
Three-dimensional Place and Route for FPGAs

Cristinel Ababei Hushrav Mogal Kia Bazargan

Department of Electrical and Computer Engineering, University of Minnesota,
200 Union St. SE, Minneapolis MN 55455

{ababei, mhush, kia}@ece.umn.edu

Abstract – We present timing-driven partitioning and
simulated annealing based placement algorithms together with
a detailed routing tool for 3D FPGA integration. The circuit is
first divided into layers with limited number of inter-layer
vias, and then placed on individual layers, while minimizing
the delay of critical paths. We use our tool as a platform to
explore the potential benefits in terms of delay and wire-length
that 3D technologies can offer for FPGA fabrics. Experimental
results show on average a total decrease of 21% in wire-length
and 24% in delay, can be achieved over traditional 2D chips,
when five layers are used in 3D integration.

I. INTRODUCTION

One possible future enabler of Moore’s law is 3D integration,

and a number of successful projects have shown the viability of the
technology [8], [9]. 3D integration can significantly reduce wire-
lengths and therefore hence circuit delay. 3D integration can
particularly be useful for FPGA fabrics. It can address problems
pertaining to routing congestion, limited I/O connections, low
resource utilization and long wire delays. Even though the idea of
3D integrated circuits is not new, recent technological advances
have made it a viable alternative. However, there is a lack of
efficient 3D CAD tools that can exploit the potential gains that 3D
integration has to offer. Furthermore, a number of important issues
– such as heat dissipation, thermal stress [15], and physical design
considerations – remain to be addressed for some 3D architectures.

Apart from previous work on tools for 3D standard cell
technology [6], [12], [16] there has also been previous work on
CAD tools for 3D FPGA integration. Alexander et al. proposed 3D
placement and routing algorithms [2] for their architecture in [1].
Their placement algorithm is partitioning-based followed by a
simulated annealing based refinement for total interconnect length
minimization. They reported savings of up to 23% and 14% in
total interconnect length at the placement and routing level
respectively. An improved version of the placement algorithm
appears as Spiffy, which performs placement and global routing
simultaneously [3].

Our goal in this work is to present an efficient placement and
detailed routing tool for 3D FPGAs. Unlike previous works on 3D
FPGA architecture and CAD tools, we investigate the effect of 3D
integration on delay, in addition to wire-length because wire-
length alone cannot be relied on as a metric for 3D integration
benefits. Furthermore, apart from the commonly used single-
segment architecture, we also study multi-segment architectures in
the third dimension.

The main contribution of our work is as follows.

• TPR: We developed a partitioning-based placement and maze
routing toolset called TPR (Three-dimensional Place and
Route). Its purpose is to serve the research community in
predicting and exploring potential gains that the 3D
technologies for FPGAs have to offer (similar to the role VPR

played in the development of FPGA physical design
algorithms). It shall be used as a platform, which can be used for
further development and implementation of new ideas in
placement and routing for 3D FPGAs.

• SA-TPR: In addition to the partitioning-based 3D placement
tool, we have also developed a Simulated Annealing based
version of TPR (called SA-TPR) to provide speed / quality
tradeoffs.

• Hybrid: to provide more points on the runtime / quality
tradeoff, we have developed a hybrid approach that uses
partitioning to assign sub-circuits to different levels, and then
uses simulate annealing to place individual cells within each
layer.

• Experiments: we report the results of our tools on multi-
segment routing in the third dimension. Furthermore, we model
and report delay of placed and routed circuits. To the best of our
knowledge, we are the first group to provide these features.

II. PARTITIONING BASED PLACEMENT ALGORITHM

A. Overview of TPR

The philosophy of our tool closely follows that of its 2D
counterpart, VPR [4], [17]. The flow of the TPR placement and
routing CAD tool is shown in Fig. 1. The design flow starts with a
technology-mapped netlist in .blif format. Then, the .blif netlist is
converted into a netlist composed of more complex logic blocks
with T-VPack [5]. The .net netlist as well as the architecture
description file are the inputs to the placement algorithm.

