy data from global memory to host}
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Algorithm 2 Implementation of kernel K fbp 〈〈〈 (Ny, Nx), (Nz, 1, 1) 〉〉〉
Input: ω, T p, D α̂fbp

Output: D α̂fbp

1: x = (blockIdx.y)∆s + xmin; y = (blockIdx.x)∆s + ymin; z = (threadIdx.x)∆s + zmin

2: Σ = 0
3: for nr = 0 to Nr − 1 do
4: θs = nr∆θs + θs

min; z
s = Rs cos θs; rs = Rs sin θs; w′ = w sin θs

5: for nv = 0 to Nv − 1 do
6: φs = nv∆φs + φs

min; x
s = rs cos φs; ys = rs sinφs

7: t̄ = ((x− xs)2 + (y − ys)2 + (z − zs)2)1/2

8: tn = (t̄/c0 − tmin)/∆t; nt = floor(tn)

9: Σ +=ω′
{

[

(nt∆t + tmin)/(tn∆t + tmin) − 1.5
]

T p[nr][nv][nt] +
[

1.5 − (nt∆t +

tmin)/(tn∆t + tmin)
]

T p[nr][nv][nt + 1]
}

{Fetch data from texture memory}
10: end for
11: end for
12: D α̂fbp[blockIdx.y][blockIdx.x][threadIdx.x] = Σ

6.3.3 Implementation of Hint and H†int

The forward projection operation Hintαint is composed of three consecutive operations g =

Gαint, pint = Dg, and uint = Hepint that are defined in Eqns. (6.4), (6.5), and (6.6), respec-

tively. Both the difference operator D and the one-dimensional (1D) convolution He have

low computational complexities while the SRT operator G is computationally burdensome.

Hence, we developed the GPU-based implementation of G while leaving D and He to be

implemented by CPUs.

The SRT in PACT shares many features with the Radon transform in X-ray CT. Thus, our

GPU-based implementation is closely related to the implementations of Radon transform

that have been optimized for X-ray CT[134, 78, 20]. The surface integral was approximated

according to the trapezoidal rule. Firstly, the integral surface was divided into small patches,

which is described in the Appendix. Secondly, each patch was assigned an effective value of

the object function by trilinear interpolation. The trilinear interpolation was calculated by

use of the texture memory of GPUs that is specifically designed for interpolation. Finally,

GPU threads accumulated the areas of patches weighted by the effective values of the object

function and wrote the final results to global memory. The pseudo-codes for implementation
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of G are provided in Algs. 3 and 4 for the host part and the device part, respectively. Note

that we employed the “one-level”-strategy [20], i.e., each thread calculates one data sample.

Higher level strategies have been proposed to improve the performance by assigning each

block to calculate multiple data samples [20], which, however, caused many thread idles in

PACT mainly because the amount of computation required to calculate a data sample varies

largely among samples for SRT.

Algorithm 3 Implementation of g = Gαint (on host)

Input: αint

Output: g
1: Tαint ← αint {Bound data to texture memory}
2: K srt 〈〈〈 (Nv, Nt), (Nr, 1, 1) 〉〉〉 (D g)
3: g← D g {Copy data from global memory to host}

Algorithm 4 Implementation of kernel K srt 〈〈〈 (Nv, Nt), (Nr, 1, 1) 〉〉〉
Input: D g, Tαint

Output: D g
1: t̄ = (blockIdx.y)c0∆t + c0tmin; θs = (threadIdx.x)∆θs +θs

min; φs = (blockIdx.x)∆φs +
φs

min

2: θ′max = arccos
(

((Rs)2 + t̄2 − R2)/(2t̄Rs)
)

3: Σ = 0; θ′ = θ′max

4: while θ′ > 0 do
5: z′ = t̄ cos θ′; r′ = t̄ sin θ′; φ′ = 0
6: while φ′ < 2π do
7: x′ = r′ cosφ′; y′ = r′ sinφ′

8: x = −x′ sin θ′ − (z′ − Rs) cos θ′; y = y′; z = x′ cos θ′ − (z′ − Rs) sin θ′

{Convert to global coordinate system}
9: xn = (x− xmin)/∆s; yn = (y − ymin)/∆s; zn = (z − zmin)/∆s

10: Σ += tex3D(xn, yn, zn) {Tri-linear interpolation}
11: φ′ = φ′ + ∆s/r

′

12: end while
13: θ′ = θ′ −∆s/t̄
14: end while
15: D g[threadIdx.x][blockIdx.x][blockIdx.y] = Σ∆2

s

Implementation of the backprojection operator H†
int was very similar to the implementation

of Hint. The operators D† and He† were calculated on CPUs while G† was calculated by
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use of GPUs. The pseudo-codes are provided in Algs. 5 and 6. We made use of the CUDA

function ‘atomicAdd’ to add weights to global memory from each thread.

Algorithm 5 Implementation of α′
int = G†g′ (on host)

Input: g′

Output: α′
int

1: T g′ ← g′ {Bound data to texture memory}
2: K srtT 〈〈〈 (Nv, Nt), (Nr, 1, 1) 〉〉〉 (Dα′

int)
3: α′

int ← Dα′
int {Copy data from global memory to host}

Algorithm 6 Implementation of kernel K srtT 〈〈〈 (Nv, Nt), (Nr, 1, 1) 〉〉〉
Input: Dα′

int, T g′
int

Output: Dα′
int

1: t̄ = (blockIdx.y)c0∆t + c0tmin; θs = (threadIdx.x)∆θs +θs
min; φs = (blockIdx.x)∆φs +

φs
min

2: θ′max = arccos
(

((Rs)2 + t̄2 − R2)/(2t̄Rs)
)

; θ′ = θ′max

3: while θ′ > 0 do
4: z′ = t̄ cos θ′; r′ = t̄ sin θ′; φ′ = 0
5: while φ′ < 2π do
6: x′ = r′ cosφ′; y′ = r′ sinφ′

7: x = −x′ sin θ− (z′−R′) cos θ; y = y′; z = x′ cos θ− (z′−R′) sin θ {Convert
to global coordinate system}

8: xn = (x− xmin)/∆s; yn = (y − ymin)/∆s; zn = (z − zmin)/∆s

9: nx = floor(xn); ny = floor(yn); nz = floor(zn)
10: D α′

int[nz][ny][nx] += ∆2
s(nx + 1 − xn)(ny + 1 − yn)(nz + 1 −

zn)T g′
int[threadIdx.x][blockIdx.x][blockIdx.y] {Add weights to one of the

eight neighboring nodes by use of ‘atomicAdd’; Repeat this operation for all
other seven neighboring nodes}

11: φ′ = φ′ + ∆s/r
′

12: end while
13: θ′ = θ′ −∆s/t̄
14: end while

6.3.4 Implementation of Hsph and H†sph

Implementation of the forward projection operation for the spherical-voxel-based imaging

model is distinct from that of the interpolation-based model. The major difference is that
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calculation of each element of the data vector for the spherical-voxel-based imaging model

requires the accumulation of the contributions from all voxels because the model is expressed

in the temporal frequency domain. Because of this, the amount of computation required to

calculate each data sample in the spherical-voxel-based imaging model is almost identical,

simplifying the parallelization strategy.

