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Abstract – We present timing-driven partitioning and 
simulated annealing based placement algorithms together with 
a detailed routing tool for 3D FPGA integration. The circuit is 
first divided into layers with limited number of inter-layer 
vias, and then placed on individual layers, while minimizing 
the delay of critical paths. We use our tool as a platform to 
explore the potential benefits in terms of delay and wire-length 
that 3D technologies can offer for FPGA fabrics. Experimental 
results show on average a total decrease of 21% in wire-length 
and 24% in delay, can be achieved over traditional 2D chips, 
when five layers are used in 3D integration. 
 

I. INTRODUCTION 
 
One possible future enabler of Moore’s law is 3D integration, 

and a number of successful projects have shown the viability of the 
technology [8], [9]. 3D integration can significantly reduce wire-
lengths and therefore hence circuit delay. 3D integration can 
particularly be useful for FPGA fabrics. It can address problems 
pertaining to routing congestion, limited I/O connections, low 
resource utilization and long wire delays. Even though the idea of 
3D integrated circuits is not new, recent technological advances 
have made it a viable alternative. However, there is a lack of 
efficient 3D CAD tools that can exploit the potential gains that 3D 
integration has to offer. Furthermore, a number of important issues 
– such as heat dissipation, thermal stress [15], and physical design 
considerations – remain to be addressed for some 3D architectures. 

Apart from previous work on tools for 3D standard cell 
technology [6], [12], [16] there has also been previous work on 
CAD tools for 3D FPGA integration. Alexander et al. proposed 3D 
placement and routing algorithms [2] for their architecture in [1]. 
Their placement algorithm is partitioning-based followed by a 
simulated annealing based refinement for total interconnect length 
minimization. They reported savings of up to 23% and 14% in 
total interconnect length at the placement and routing level 
respectively. An improved version of the placement algorithm 
appears as Spiffy, which performs placement and global routing 
simultaneously [3]. 

Our goal in this work is to present an efficient placement and 
detailed routing tool for 3D FPGAs. Unlike previous works on 3D 
FPGA architecture and CAD tools, we investigate the effect of 3D 
integration on delay, in addition to wire-length because wire-
length alone cannot be relied on as a metric for 3D integration 
benefits. Furthermore, apart from the commonly used single-
segment architecture, we also study multi-segment architectures in 
the third dimension. 

The main contribution of our work is as follows. 

• TPR: We developed a partitioning-based placement and maze 
routing toolset called TPR (Three-dimensional Place and 
Route). Its purpose is to serve the research community in 
predicting and exploring potential gains that the 3D 
technologies for FPGAs have to offer (similar to the role VPR 

played in the development of FPGA physical design 
algorithms). It shall be used as a platform, which can be used for 
further development and implementation of new ideas in 
placement and routing for 3D FPGAs. 

• SA-TPR: In addition to the partitioning-based 3D placement 
tool, we have also developed a Simulated Annealing based 
version of TPR (called SA-TPR) to provide speed / quality 
tradeoffs. 

• Hybrid: to provide more points on the runtime / quality 
tradeoff, we have developed a hybrid approach that uses 
partitioning to assign sub-circuits to different levels, and then 
uses simulate annealing to place individual cells within each 
layer. 

• Experiments: we report the results of our tools on multi-
segment routing in the third dimension. Furthermore, we model 
and report delay of placed and routed circuits. To the best of our 
knowledge, we are the first group to provide these features. 

 

II. PARTITIONING BASED PLACEMENT ALGORITHM 
 

A. Overview of TPR 

The philosophy of our tool closely follows that of its 2D 
counterpart, VPR [4], [17]. The flow of the TPR placement and 
routing CAD tool is shown in Fig. 1. The design flow starts with a 
technology-mapped netlist in .blif format. Then, the .blif netlist is 
converted into a netlist composed of more complex logic blocks 
with T-VPack [5]. The .net netlist as well as the architecture 
description file are the inputs to the placement algorithm. 