We proposed a parallelization strategy that was inspired by one applied in advanced MRI

reconstruction [98] and is summarized as follows. Discrete samples of p̃0(f) defined in Eqn.

(5.4) were precalcualted and stored as a vector p̃0 in constant memory. Because the size

of the input vector αsph is often too large to fit in the constant memory, we divided αsph

into sub-vectors that matched the capacity of the constant memory. We employed a CPU

loop to copy every sub-vector sequentially to the constant memory and call the GPU kernel

function to accumulate a partial summation. The major advantage of this design is that the

total number of global memory visits to calculate one data sample is reduced to the number

of sub-vectors.

Implementation of the projection operator for the spherical-voxel-based imaging model gen-

erally involves more arithmetic operations than does the interpolation-based imaging model.

Moreover, the spherical-voxel-based imaging model has been employed to compensate for

the finite aperture size effect of transducers [105, 110], which makes the computation even

more burdensome. Because of this, we further developed an implementation that employed

multiple GPUs. The pseudo-codes of the projection operation are provided in Algs. 7, 8,

and 9. We created Npth pthreads on CPUs by use of the ‘pthread.h’ library. Here, we denote

the threads on CPUs by ‘pthread’ to distinguish from threads on GPUs. We divided the

input vector αsph into Npth sub-vectors (denoted by αpth’s) of equal size and declared an

output vector ũ′
sph of dimension NpthNrNvNf . By calling the pthread function ‘fwd pthread’,

Nsph pthreads simultaneously calculated the projection. Each pthread projected an αpth to

a partial voltage data vector ũ′
pth that filled in the larger vector ũ′

sph. Once all pthreads

finished filling their ũ′
pth into ũ′

sph, the projection data ũsph were obtained by a summation

of the Npth ũ′
pth’s.

Implementation of the backprojection operator was similar except the dividing and looping

were over the vector ũsph instead of αsph. The pseudo-codes for the backprojection operation

are provided in Algs. 10, 11, and 12.
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Algorithm 7 Implementation of ũsph = Hsphαsph (on host)

Input: αsph, p̃0

Output: ũsph

1: for npth = 0 to Npth − 1 do
2: parm fwdarg[npth].npth = npth

3: parm fwdarg[npth].p̃0 = &p̃0[0]
4: parm fwdarg[npth].αpth=&αsph[npthNxNyNz/Npth]
5: parm fwdarg[npth].ũ

′
pth=&ũ′

sph[npthNrNvNf ] {Pass addresses of arrays to each
pthread}

6: pthread create(&pthreads[npth], NULL, fwd pthread, (void *)(parm fwdarg+npth))
{Call function fwd pthread}

7: end for
8: for npth = 0 to Npth − 1 do
9: for n = 0 to NrNvNf do

10: ũsph[n] += ũ′
sph[n + npthNrNvNf ]

11: end for
12: end for

6.4 Descriptions of Numerical Studies

The computational efficiency and accuracy of the proposed GPU-based implementations of

the FBP algorithm and projection/backprojection operators for use with iterative image

reconstruction algorithms were quantified in computer-simulated and experimental PACT

imaging studies.

6.4.1 Computer-Simulation Studies

Numerical Phantom: The numerical phantom consisted of 9 uniform spheres that were

blurred by a 3D Gaussian kernel possessing a full width at half maximum (FWHM) of 0.77-

mm. The phantom was contained within a cuboid of size 29.4 × 29.4 × 61.6-mm3. A 2D

image corresponding to the plane y = 0 through the phantom is shown in Fig. 6.2-(a).

Simulated Projection Data: The measurement surface was a sphere of radius Rs = 65-

mm. corresponding to an exsiting PACT imaging system [15, 110]. As described in Section

6.3, ideal point-like transducers were uniformly distributed over 128 rings and 90 tomographic
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Algorithm 8 Implementation of function fwd pthread (on host)

Input: npth, p̃0, αpth, ũ′
pth

Output: ũ′
pth

1: C p̃0 ← p̃0 {Copy from host to constant memory}
2: for nx = 0 to Nx/Npth − 1 do
3: x = (nx + npthNx/Npth)∆s + xmin

4: for ny = 0 to Ny − 1 do
5: y = ny∆s + ymin

6: Cαpth ← αpth[nx][ny][:] {Copy from host to constant memory}
7: K fwdsph 〈〈〈 (Nv, Nr), (Nf , 1, 1) 〉〉〉 (x, y, D ũ′

pth)
8: end for
9: end for

10: ũ′
pth ← D ũ′

pth {Copy from global memory to host}

views. The 128 rings covered the full π polar angle, i.e., θs
min = π/256, while the 90 views

covered the full 2π azimuth angle. The speed of sound was set at c0 = 1.54-mm/µs. We

selected the Grüneisen coefficient as Γ = βc20/Cp = 2, 000 of arbitrary units (a.u.). For each

transducer, we analytically calculated 1022 temporal samples of the pressure function at the

sampling rate of fsam = 20-MHz by use of Eqn. (2.1). Because we employed a smooth object

function, the pressure data were calculated by the following two steps: Firstly, we calculated

temporal samples of pressure function pus(r
s, t) that corresponds to the 9 uniform spheres

by [68, 113]

pus(r
s, t)|t=k∆t

=

8
∑

i=0







Ai

[

− βc30
Cp|rs−ri|

t+
βc20
2

]

t=k∆t

, if
∣

∣c0k∆t − |rs − ri|
∣

∣ ≤ Ri

0, otherwise
(6.14)

where ri, Ri and Ai denote the center location, the radius and the absorbed energy density

of the i-th sphere, respectively. Subsequently, we convolved pus(r
s, t) with a one-dimensional

(1D) Gaussian kernel with FWHM = 0.5-µs [5] to produce the pressure data. From the sim-

ulated pressure data, we calculated the temporal-frequency spectrum by use of fast Fourier

transform (FFT), from which we created an alternative data vector that contained 511 fre-

quency components occupying (0, 5]-MHz for each transducer. The simulated projection

data in either the time domain or the temporal frequency domain will hereafter be referred

to as “128 × 90”-data. By undersampling the “128 × 90”-data uniformly over rings and

tomographic views, we created three subsets that contained varying number of transducers.
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Algorithm 9 Implementation of Kernel K fwdsph 〈〈〈 (Nv, Nr), (Nf , 1, 1) 〉〉〉
Input: x, y, D ũ′

pth, Cαpth, C p̃0

Output: D ũ′
pth

1: θs = (blockIdx.y)∆θs+θs
min; φs = (blockIdx.x)∆φs+φs

min; f = (threadIdx.x)∆f+fmin

2: zs = Rs cos θs; xs = Rs sin θs cosφs; ys = Rs sin θs sinφs {Calculate locations of
transducers}

3: Σr = 0; Σi = 0 {Initiate the partial summation including the real and imaginary
parts}

4: for nz = 0 to Nz − 1 do
5: z = nz∆s + zmin

6: d =
(

(x− xs)2 + (y − ys)2 + (z − zs)2
)1/2

7: h̃r = cos(2πfd/c0)/(2πd); h̃i = − sin(2πfd/c0)/(2πd) {Calculate SIR; Example
here assumes point-like transducers}

8: Σr += Cαpth[nz]
(

h̃rC p̃0[threadIdx.x].r − h̃iC p̃0[threadIdx.x].i
)

9: Σi += Cαpth[nz]
(

h̃rC p̃0[threadIdx.x].i+ h̃iC p̃0[threadIdx.x].r
)

10: end for
11: D ũ′

pth[blockIdx.y][blockIdx.x][threadIdx.x].r+= Σr

12: D ũ′
pth[blockIdx.y][blockIdx.x][threadIdx.x].i+= Σi

These data sets will be referred to as “64× 90”-data, “64× 45”-data, and “32× 45”-data,

where the two numbers specify the number of rings and the number of tomographic views,

respectively.

Reconstruction Algorithms: The GPU accelerated FBP algorithm was employed to

reconstruct the object function sampled on a 3D Cartesian grid with spacing ∆s = 0.14-mm.

The dimension of the reconstructed images α̂fbp was 210× 210× 440.

We employed an iterative image reconstruction algorithm that sought to minimize a penalized

least-squares (PLS) objective [31, 69]. Two versions of the reconstruction algorithm were

developed that utilized the interpolation-based imaging model and the spherical-voxel-based

imaging model respectively. The two versions sought to solve the optimization problems by

use of the linear conjugate gradient (CG) method [96, 33]:

α̂int = arg min
αint

‖u−Hintαint‖2 + µR(αint), (6.15)
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Algorithm 10 Implementation of α′
sph = H†

sphũ (on host)

Input: ũ, p̃0

Output: α′
sph

1: for npth = 0 to Npth − 1 do
2: parm bwdarg[npth].npth = npth

3: parm bwdarg[npth].p̃0 = &p̃0[0]
4: parm bwdarg[npth].ũpth=&ũ[npthNrNvNf/Npth]
5: parm bwdarg[npth].α

′′
pth=&α′′

sph[npthNxNyNz] {Pass addresses of arrays to each
pthread}

6: pthread create(&pthreads[npth], NULL, bwd pthread, (void *)(parm bwdarg+npth))
{Call function bwd pthread}

7: end for
8: for npth = 0 to Npth − 1 do
9: for n = 0 to NxNyNz do

10: α′
sph[n] += α′′

sph[n + npthNxNyNz]
11: end for
12: end for

and

α̂sph = arg min
αsph

‖ũ−Hsphαsph‖2 + µR(αsph), (6.16)

respectively, where R(α) is a regularizing penalty term whose impact is controlled by the

regularization parameter µ. The penalty term was employed only when processing the

experimental data as described in Section 6.4-B. The reconstruction algorithms required

computation of one projection and one backprojection operation at each iteration. Hereafter,

the two reconstruction algorithms will be referred to as PLS-Int and PLS-Sph algorithms,

respectively. We set ∆s = 0.14-mm. Therefore, both the dimensions of α̂int and α̂sph were

210× 210× 440.

Performance Assessment: We compared the computational times of 3D image recon-

struction corresponding to the GPU- and CPU-based implementations. The CPU-based

implementations of the PLS-Int and PLS-Sph algorithms take several days to complete a

single iteration even for the “32 × 45”-data. Therefore, we only recorded the computa-

tional time for the CPU-based implementations to complete a single iteration when the data
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Algorithm 11 Implementation of function bwd pthread (on host)

Input: npth, p̃0, ũpth, α
′′
pth

Output: α′′
pth

1: C p̃0 ← p̃0 {Copy from host to constant memory}
2: for nr = 0 to Nr/Npth − 1 do
3: θs = (nr + npthNr/Npth)∆θs + θs

min; zs = Rs cos θs; rs = Rs sin θs

4: for nv = 0 to Nv − 1 do
5: φs = nv∆φs + φs

min; xs = rs cosφs; ys = rs sinφs

6: C ũpth ← ũpth[nr][nv][:] {Copy from host to constant memory}
7: K bwdsph 〈〈〈 (Ny, Nx), (Nz, 1, 1) 〉〉〉 (xs, ys, zs Dα′′

pth)
8: end for
9: end for

10: α′′
pth ← Dα′′

pth {Copy from global memory to host}

vector contained a single transducer. We assumed that the computational times were lin-

early proportional to the number of transducers in the data sets because the CPU-based

implementations are sequential.

The GPU-based implementations employed the single-precision floating-point format rather

than the conventional double-precision utilized by CPU-based implementations. In order to

quantify how the single-precision floating-point format would degrade the image accuracy,

we calculated the root mean square error (RMSE) between the reconstructed image and the

phantom defined by:

RMSE =

√

1

N
(α̂−α)T(α̂−α), (6.17)

where α and α̂ are the samples of the phantom and the coefficients of the reconstructed

images respectively.

Hardware Specifications: All implementations were tested on the platform consisted

of dual quad-core Intel(R) Xeon (R) CPUs with a clock speed 2.40-GHz. The GPU-based

implementations of the FBP and the PLS-Int algorithms were tested on a single Tesla C2050

GPU, while the PLS-Sph algorithm was tested on 8 Tesla C1060 GPUs.
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Algorithm 12 Implementation of Kernel K bwdsph 〈〈〈 (Ny, Nx), (Nz, 1, 1) 〉〉〉
Input: xs, ys, zs, Dα′′

pth, C ũpth, C p̃0

Output: Dα′′
pth

1: x = (blockIdx.y)∆s + xmin; y = (blockIdx.x)∆s + ymin; z = (threadIdx.x)∆s + zmin

2: d =
(

(x− xs)2 + (y − ys)2 + (z − zs)2
)1/2

; Σ = 0 {Initiate the partial summation}
3: for nf = 0 to Nf − 1 do
4: f = nf∆f + fmin

5: h̃r = cos(2πfd/c0)/(2πd); h̃i = − sin(2πfd/c0)/(2πd) {Calculate SIR; Example
here assumes point-like transducers}

6: Σ + = C ũpth[nf ].r
(

h̃rC p̃0[nf ].r − h̃iC p̃0[nf ].i
)

+ C ũpth[nf ].i
(

h̃iC p̃0[nf ].r +

h̃rC p̃0[nf ].i
)

7: end for
8: Dα′′

pth[blockIdx.y][blockIdx.x][threadIdx.x] += Σ

6.4.2 Experimental Studies

The FBP, PLS-Int and PLS-Sph algorithms were investigated by use of an existing data set

corresponding to a live mouse [15, 110]. The scanning geometry and dimensions were the

same as those employed in the computer-simulation studies except that only 64 rings were

uniformly distributed over the polar angle ranging from 14◦ to 83◦. The transducers were of

size 2 × 2-mm2. The raw data were acquired at 180 tomographic views, which are referred

to as “full data”. We undersampled the “full data” uniformly over the tomographic views,

constructing a subset containing 45 tomographic views. The subset will be referred to as

“quarter data”.