 
Figure 1 Flow diagram of TPR: 3D placement and routing tool 

The placement algorithm first partitions the circuit into a 
number of balanced partitions equal to the number of layers for 3D 
integration. The top layer is placed by unconstrained recursive 
partitioning. The rest of the layers are then placed in turn by 
recursive partitioning, but constrained to reduce the delay on 
timing-critical nets: the terminals of the most critical nets, which 
span more than one layer, are placed on restricted placement 
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regions. A restricted placement region for a net ni in layer lj is 
defined as the smallest bounding box in layer lj that encloses all 
projections of the terminals of net ni which are placed in layers 
above lj. Finally, global and detailed routing is performed using 
the adapted 3D version of the VPR routing algorithm. 

 

B. Placement Algorithm 

The simplified pseudo-code of the partitioning-based placement 
algorithm is shown in Fig. 2. The initial partitioning-into-layers 
step is performed using the min-cut hMetis partitioning algorithm 
[11]. This is motivated by the limitations imposed by current 
technologies, which require us to minimize the usage of vertical 
connections (it was also concluded in [7] that optimizing inter-
layer interconnect is of key importance for 3D integration 
technologies). 

 
Figure 2 Pseudo-code of TPR placement algorithm 

After the initial partitioning into layers we assign blocks (i.e., 
partitions) to layers using a linear placement technique. The goal 
of this step is to minimize both the total (vertical) wire-length and 
maximum cut between any two adjacent layers. For example, in 
Fig. 3, we would like to assign the five blocks (as a result of the 
initial 5-way min-cut partitioning) to layers of the 3D architecture 
as in the case labeled “Good” rather than in the case labeled 
“Bad”. That is because the good layer assignment minimizes both 
the total wire-length and maximum cut between adjacent layers. 
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Figure 3 Illustration of good and bad initial linear placement of partitions 
into layers 

We note that a solution for the layer assignment problem may 
not be optimal in terms of both objectives of wire-length and 
maximum cut between adjacent layers. Therefore, for this step, we 
use an efficient heuristic [19], which is able to find solutions with 
very good trade-off between wire-length and maximum cut. This 
technique is briefly described in what follows using the graph 
example shown in Fig. 5. First, we build the EV-matrix, which is 
an m×n matrix where m – the number of rows – is the number of 
edges in the graph and n – the number of columns – is the number 
of nodes. An element a(i, j)=1 in the matrix is non-zero if the j-th 
node is a terminal of the i-th net. If a node is not a terminal for a 
net, the corresponding EV-matrix element is zero. The order of the 

columns determines the order of the nodes in a linear placement. 
To minimize wire length and cut cost of the linear placement, the 
EV-matrix is transformed into a band matrix with the goal of 
minimizing the width of the band. This problem is denoted as 
B(EV-matrix)-min problem. The procedure to solve this problem 
uses row and column exchanges and is based on a sorting 
algorithm. The goal of getting the matrix to a band-form (which 
translates into a best linear ordering) serves two objectives: 

1. Cutsize minimization – by having all 1’s in the matrix 
clustered along the main diagonal, the cutsize (the number of nets 
cut by a vertical cut applied between any two consecutive nodes in 
the linear arrangement) is minimized everywhere in the linear 
arrangement.  

2. WL minimization – by minimizing the width of the band 
(maximum distance spanned by any of the nets) of the EV-matrix, 
the total wire-length of all nets is minimized. 

The pseudo-code of the procedure used for EV-matrix band-
width minimization is shown in Fig. 4, and for example in Step 2, 
the “Left” array would be {3,6,4,6,6} for the example of Fig. 5. 
Sorting this array requires swapping the second and third elements, 
which translates into swapping second and third rows of EV-
matrix. 

 
Figure 4 Pseudo-code of routine used for minimization of EV-matrix band 
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Figure 5 Illustration of good and bad initial linear placement of partitions 
into layers 

After the initial layer assignment, placement is performed on 
each layer starting with the top layer (layer 0) and continuing 
downwards till the last layer (layer L-1). The placement of every 
layer is based on edge-weighted quad-partitioning using the 
hMetis partitioning algorithm, and is similar to the approach in 
[13], which has the same quality as VPR but at 3-4 times shorter 
run times. Edge weights are computed inversely proportional to 
the timing slack of the corresponding nets. However, we also 
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selectively bias weights of the most critical nets. The set of critical 
nets is comprised of edges on the current k-most critical paths. The 
placement algorithm has an integrated static timing analysis engine 
as well as a path enumeration algorithm [14]. The delay of the 
circuit (and therefore slacks) and the set of the most critical paths 
are periodically updated based on the delay assigned to all current 
cut nets by the partitioning engine. This ensures accurate 
estimation of the circuit delay as the placement algorithm 
progresses. The rate of delay update and critical paths re-
enumeration is dictated by the runtime / estimation accuracy trade-
off. 

The recursive partitioning of a given layer stops when each 
placement region has less than four blocks. Complete overlap 
removal is done using a greedy heuristic which moves non-critical 
blocks (i.e., not on any critical paths) to the closest available 
empty location. When the placement of a layer is finished, we 
propagate placement constraints for the most critical nets. In layers 
that have net bounding box constraints, terminals that have 
placement restrictions are fixed in appropriate partitions before a 
call to the hMetis partitioning engine. This technique explicitly 
minimizes the 3D bounding-boxes of critical nets, which leads to 
minimization of the total wire-length and circuit delay. Steps 3 to 8 
of the algorithm shown in Fig. 2 are performed for all layers, and 
when the last layer is finished the circuit is completely placed. 

 

III. SA-TPR: SIMULATED ANNEALING BASED 3D 
PLACEMENT 

 
In addition to the partitioning-based approach, we have also 

extended the simulated annealing based placement algorithm of 
VPR [4] to 3D (we call this engine SA-TPR, where SA stand for 
Simulated Annealing). As in VPR, our SA engine can place 
circuits with constraints of both wire-length and timing. SA-TPR 
can deliver better wire-length / delay quality at higher runtime 
costs compared to TPR. 

Wire-length of a net is calculated as the weighted sum of its 
projected 2D bounding box and its vertical span. The weight on 
the vertical span is set to a high value to discourage usage of 
scarce vertical vias. The cost of a net e is described by the 
equation below. 
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where q is a correction factor to 2D bounding box computation, 
which accounts for nets that have more than 3 terminals (the 
original VPR code uses this factor); Cost2D is the half-perimeter 
bounding box of the projection of all the terminals of the net; 
Spanz is the vertical span of the net, and Num_layers is the number 
of layers on which terminals of net e are placed. Factors α and β 
are used to constrain the maximum length of vertical segments as 
well as the vertical channel density. To see the importance of using 
these factors, let us consider the two placements in Fig. 6. 

 
Figure 6 Two possible placements of the same net, showing different 
number of layers occupied 

The two placement scenarios would be treated identically if we 
did not separately consider both the vertical span of a net, and the 
number of layers in which its terminals are placed. Each of these 
cost components are scaled by appropriate scaling factors: α, 
which discourages placing the terminals of a net far apart in the z 
dimension (otherwise the routing of the net would require longer 
vertical vias), and β, which restricts the number of vertical vias 
(vertical channel density is lower than the horizontal channel 
density and β reflects that ratio). In Fig. 6, the placement on the 
left is preferred to the one on the right, as it could potentially use 
only one vertical segment of length two to connect the terminals in 
different layers. But the placement on the right is likely to use 
more vertical routing resources. 

Timing slack of a net determines its criticality weight. To 
compute the criticality of a net, the source-sink connection is 
projected onto 2D and its ∆x and ∆y separations in the 2D 
projection plane are calculated. Lookup tables are used to calculate 
the best-case 2D delay values, wherein unlimited routing resources 
are assumed. To accommodate a 3D structure, the separation of the 
connection in the third dimension is found and its delay is looked 
up using only one dimension of the delay tables (i.e., a net that 
spans a distance of ∆z in the vertical dimension, has the same 
delay as a 2D net with (∆z,0) bounding box). 

The movement of cells in the third dimension is unrestricted in 
order to fully explore the vertical dimension. However, the 
annealing engine constrains movement in x and y directions more 
stringently as annealing proceeds (initially movement is allowed 
across the entire dimension of the chip and then gradually it is 
shrunk to neighboring CLB’s). 