Unlike in the idealized computer-simulation studies, the transducer response has to be com-

pensated for when processing the experimental data. When implementing the FBP algo-

rithm, the EIR was compensated for by a direct Fourier deconvolution, expressed in temporal

frequency domain as [51]:

p̃(rs, f) =
ũ(rs, f)

h̃e(f)
W̃ (f), (6.18)
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where W̃ (f) is a window function for noise suppression. In this study, we adopted the Hann

window function defined as:

W̃ (f) =
1

2

[

1− cos(π
fc − f
fc

)
]

, (6.19)

where the cutoff frequency was chosen as fc = 5-MHz. When applying iterative image recon-

struction algorithms, the transducer effects were implicitly compensated for during iteration

by employing imaging models that incorporates the transducer charactertics [105, 110]. We

incorporated the EIR into the interpolation-based imaging model while incorporating both

the EIR and the SIR into the spherical-voxel-based imaging model.

For both PLS-Int and PLS-Sph algorithms, we employed a quadratic smoothness penalty to

mitigate measurement noise [31]:

R(α) =
N−1
∑

n=0

(

[α]n − [α]nx

)2
+
(

[α]n − [α]ny

)2
+
(

[α]n − [α]nz

)2
, (6.20)

where nx, ny and nz were the indices of the neighboring voxels before the n-th voxel along

the three Cartesian axes, respectively.

6.5 Numerical Results

6.5.1 Computational Efficiency

As shown in Table 6.1, the GPU-based implementations took less than 0.1%, 0.4% and 0.8%

of the computational times required by corresponding CPU-based implementations for the

FBP, the PLS-Int, and the PLS-Sph algorithms, respectively. The relative computational

times for the GPU-based implementations are nearly linearly proportional to the amount of

data. Note that the “64×90”-data and the “quarter data” are of the same size. However, the

computational times of the “quarter data” are more than 1.8 times those of the “64× 90”-

data. This is because the calculation of the SIR increases the computational complexity of

the reconstruction algorithm.
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Table 6.1: Computational times of the 3D image reconstructions by use of the CPU- and
GPU-based implementations

FBP [sec] PLS-Int [min/iteration] PLS-Sph [min/iteration]
Data sets CPU GPU CPU GPU CPU GPU

“32× 45” 6, 189 6 2, 448 20 7, 961 22
“64× 45” 12, 975 12 4, 896 35 15, 923 43
“64× 90” 26, 190 23 9, 792 68 31, 845 86
“128× 90” 53, 441 46 - - - -
“quarter data” 12, 975 12 4, 896 35 19, 776 78
“full data” 53, 441 46 19, 968 137 79, 177 313

6.5.2 Computational Accuracy

Images reconstructed by use of the CPU- and GPU-based implementations of the FBP al-

gorithm are almost identical. From the “128 × 90”-data, in which case, transducers were

densely distributed over the measurement surface, both implementations reconstructed ac-

curate images, as shown Fig. 6.2-(b) and -(c). The profiles along the three arrows in Fig. 6.2

are plotted in Fig. 6.5-(a), suggesting a nearly exact reconstruction. As expected, when the

amount of measurement data are reduced, the reconstructed images contain more artifacts

as shown in Fig. 6.3. However, the images reconstructed by use of GPU- and CPU-based

implementations remain indistinguishable. The plots of the RMSE versus the amount of mea-

surement data employed in Fig. 6.4 overlap, also suggesting the single-precision floating-point

format employed by the GPU-based implementation has little impact on the computational

accuracy.

The GPU-based implementations of the PLS-Int and PLS-Sph algorithms both reconstructed

accurate images as displayed in Fig. 6.6. As expected, the images reconstructed by use of

both iterative algorithms contain fewer artifacts than do those reconstructed by use of the

FBP algorithm from the same amount of data. Unlike the images reconstructed by use of

the FBP algorithm from the “64× 90”-data (Fig. 6.3-(a) or -(d)), the images reconstructed

by use of both iterative algorithms (Fig. 6.6-(a) and -(d)) appear to be identical to the

numerical phantom. The profiles along the two arrows in Fig. 6.6-(a) and -(d) are plotted in

Fig. 6.5-(b), further confirming the computational accuracy of iterative image reconstruction

algorithms. The plots of the RMSE versus the amount of measurement data employed in
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Figure 6.2: Slices corresponding to the plane y = 0 of (a) the phantom and the images
reconstructed by use of (b) the CPU-based and (c) the GPU-based implementations of the
FBP algorithm from the “128× 90”-data.

Fig. 6.4 suggest the iterative image reconstruction algorithms in general outperform the FBP

algorithm from the same amount of data.

6.5.3 Experimental Results

The maximum intensity projection (MIP) of the 3D mouse images reconstructed by use of

the GPU-based implementations reveal the mouse body vasculature as shown in Fig. 6.7.

Images reconstructed by use of both the PLS-Int and the PLS-Sph algorithms appear to have

cleaner background than do the images reconstructed by use of the FBP algorithm from the

same amount of data. All images reconstructed by iterative algorithms were obtained by

20-iterations starting with uniform zeros as the initial guess. The PLS-Int algorithm took

approximately a half day and 2 days to process the “quarter data” and the “full data” re-

spectively. The PLS-Sph algorithm took approximately one day and 4 days to process the

“quarter data” and the “full data” respectively. Alternatively, if the CPU-based implemen-

tations were utilized, the PLS-Int algorithm would take an estimated 68 days and 277 days to

process the “quarter data” and the “full data” respectively. The PLS-Sph algorithm would

take an estimated 275 days and 1, 100 days to process the “quarter data” and the “full data”

respectively.
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Figure 6.3: Slices corresponding to the plane y = 0 of the images reconstructed by use of
the FBP algorithm with (a) the CPU-based implementation from the “64 × 90”-data, (b)
the CPU-based implementation from the “64×45”-data, (c) the CPU-based implementation
from the “32×45”-data, (d) the GPU-based implementation from the “64×90”-data, (e) the
GPU-based implementation from the “64×45”-data, and (f) the GPU-based implementation
from the “32× 45”-data.

6.6 Discussion and Conclusion

In this study, we developed and investigated GPU-based implementations of the FBP al-

gorithm and two pairs of projection/backprojection operators for 3D PACT. Our imple-

mentation of the FBP algorithm improved the computational efficiency over 1, 000 times
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Figure 6.4: Plots of the RMSE against the amount of data by use of the FBP, the PLS-Int
and the PLS-Sph algorithms.
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Figure 6.5: Profiles along the line (x, y) = (−6.58, 0)-mm of the images reconstructed by use
of (a) the CPU- and GPU-based implementations of the FBP algorithm from the “128×90”-
data, and (b) the GPU-based implementations of the PLS-Int and the PLS-Sph algorithms
from the “64× 90”-data.

compared to the CPU-based implementation. More importantly, our implementations of

the projection/backprojection operators demonstrate the feasibility of 3D iterative image

reconstruction in practice[109, 110].
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Figure 6.6: Slices corresponding to the plane y = 0 of the images reconstructed by use of the
GPU-based implementations of (a) the PLS-Int algorithm from the “64× 90”-data, (b) the
PLS-Int algorithm from the “64× 45”-data, (c) the PLS-Int algorithm from the “32× 45”-
data, (d) the PLS-Sph algorithm from the “64× 90”-data, (e) the PLS-Sph algorithm from
the “64× 45”-data, and (f) the PLS-Sph algorithm from the “32× 45”-data.

Our current implementations of the iterative image reconstruction algorithms still require

several days to process the densely sampled data set, which, however, can be further im-

proved. Firstly, the amount of measurement data required for accurate image reconstruc-

tion can be further reduced by developing advanced image reconstruction methods [89, 37,

71, 110]. Secondly, the number of iterations required can be reduced by developing fast-

converging optimization algorithms [10, 110, 13].
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The proposed parallelization strategies by use of GPUs are of general interest. The imple-

mentation of the FBP algorithm [34] can be adapted to other analytic image reconstruction

algorithms, including those described in [120, 122, 55, 35, 26]. We demonstrated the fea-

sibility of PLS algorithm that utilized the proposed GPU-based implementations of the

projection/backprojection operators. By use of these implementations, many advanced im-

age reconstruction algorithms may also be feasible in practice [110]. Though we described

our parallelization strategies for the projection/backprojection operators that utilized two

discrete-to-discrete imaging models, these strategies can also be applied to other D-D imag-

ing models [84, 28, 92, 16]. Therefore, the proposed algorithms will facilitate the further

investigation and application of advanced image reconstruction algorithms in 3D PACT.
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(a) (b) (c)

(d) (e) (f)

Figure 6.7: MIP renderings of the 3D images of the mouse body reconstructed by use of the
GPU-based implementations of (a) the FBP algorithm from the “full data”, (b) the PLS-Int
algorithm from the “full data” with µ = 1.0× 104, (c) the PLS-Sph algorithm from the “full
data” with µ = 1.0× 104, (d) the FBP algorithm from the “quarter data”, (e) the PLS-Int
algorithm from the “quarter data” with µ = 1.0× 103, and (f) the PLS-Sph algorithm from
the “quarter data” with µ = 1.0× 103. The grayscale window is [0,12.0].
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Chapter 7

Summary

In the dissertation, we have investigated imaging models and reconstruction algorithms for

three-dimensional (3D) photoacoustic computed tomography (PACT). The contributions are

summarized as following.

1. We have derived a Fourier transform-based reconstruction formula for PACT that is

two orders of magnitude more computationally efficient than 3D filtered backprojection

(FBP) algorithms [106].

2. We have proposed a continuous-to-discrete (C-D) imaging model that incorporates the

characteristics of ultrasonic transducers [107, 105]. For the purpose of iterative image

reconstruction, a spherical-voxel-based discrete-to-discrete (D-D) imaging model has

been developed to approximate the C-D model. The use of the new imaging model,

in conjunction with the itertiave reconstruction algorithm, has significantly improved

the spatial resolution, permitting the construction of compact imaging scanners.

3. We have systematically investigated various iterative image reconstruction algorithms

for small animal imaging, including the fast iterative shrinkage/thresholding algorithm

(FISTA) that solves for objectives with a total variation (TV)-norm penalty [109, 110].

The results demonstrate, for the first time, the feasibility and advantages of iterative

image reconstruction in practice. The TV-norm regularization in general outperforms

the conventional quadratic smoothness penalty, and may reduce the amount of data

required while maintaining high image quality.

4. In order to accelerate the 3D image reconstruction, we have developed graphics pro-

cessing unit (GPU)-based implementations of the FBP algorithm and two pairs of
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projection/backprojection operators. Our implementation of the FBP algorithm has

improved the computational efficiency over 1, 000 times compared to the CPU-based

implementation. The GPU-based implementations of projection/backprojection oper-

ators will directly promote the algorithm development for 3D PACT.

PACT has great potential for a wide range of biomedical imaging applications. On the other

hand, as an emerging imaging modality, research on PACT image reconstruction algorithms

is still at an early age comparing with other more mature imaging modalities. Therefore,

there remain many important and challenging topics for future studies. For example, the

assessment of image quality is commonly conducted by use of visual inspection or quantitative

metrics as we discussed in Chapter 5. Development of task-based image quality assessment

methods will provide a more effective guideline for system design. A related topic is the

identification of the noise sources and characterization of [99] their second order statistical

properties. The knowledge of noise statistics will facilitate iterative reconstruction algorithms

to optimally reduce noise levels in the reconstructed images. Research in this dissertation

assumes acoustically homogeneous media and ignore the effects of acoustic attenuations.

Pioneers are actively developing more accurate imaging models that model the effects of

acoustic heterogeneities and attenuation [72, 42, 43]. Also development of advanced image

reconstruction algorithms will further improve the accuracy and efficiency of PACT image

reconstruction [13, 111]. I believe that computed tomography techniques will promote PACT

in clinical applications in the future.
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Appendix A

Implementation of Eqn. (4.21)

Below we provide additional information regarding the numerical implementation the system

matrix H in Eqn. (4.21) that was employed in our studies.

As described above Eqn. (4.21), an anti-aliasing filter was applied to lq(rn, t), which was

implemented in the temporal frequency domain as

l̃′q(rn, f) = l̃q(rn, f)ṽ(f), (A.1)

where ṽ(f) is the anti-aliasing filter, and l̃q(rn, f) is the Fourier transform of lq(rn, t):

l̃q(rn, f) =

∫ ∞

−∞

dt lq(rn, t) exp(−̂2πft). (A.2)

Here ̂ =
√
−1. We defined the low-pass filter ṽ(f) as

ṽ(f) =











1, for 0 ≤ f < fl

cos(π
2

f−fl

fh−fl
), for fl ≤ f < fh

0, for fh ≤ f

, (A.3)

where fl and fh specified a continuous decaying window in frequency space. The location of

the window limits the spatial resolution we can achieve in the reconstructed images. Since

lq(rn, t) = 1
Sq
hs

q(rn, t) ∗t p0(t), its frequency spectrum can be calculated by

l̃q(rn, f) =
1

Sq

h̃s
q(rn, f)p̃0(f), (A.4)

110



where

h̃s
q(rn, f) =

∫ ∞

−∞

dt hs
q(rn, t) exp(−̂2πft), (A.5a)

p̃0(f) =

∫ ∞

−∞

dt p0(t) exp(−̂2πft). (A.5b)

It can be verified that h̃s
q(rn, f) can be calculated analytically as

h̃s
q(rn, f) = sinc

(

πf
a sin θ cosφ

c0

)

sinc

(

πf
a sin θ sinφ

c0

)

, (A.6)

where sinc(x) = x−1 sin x. Also, p̃0(t) has an analytical form given by

p̃0(f) = −̂ βc
3
0

Cpf

[

∆s

2c0
cos
(πf∆s

c0

)

− 1

2πf
sin
(πf∆s

c0

)

]

. (A.7)

To obtain l′q(rn, k∆t), we sampled l̃′q(rn, f) in frequency space at a rate of K∆t samples per

Hertz, and applied the inverse discrete Fourier transform

l′q(rn, k∆t) = ∆f

K−1
∑

k′=0

exp(j
2πk′k

K
)l̃′q(rn, f)

∣

∣

∣

f=k′∆f

, (A.8)

where, ∆f = 1/(K∆t). The discrete convolution in Eqn. (4.21) and the inverse discrete

Fourier transform in Eqn. (A.8) were implemented by use of the fast Fourier transform.