 

IV. ROUTING ALGORITHM 
 
Our 3D routing engine is shared by TPR and SA-TPR. The 3D 

FPGA architecture – described in the architecture file – is 
represented as a routing resource graph. Each node of the routing 
resource graph represents a wire (horizontal tracks in the x and y 
channels of all layers and vertical vias in the z channels) or a logic 
block (i.e., CLB) input or output pin. A directed edge represents a 
unidirectional switch (such as a tri-state buffer). A pair of directed 
edges represents a bi-directional switch (such as a pass transistor). 
An example of a routing resource graph construction is shown in 
Fig. 7. 

 
Figure 7 Illustration of the routing graph construction 

TPR 3D detailed router is based on the Pathfinder negotiated 
congestion algorithm [18]. The routing is a rip-up and re-route 
iterative process, which routes every net by the shortest path using 
a breadth-first-search technique. The cost of overused routing 
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resources is gradually increased so that the algorithm forces nets 
with alternative routes to avoid overused routing resources, leaving 
behind only the net, which needs a given resource most. We add 
extra penalties to bends of a route created by a horizontal track and 
a vertical via as well as to vias themselves in order to discourage 
the routing engine to prefer vias and therefore to avoid a net placed 
totally in one layer to be routed using tracks in different layers. 
This will make, for example, the routing engine find the routing 
shown in Fig. 8.b rather than the routing solution shown in Fig. 8.a 

 
Figure 8 Illustration of two routings for a two terminal net 

TPR router can find the minimum horizontal and vertical 
channel widths for which the circuit is fully routable. Vertical 
channel width starts with a value specified by the architecture file 
and is incremented every time when routing fails for a pre-
determined number of different values for the horizontal channel 
width. 

V. SIMULATION RESULTS 
 

A. 3D Architectures 

Our goal is to study the variation of the circuit delay and the 
total wire-length for a number of layers equal to five when the 
delay of an inter-layer wire (i.e., vertical via) has different values. 
We considered two different architectures: Sing-Seg and Multi-
Seg. In both architectures, each plane has a routing architecture 
that resembles the Xilinx Virtex II architecture (they have wire 
segments of lengths 1, 2, 6, and long lines). However, Sing-Seg 
has vertical (inter-layer) vias of length one only, while Multi-Seg 
has vertical vias that span 1, 2, and all planes. Length one vertical 
segment is assumed to have the same delay and wire-length as 2D 
unit-length segments. This is a reasonable assumption, because 3D 
fabrication methods such as [8] can create inter-layer vias that are 
merely 5-10µm long. In such vertical segments, the switch delay 
dominates the delay of the segment, which is similar to the 2D 
case. 

 

B. Experimental Results 

We cannot compare our results to any of the previous works for a 
couple of reasons. First, our place and route tool is the first to 
report comprehensive results on wire-length and circuit delay as 
well as on all other metrics such as chip area, horizontal and 
vertical channel widths, and run-times on all twenty circuit 
benchmarks of the VPR package. We cannot compare to the only 
previous existing results reported in [2] because the authors of [2] 
used only six circuit benchmarks (unavailable to us) different from 
those we use (except Apex2). Moreover, the authors of [2] report 
only wire-length and minimum channel width results obtained for 
a very simple architecture, which only contains horizontal and 
vertical routing segments of length one. This is in contrast to our 
architectures, which have mixed – Virtex II-like – routing 
resources both horizontally and vertically. 

We placed and detailed routed all circuits on 3D architectures 
with five layers. We recorded the average circuit delay and the 
average total wire-length of four different runs for each circuit. 
Results are presented in Tables 1 and 2. The Average row is the 

arithmetic mean of the values (in the HCW/VCW columns, only 
the HCW is averaged). The ratio row shows the ratio of the 
average values compared to TPR 2D (Table 1) and SA-TPR 2D 
(Table 2). Routing area is the total number of transistors used in all 
switchboxes in all layers (includes the third dimension switches). 
Footprint routing area of the 3D placements is the total routing 
area, divided by the number of layers (5 in our experiments). 
HCW (VCW) is the channel width in the planes (between layers). 

We observe that when using the TPR algorithm, delay decreases 
on average by about 22% (24%) compared to the 2D case for Sing-
Seg (Multi-Seg) architecture. In all cases, delay achieved using 
SA-TPR is smaller compared to TPR, which is not surprising, 
because annealing takes longer runtimes. When using SA-TPR, 
delay decreases by 19% (18%) compared to the 2D case placed by 
SA-TPR (which is the same as VPR). Note that these numbers are 
the relative improvements as a result of using a 3D architecture for 
the particular algorithm: either TPR or SA-TPR. We will compare 
all results in Table 3. 

As shown in Tables 1 and 2, wire-length after detailed routing 
decreases by 21% and 10% on average using TPR and SA-TPR 
algorithms for both architectures (Multi-Seg and Sing-Seg). Wire-
length is better minimized by SA-TPR. The smaller wire length 
results in smaller circuit delay. It can also have favorable impact 
on routing congestion (hence channel width), as well as power 
dissipation (especially because most of the power dissipated in 
FPGAs is due to interconnects, which account for more than 80% 
of the total area) as predicted by Rahman et al. [10]. 

Variations of the routing area and horizontal channel width are 
also presented in Tables 1 and 2. We observe that the overall area 
(i.e., chip foot-print area multiplied by the number of layers) 
slightly increases. This increase is due to the higher connectivity 
inside of a switch box (i.e., a track entering a 3D switch box will 
have to connect to 5 corresponding tracks as opposed to only 3 in 
the 2D case). Horizontal channel width decreases significantly in 
3D placements. 

Although not reported here (due to space limitations) we 
observed that, overall, run-times of SA-based placement are about 
twice the run-times of detailed routing and about an order of 
magnitude longer than run-times of partitioning-based placement. 
Therefore, partitioning-based placement can be used for efficient 
solution space exploration and different architectural feature 
exploration. The vertical channel widths, reported in Tables 1 and 
2, are 1/3-1/4 of the horizontal channel widths, which 
demonstrates that our layer partitioning and linear placement as 
well as the routing algorithm are very well tuned to minimize the 
use of vertical tracks. Another advantage of using fewer vertical 
tracks greatly reduces the required area for switchboxes. 

 

C. Experiments Using Mixed Partitioning- and SA- based 
Placement Algorithm (Hybrid) 

We also implemented a mixed partitioning and simulated-
annealing placement algorithm, called the hybrid algorithm. The 
reason for that is that the initial partitioning and assignment to 
layers does a very good job at minimizing the number of vertical 
vias. This technique combined with SA-based placement on each 
individual layer (under the restriction of not moving cells between 
layers) leads to high quality placements with minimum vertical 
connectivity. This strategy indeed leads to a decrease in wire-
length whereas delay is virtually the same compared to full SA 
placement, which results in slightly smaller horizontal channel 
width (see Table 3). These results show that the quality of our 
layer partitioning and linear placement is very good. We can see 
that the hybrid algorithm leads to best results both in terms of 

a) 

Source Sink 
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delay and wire-length but its run-time is the same as of SA-TPR 
and its area is slightly bigger. 

 

VI. CONCLUSION 
Benefits which 3D FPGA integration can offer were analyzed 

using a new placement and detailed routing tool. Placement can be 
done using either partitioning-based or simulated annealing based 

approach. Simulation experiments, after detailed routing, showed 
potential total decrease of 21% (10%) for wire-length and 24% 
(18%) for delay using the partitioning-based algorithm (or the SA-
based algorithm). We observed that the Multi-Seg architecture 
shows slightly better delay characteristics compared to the Sing-
Seg architecture. 
 