The implementation of the conjugate gradient algorithm requires calculating Eqns. (A.6)

and (A.7) at n = 0, 1, · · · , N − 1, q = 0, 1, · · · , Q − 1, and f = k∆f with k = 1, 2, · · · , K
once for each iteration. To accelerate the computation, we developed parallel program by

use of graphic processing unit (GPU). We created N ×Q×K threads with each for a pair of

voxel (n), transducer location (q) and temporal frequency component (k). By use of multiple

GPUs, thousands of threads can run simultaneously. This technique tremendously reduced

our computational time and made the iterative reconstruction for 3D PACT feasible. For

this work, it took 12 seconds and 2.5 hours per iteration respectively for the simulation and

the experimental studies by use of single NVIDIA R© TeslaTM C1060 computing processor.
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Appendix B

Implementation of FISTA Algorithm

for 3D PACT

We employed the fast iterative shrinkage thresholding algorithm (FISTA) algorithm [11, 10]

to solve for the total variation (TV)-norm regularized least-squares objective defined by Eqn.

(5.14). We extended the FISTA algorithm described in [10] to three-dimensional (3D) space.

The pseudocodes are provided in Alg. 13.

Algorithm 13 Solver of the optimization problem defined by Eqn. (5.14)

Input: ũ, α(0), β, L

Output: α̂

1: t(0) ← 1; σ(1) ← α(0) {Set the initial guess}
2: for n = 1 to N do

3: α(n) ← F Dnoise
(

σ(n) − 2
L
H†(Hσ(n) − ũ), 2β/L

)

4: t(n+1) ← 0.5 + 0.5
√

1 + 4(t(n))2

5: σ(n+1) ← α(n) + (t(n) − 1)(α(n) −α(n−1))/t(n+1)

6: end for

7: α̂← α(N)

Here, H† denotes the adjoint of the projection operator H, and ‘L’ denotes the Lipschitz

constant of the operator 2H†H.

The function ‘F Dnoise’ in Alg. 13-Line 3 solves a de-noising problem defined as:

x̂ = arg min
x≥0
‖y − x‖2 + µ|x|TV, (B.1)
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where µ = 2λ/L and

y = σ(n) − 2

L
H†(Hσ(n) − ũ). (B.2)

It has been demonstrated that Eqn. (B.1) can be solved efficiently [11, 10], and the pseu-

docodes are provided in Alg. 14.

Algorithm 14 Solver of the de-noising problem defined by Eqn. (B.1)

Input: y, µ

Output: x̂

1:
[

a(1),b(1), c(1)
]

←
[

0(Nx−1)×Ny×Nz
, 0Nx×(Ny−1)×Nz

, 0Nx×Ny×(Nz−1)

]

[

d(0), e(0), f (0)
]

←
[

0(Nx−1)×Ny×Nz
, 0Nx×(Ny−1)×Nz

, 0Nx×Ny×(Nz−1)

]

t(1) = 1

2: for n = 1 to N do

3:
[

d(n), e(n), f (n)
]

← Pp

{

[a(n),b(n), c(n)]+(6µ)−1PT
l

{

Pc{y−0.5µPl{a(n),b(n), c(n)}}
}

}

4: t(n+1) ← 0.5 + 0.5
√

1 + 4(t(n))2

5:
[

a(n+1),b(n+1), c(n+1)
]

← (t(n) − 1)/t(n+1)
[

d(n) − d(n−1), e(n) − e(n−1), f (n) − f (n−1)
]

6: end for

7: x̂← Pc

{

y − λPl{d(N), e(N), f (N)}
}

The four operators Pl Pc, PT
l and Pp in Alg. 14 are defined as follows.

Pl : R
(Nx−1)×Ny×Nz × R

Nx×(Ny−1)×Nz × R
Nx×Ny×(Nz−1) → R

Nx×Ny×Nz :

[

Pl{a,b, c}
]

nx,ny,nz
= [a]nx,ny,nz

+ [b]nx,ny,nz
+ [c]nx,ny,nz

− [a]nx−1,ny,nz
− [b]nx,ny−1,nz

− [c]nx,ny,nz−1

for nx = 1, · · · , Nx, ny = 1, · · · , Ny, nz = 1, · · · , Nz,

(B.3)

where we assume [a]0,ny,nz
= [a]Nx,ny,nz

= [b]nx,0,nz
= [b]nx,Ny,nz

= [c]nx,ny,0 = [c]nx,ny,Nz
≡ 0.

Pc : R
Nx×Ny×Nz → R

Nx×Ny×Nz :

[

Pc{x}
]

nx,ny,nz
= max

{

0, [x]nx,ny,nz
.
}

(B.4)
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PT
l : R

Nx×Ny×Nz → R
(Nx−1)×Ny×Nz × R

Nx×(Ny−1)×Nz × R
Nx×Ny×(Nz−1): If we denote the

input and output matrices by y and (a,b, c) respectively, we have

[a]nx,ny,nz
=[y]nx,ny,nz

− [y]nx+1,ny,nz
,

for nx = 1, · · · , Nx − 1, ny = 1, · · · , Ny, nz = 1, · · · , Nz

[b]nx,ny,nz
=[y]nx,ny,nz

− [y]nx,ny+1,nz
,

for nx = 1, · · · , Nx, ny = 1, · · · , Ny − 1, nz = 1, · · · , Nz

[c]nx,ny,nz
=[y]nx,ny,nz

− [y]nx,ny,nz+1,

for nx = 1, · · · , Nx, ny = 1, · · · , Ny, nz = 1, · · · , Nz − 1.

(B.5)

Pp : R
(Nx−1)×Ny×Nz ×R

Nx×(Ny−1)×Nz ×R
Nx×Ny×(Nz−1) → R

(Nx−1)×Ny×Nz ×R
Nx×(Ny−1)×Nz ×

R
Nx×Ny×(Nz−1): If we denote the input and output matrices by (a,b, c) and (d, e, f) respec-

tively, we have

[d]nx,ny,nz
=

[a]nx,ny,nz

max
{

1,
√

[a]2nx,ny,nz
+ [b]2nx,ny,nz

+ [c]2nx,ny,nz

}

[e]nx,ny,nz
=

[b]nx,ny,nz

max
{

1,
√

[a]2nx,ny,nz
+ [b]2nx,ny,nz

+ [c]2nx,ny,nz

}

[f ]nx,ny,nz
=

[c]nx,ny,nz

max
{

1,
√

[a]2nx,ny,nz
+ [b]2nx,ny,nz

+ [c]2nx,ny,nz

}

,

(B.6)

where nx = 1, · · · , Nx, ny = 1, · · · , Ny, nz = 1, · · · , Nz, and we assume [a]0,ny ,nz
= [a]Nx,ny,nz