 
TABLE I DELAY, WL, HORIZONTAL CHANNEL WIDTH (HCW) VERTICAL CHANNEL WIDTH (VCW), AND AREA AFTER SUCCESSFUL 

ROUTING USING TRP  
TPR 2D TPR 3D (Sing-Seg arch, five layers) TPR 3D (Multi-Seg arch, five layers) 

Circuit Delay 
(× 10-7) 

WL Routing 
area 

(× 10+6) 

HCW Delay
(× 10-7)

WL Routing 
area

(× 10+6)

HCW /
VCW

Delay
(× 10-7)

WL Routing 
area

(× 10+6)

HCW /
VCW

Ex5p 1.14 38506 2.58 24 0.85 31816 2.94 18 / 6 0.88 31816 2.72 18 / 6
Apex4 1.19 43732 2.98 23 0.93 34970 3.31 18 / 6 0.93 34797 3.48 18 / 6

Misex3 1.10 47248 3.11 22 0.84 37821 4.11 18 / 6 0.78 37864 3.93 18 / 6
Alu4 1.27 40992 3.11 19 0.93 37578 3.67 16 / 5 0.88 37354 3.49 16 / 5
Des 1.13 88034 8.11 21 0.68 44224 4.43 18 / 5 0.69 44590 4.16 18 / 5
Seq 1.22 61906 4.25 25 0.91 48936 4.55 18 / 5 0.99 48936 4.28 18 / 5

Apex2 1.43 70415 4.66 25 1.04 55650 5.01 18 / 5 1.14 55650 4.70 18 / 5
Spla 1.93 164648 11.30 32 1.69 125773 11.20 22 / 5 1.64 125010 11.40 22 / 5
Pdc 2.76 220518 14.70 33 2.08 172274 15.70 23 / 5 1.90 172056 16.40 23 / 7

Ex1010 2.10 158444 10.70 24 1.56 143885 13.30 20 / 7 1.71 143885 12.50 20 / 4
Dsip 1.25 53157 5.62 19 0.65 34533 3.73 17 / 4 0.55 32074 4.25 19 / 5

Tseng 0.76 26412 2.14 19 0.74 22375 1.99 13 / 5 0.69 22328 1.97 12 / 5
Diffeq 1.13 40384 2.96 19 0.91 32786 3.17 13 / 5 0.98 32015 3.04 13 / 5

Bigkey 0.92 59786 5.07 18 0.63 45222 5.32 19 / 5 0.57 42172 4.38 17 / 5
S298 2.26 46767 2.96 16 2.11 45638 4.04 14 / 5 2.04 45916 4.38 17 / 5
Frisc 1.88 138419 9.03 27 1.87 99999 8.81 18 / 5 1.75 98698 9.24 19 / 5

Elliptic 1.98 119692 7.90 22 1.63 92207 8.56 18 / 5 1.58 92204 8.27 18 / 5
S38417 1.77 173171 12.90 20 1.59 158876 18.90 19 / 5 1.46 155657 15.90 18 / 5

S38584.1 1.95 207449 14.70 23 1.41 148967 14.90 15 / 5 1.44 148870 13.80 14 / 5
Clma 3.18 342074 22.10 28 2.45 281293 25.20 21 / 5 2.21 283350 25.40 23 / 5

Average 1.61 107088 7.54 22.95 1.27 84741 8.14 17.8 1.24 84262 7.88 17.95
Ratio 1.00 1.00 1.00 1.00 0.78 0.79 1.07 0.77 0.76 0.78 1.04 0.78

TABLE II DELAY, WL, HORIZONTAL CHANNEL WIDTH (HCW) VERTICAL CHANNEL WIDTH (VCW), AND AREA AFTER SUCCESSFUL 
ROUTING USING SA-TRP  

SA-TPR 2D SA-TPR 3D (Sing-Seg arch, five layers) SA-TPR 3D (Multi-Seg arch, five layers) 

Circuit Delay 
(× 10-7) 

WL Routing 
area 

(× 10+6) 

HCW Delay
(× 10-7)

WL Routing 
area

(× 10+6)

HCW Delay
(× 10-7)

WL Routing 
area

(× 10+6)

HCW

Ex5p 0.97 30319 2.16 20 0.77 26780 2.58 19 / 5 0.77 26989 2.50 19 / 5
Apex4 1.02 35108 2.58 20 0.96 32021 2.87 18 / 5 0.91 32124 2.77 18 / 5

Misex3 0.92 36634 2.76 19 0.85 34900 3.22 18 / 5 0.81 34455 3.12 18 / 5
Alu4 1.14 37335 2.68 18 0.89 33462 2.96 14 / 5 0.87 33760 2.82 14 / 5
Des 0.94 51893 5.90 16 0.58 38351 3.32 17 / 5 0.64 38619 3.08 16 / 5
Seq 0.95 46563 3.43 19 0.81 44541 4.08 19 / 5 0.86 45182 3.87 18 / 5

Apex2 1.13 51507 3.75 19 1.00 50472 4.37 18 / 5 0.89 50963 4.28 18 / 5
Spla 1.82 126218 8.91 26 1.44 108559 10.50 23 / 5 1.48 106293 9.60 21 / 5
Pdc 1.97 176412 12.30 29 1.78 149940 16.50 32 / 5 1.84 147254 13.60 26 / 5

Ex1010 2.23 123461 8.51 19 1.45 116726 10.20 18 / 5 1.48 116597 9.87 18 / 5
Dsip 1.11 29699 3.83 13 0.57 25581 2.55 13 / 5 0.55 25129 2.45 13 / 5

Tseng 0.98 131000 10.40 17 0.82 126000 12.80 16 / 5 0.84 129144 12.30 17 / 5
Diffeq 0.77 30898 2.16 15 0.75 29739 2.85 13 / 5 0.85 29549 2.74 13 / 5

Bigkey 1.17 36451 3.83 13 0.63 31909 3.17 13 / 5 0.60 32215 3.04 13 / 5
S298 1.81 39933 2.71 14 1.64 37893 3.57 14 / 5 1.59 37843 3.40 14 / 5
Frisc 1.72 105071 7.48 22 1.54 99120 8.72 19 / 5 1.47 99213 8.49 20 / 5

Elliptic 1.23 87174 7.14 19 1.33 87779 7.97 18 / 5 1.25 88105 7.70 18 / 5
S38417 1.09 136116 9.85 16 1.25 121736 11.30 14 / 5 1.38 128257 11.20 14 / 5

S38584.1 0.58 18822 1.46 13 0.60 19090 1.78 12 / 5 0.60 18969 1.78 13 / 5
Clma 2.38 260461 19.00 24 1.89 221749 19.90 19 / 5 1.75 223908 19.20 19 / 5

Average 1.29 79554 6.04 18.55 1.07 71817 6.76 17.35 1.07 72228 6.39 17.00
Ratio 1.00 1.00 1.00 1.00 0.83 0.90 1.11 0.93 0.82 0.90 1.05 0.91



 

TABLE III AVERAGE VALUES AND RATIOS RELATIVE TO SA-TRR 2D CASES 
 Averages Ratio of averages (divided by SA-TPR 2D, i.e., VPR) 

 SA-TPR 
2D 

SA-TPR 
3D Sing-
Seg 

SA-TPR 
3D Multi-
Seg 

TPR 2D TPR 3D 
Sing-Seg

TPR 3D 
Multi-Seg

Hybrid 
3D Sing-
Seg 

Hybrid 
3D Multi-
Seg 

SA-TPR 
3D Sing-
Seg 

SA-TPR 
3D Multi-
Seg 

TPR 2D TPR 3D 
Sing-Seg 

TPR 3D 
Multi-Seg 

Hybrid 
3D Sing-
Seg 

Hybrid 
3D Multi-
Seg 

Delay 
(× 10-7) 1.29 1.07 1.07 1.61 1.27 1.24 1.06 1.06 0.82 0.82 1.24 0.98 0.96 0.82 0.82 

WL 79554 71817 72228 107089 84741 84262 68154 66798 0.90 0.90 1.34 1.06 1.05 0.85 0.83 
Routing 
area 
(× 10+6) 

6.04 6.76 6.39 7.54 8.14 7.88 7.16 6.83 1.11 1.05 1.24 1.34 1.30 1.18 1.13 

HCW 18.55 17.35 17 22.95 17.8 17.95 15.81 15.35 0.93 0.91 1.23 0.95 0.96 0.85 0.82 
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