=

[b]nx,0,nz
= [b]nx,Ny,nz

= [c]nx,ny,0 = [c]nx,ny,Nz
≡ 0.
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Appendix C

Derivation of Equation (6.4)

The integrated data function g(rs, t) in Eqn. (2.2), evaluated at the q-th transducer and the

k-th time instance, can be expressed as:

g(rs
q, t)
∣

∣

∣

t=k∆t

=

∫

|rs
q−r|=kc0∆t

drA(r), (C.1)

where rs
q denotes the location of the q-th point-like transducer. We defined a local coordinate

system, distinguished by a superscript ‘tr’, centered at the q-th transducer with the ztr-axis

pointing to the origin of the global coordinate system as shown in Fig. 6.1-(b). Assuming the

object function A(r) is compactly supported in a sphere of radius R, the integral surface is

symmetric about the ztr-axis. Thus, the orientations of the xtr- and ytr-axes can be arbitrary

within the ztr = 0 plane. Representing the right-hand side of Eqn. (C.1) in the local spherical

coordinate system, one obtains

g(rs
q, t)
∣

∣

∣

t=k∆t

= (kc0∆t)
2

∫ θtr
max

0

dθtr sin θtr

∫ 2π

0

dφtrA(kc0∆t, θ
tr, φtr), (C.2)

where θtr
max is half of the apex angle of the cone that corresponds to the intersectional spherical

cap as shown in Fig. 6.1-(b). The polar angle θtr and the azimuth angle φtr were discretized

with intervals ∆θtr that satisfied

kc0∆t∆θtr = kc0∆t sin θtr∆φtr = ∆s. (C.3)
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Therefore, Eqn. (C.2) can be approximated by

g(rs
q, t)
∣

∣

∣

t=k∆t

≈ ∆2
s

Ni−1
∑

i=0

Nj−1
∑

j=0

A(kc0∆t, θ
tr
i , φ

tr
j ), (C.4)

where Ni = ⌊θtr
max/∆θtr⌋, Nj = ⌊2π/∆φtr⌋, θtr

i = i∆θtr, and φtr
j = j∆φtr. We denoted

by rk,i,j the location in the global coordinate system corresponding to the location vector

(kc0∆t, θ
tr
i , φ

tr
j ) in the local coordinate system in Eqn. (C.4). On substitution from the finite-

dimensional representation Eqn. (4.10) into Eqn. (C.4) with α and ψn(r) defined by Eqns.

(6.1) and (6.2), respectively, we obtained:

g(rs
q, t)
∣

∣

∣

t=k∆t

≈ ∆2
s

N−1
∑

n=0

[

αint

]

n

Ni−1
∑

i=0

Nj−1
∑

j=0

ψint
n (rk,i,j) ≡

[

g
]

qK+k
. (C.5)

116



References

[1] M.A Anastasio, J. Zhang, X. Pan, Y Zou, G. Keng, and L.V Wang. Half-time image
reconstruction in thermoacoustic tomography. IEEE Transactions on Medical Imaging,
24:199–210, 2005.

[2] M.A. Anastasio, Jin Zhang, E.Y. Sidky, Yu Zou, D. Xia, and Xiaochuan Pan. Feasibil-
ity of half-data image reconstruction in 3-D reflectivity tomography with a spherical
aperture. Medical Imaging, IEEE Transactions on, 24(9):1100 –1112, sept. 2005.

[3] Mark A. Anastasio, Kun Wang, Jin Zhang, Gabe A. Kruger, Daniel Reinecke, and
Robert A. Kruger. Improving limited-view reconstruction in photoacoustic tomography
by incorporating a priori boundary information. volume 6856, page 68561B. SPIE,
2008.

[4] M. A Anastasio and J. Zhang. Image reconstruction in photoacoustic tomography with
truncated cylindrical measurement apertures. In Proceedings of the SPIE Conference,
volume 6086, page 36, 2006.

[5] M. A Anastasio, J. Zhang, D. Modgil, and P. La Riviere. Application of inverse source
concepts to photoacoustic tomography. Inverse Problems, 23:S21–S35, 2007.

[6] Valeri G. Andreev, Alexander A. Karabutov, Anatoliy E. Ponomaryov, and Alexan-
der A. Oraevsky. Detection of optoacoustic transients with a rectangular transducer
of finite dimensions. volume 4618, pages 153–162. SPIE, 2002.

[7] O Axelsson. Iterative Solution Methods. Cambridge University Press, Cambridge, UK,
1994.

[8] Sylvain Ballandras, Mikael Wilm, Paul-Francis Edoa, Abdelaziz Soufyane, Vincent
Laude, William Steichen, and Raphael Lardat. Finite-element analysis of periodic
piezoelectric transducers. Journal of Applied Physics, 93(1):702–711, 2003.

[9] H. Barrett and K. Myers. Foundations of Image Science. Wiley Series in Pure and
Applied Optics, 2004.

[10] A. Beck and M. Teboulle. Fast gradient-based algorithms for constrained total variation
image denoising and deblurring problems. Image Processing, IEEE Transactions on,
18(11):2419 –2434, nov. 2009.

117



[11] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM J. Img. Sci., 2(1):183–202, March 2009.

[12] Junguo Bian, Jeffrey H Siewerdsen, Xiao Han, Emil Y Sidky, Jerry L Prince, Charles A
Pelizzari, and Xiaochuan Pan. Evaluation of sparse-view reconstruction from flat-
panel-detector cone-beam ct. Physics in Medicine and Biology, 55(22):6575, 2010.

[13] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-
tributed optimization and statistical learning via the alternating direction method of
multipliers. Found. Trends Mach. Learn., 3(1):1–122, January 2011.

[14] Hans-Peter Brecht, Richard Su, Matt Fronheiser, Sergey A. Ermilov, Andre Con-
justeau, Anton Liopo, Massoud Motamedi, and Alexander A. Oraevsky. Optoacoustic
3d whole-body tomography: experiments in nude mice. volume 7177, page 71770E.
SPIE, 2009.

[15] Hans-Peter Brecht, Richard Su, Matthew Fronheiser, Sergey A. Ermilov, Andre Con-
justeau, and Alexander A. Oraevsky. Whole-body three-dimensional optoacoustic to-
mography system for small animals. Journal of Biomedical Optics, 14(6):064007, 2009.

[16] Shuhui Bu, Zhenbao Liu, T. Shiina, K. Kondo, M. Yamakawa, K. Fukutani, Y. Someda,
and Y. Asao. Model-based reconstruction integrated with fluence compensation for
photoacoustic tomography. Biomedical Engineering, IEEE Transactions on, 59(5):1354
–1363, may 2012.

[17] Andreas Buehler, Amir Rosenthal, Thomas Jetzfellner, Alexander Dima, Daniel
Razansky, and Vasilis Ntziachristos. Model-based optoacoustic inversions with in-
complete projection data. Medical Physics, 38(3):1694–1704, 2011.

[18] P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer. Thermoacoustic
tomography with integrating area and line detectors. Ultrasonics, Ferroelectrics and
Frequency Control, IEEE Transactions on, 52(9):1577 –1583, sept. 2005.

[19] Peter Burgholzer, Gebhard J. Matt, Markus Haltmeier, and Günther Paltauf. Exact
and approximative imaging methods for photoacoustic tomography using an arbitrary
detection surface. Phys. Rev. E, 75:046706, Apr 2007.

[20] Cheng-Ying Chou, Yi-Yen Chuo, Yukai Hung, and Weichung Wang. A fast forward
projection using multithreads for multirays on GPUs in medical image reconstruction.
Medical Physics, 38(7):4052–4065, 2011.

[21] J. F. Claerbout. Earth Sounding Analysis: Processing Versus Inversion. Blackwell
Scientific Publications, Cambridge, MA, 1992.

118



[22] Andre Conjusteau, Sergey A. Ermilov, Richard Su, Hans-Peter Brecht, Matthew P.
Fronheiser, and Alexander A. Oraevsky. Measurement of the spectral directivity of
optoacoustic and ultrasonic transducers with a laser ultrasonic source. Review of Sci-
entific Instruments, 80(9):093708 –093708–5, sep 2009.

[23] B T Cox, S R Arridge, and P C Beard. Photoacoustic tomography with a limited-
aperture planar sensor and a reverberant cavity. Inverse Problems, 23(6):S95, 2007.

[24] B. T. Cox and P. C. Beard. Fast calculation of pulsed photoacoustic fields in fluids using
k-space methods. The Journal of the Acoustical Society of America, 117(6):3616–3627,
2005.

[25] B. T. Cox and B. E. Treeby. Effect of sensor directionality on photoacoustic imaging:
a study using the k-wave toolbox. volume 7564, page 75640I. SPIE, 2010.

[26] Peter Elbau, Otmar Scherzer, and Rainer Schulze. Reconstruction formulas for pho-
toacoustic sectional imaging. Inverse Problems, 28(4):045004, 2012.

[27] Pinhas Ephrat, Lynn Keenliside, Adam Seabrook, Frank S. Prato, and Jeffrey J. L.
Carson. Three-dimensional photoacoustic imaging by sparse-array detection and iter-
ative image reconstruction. Journal of Biomedical Optics, 13(5):054052, 2008.

[28] Pinhas Ephrat, Lynn Keenliside, Adam Seabrook, Frank S. Prato, and Jeffrey J. L.
Carson. Three-dimensional photoacoustic imaging by sparse-array detection and iter-
ative image reconstruction. Journal of Biomedical Optics, 13(5):054052, 2008.

[29] Sergey A. Ermilov, Matthew P. Fronheiser, Hans-Peter Brecht, Richard Su, Andre
Conjusteau, Ketan Mehta, Pamela Otto, and Alexander A. Oraevsky. Development of
laser optoacoustic and ultrasonic imaging system for breast cancer utilizing handheld
array probes. volume 7177, page 717703. SPIE, 2009.

[30] R. O Esenaliev, A. A Karabutov, and A. A Oraevsky. Sensitivity of laser opto-acoustic
imaging in detection of small deeply embedded tumors. IEEE Journal of Selected
Topics in Quantum Electronics, 5:981–988, 1999.

[31] J A Fessler. Penalized weighted least-squares reconstruction for positron emission
tomography. IEEE Transactions on Medical Imaging, 13:290–300, 1994.

[32] J A Fessler and W. L. Rogers. Spatial resolution properties of penalized-likelihood
image reconstruction methods: Space-invariant tomographs. IEEE Transactions on
Image Processing, 5(9):1346–1358, 1996.

[33] J.A. Fessler and S.D. Booth. Conjugate-gradient preconditioning methods for shift-
variant PET image reconstruction. Image Processing, IEEE Transactions on, 8(5):688
–699, may 1999.

119



[34] D. Finch, S. Patch, and Rakesh. Determining a function from its mean values over a
family of spheres. SIAM Journal of Mathematical Analysis, 35:1213–1240, 2004.

[35] David Finch, Markus Haltmeier, and Rakesh. Inversion of spherical means and the
wave equation in even dimensions. SIAM Journal on Applied Mathematics, 68(2):392–
412, 2007.

[36] Daniel Gallego and Horacio Lamela. High-sensitivity ultrasound interferometric single-
mode polymer optical fiber sensors for biomedical applications. Opt. Lett., 34(12):1807–
1809, Jun 2009.

[37] Zijian Guo, Changhui Li, Liang Song, and Lihong V. Wang. Compressed sensing in
photoacoustic tomography in vivo. Journal of Biomedical Optics, 15(2):021311, 2010.

[38] M Haltmeier, O Scherzer, P Burgholzer, and G Paltauf. Thermoacoustic computed
tomography with large planar receivers. Inverse Problems, 20(5):1663–1673, 2004.

[39] Xiao Han, Junguo Bian, D.R. Eaker, T.L. Kline, E.Y. Sidky, E.L. Ritman, and Xi-
aochuan Pan. Algorithm-enabled low-dose micro-ct imaging. Medical Imaging, IEEE
Transactions on, 30(3):606 –620, march 2011.

[40] Gerald R. Harris. Review of transient field theory for a baffled planar piston. The
Journal of the Acoustical Society of America, 70(1):10–20, 1981.

[41] Yulia Hristova, Peter Kuchment, and Linh Nguyen. Reconstruction and time reversal
in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media.
Inverse Problems, 24(5):055006, 2008.

[42] Chao Huang, Liming Nie, Robert W. Schoonover, Zijian Guo, Carsten O. Schirra,
Mark A. Anastasio, and Lihong V. Wang. Aberration correction for transcranial pho-
toacoustic tomography of primates employing adjunct image data. Journal of Biomed-
ical Optics, 17(6):066016, 2012.

[43] Chao Huang, Liming Nie, Robert W. Schoonover, Lihong V. Wang, and Mark A.
Anastasio. Photoacoustic computed tomography correcting for heterogeneity and at-
tenuation. Journal of Biomedical Optics, 17(6):061211, 2012.

[44] Chao Huang, Alexander A. Oraevsky, and Mark A. Anastasio. Investigation of limited-
view image reconstruction in optoacoustic tomography employing a priori structural
information. volume 7800, page 780004. SPIE, 2010.

[45] J.A. Jensen and N.B. Svendsen. Calculation of pressure fields from arbitrarily shaped,
apodized, and excited ultrasound transducers. Ultrasonics, Ferroelectrics and Fre-
quency Control, IEEE Transactions on, 39(2):262 –267, mar 1992.

120



[46] A C Kak and M Slaney. Principles of Computerized Tomographic Imaging. IEEE
Press, 1988.

[47] Tatiana D. Khokhlova, Ivan M. Pelivanov, Victor V. Kozhushko, Alexei N. Zharinov,
Vladimir S. Solomatin, and Alexander A. Karabutov. Optoacoustic imaging of absorb-
ing objects in a turbid medium: ultimate sensitivity and application to breast cancer
diagnostics. Appl. Opt., 46(2):262–272, 2007.
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