Figure 1 Flow diagram of TPR: 3D placement and routing tool

The placement algorithm first partitions the circuit into a
number of balanced partitions equal to the number of layers for 3D
integration. The top layer is placed by unconstrained recursive
partitioning. The rest of the layers are then placed in turn by
recursive partitioning, but constrained to reduce the delay on
timing-critical nets: the terminals of the most critical nets, which
span more than one layer, are placed on restricted placement

Circuit (.blif)

Architecture

T-VPack

Tech mapped
netlist (.net)

Partitioning and assignment to layers

Constraint driven placement
top-to-bottom layers

3D detailed routing

TPR tool

Placement and routing info

regions. A restricted placement region for a net ni in layer lj is
defined as the smallest bounding box in layer lj that encloses all
projections of the terminals of net ni which are placed in layers
above lj. Finally, global and detailed routing is performed using
the adapted 3D version of the VPR routing algorithm.

B. Placement Algorithm

The simplified pseudo-code of the partitioning-based placement
algorithm is shown in Fig. 2. The initial partitioning-into-layers
step is performed using the min-cut hMetis partitioning algorithm
[11]. This is motivated by the limitations imposed by current
technologies, which require us to minimize the usage of vertical
connections (it was also concluded in [7] that optimizing inter-
layer interconnect is of key importance for 3D integration
technologies).

Figure 2 Pseudo-code of TPR placement algorithm

After the initial partitioning into layers we assign blocks (i.e.,
partitions) to layers using a linear placement technique. The goal
of this step is to minimize both the total (vertical) wire-length and
maximum cut between any two adjacent layers. For example, in
Fig. 3, we would like to assign the five blocks (as a result of the
initial 5-way min-cut partitioning) to layers of the 3D architecture
as in the case labeled “Good” rather than in the case labeled
“Bad”. That is because the good layer assignment minimizes both
the total wire-length and maximum cut between adjacent layers.

5-way initial
partitioning

3 1

2 4

1

Good
Cut # = 14

3
1

2 4

1

3
1

2 4
1

Bad
Cut # = 28

OK

Figure 3 Illustration of good and bad initial linear placement of partitions
into layers

We note that a solution for the layer assignment problem may
not be optimal in terms of both objectives of wire-length and
maximum cut between adjacent layers. Therefore, for this step, we
use an efficient heuristic [19], which is able to find solutions with
very good trade-off between wire-length and maximum cut. This
technique is briefly described in what follows using the graph
example shown in Fig. 5. First, we build the EV-matrix, which is
an m×n matrix where m – the number of rows – is the number of
edges in the graph and n – the number of columns – is the number
of nodes. An element a(i, j)=1 in the matrix is non-zero if the j-th
node is a terminal of the i-th net. If a node is not a terminal for a
net, the corresponding EV-matrix element is zero. The order of the

columns determines the order of the nodes in a linear placement.
To minimize wire length and cut cost of the linear placement, the
EV-matrix is transformed into a band matrix with the goal of
minimizing the width of the band. This problem is denoted as
B(EV-matrix)-min problem. The procedure to solve this problem
uses row and column exchanges and is based on a sorting
algorithm. The goal of getting the matrix to a band-form (which
translates into a best linear ordering) serves two objectives:

1. Cutsize minimization – by having all 1’s in the matrix
clustered along the main diagonal, the cutsize (the number of nets
cut by a vertical cut applied between any two consecutive nodes in
the linear arrangement) is minimized everywhere in the linear
arrangement.

2. WL minimization – by minimizing the width of the band
(maximum distance spanned by any of the nets) of the EV-matrix,
the total wire-length of all nets is minimized.

The pseudo-code of the procedure used for EV-matrix band-
width minimization is shown in Fig. 4, and for example in Step 2,
the “Left” array would be {3,6,4,6,6} for the example of Fig. 5.
Sorting this array requires swapping the second and third elements,
which translates into swapping second and third rows of EV-
matrix.

Figure 4 Pseudo-code of routine used for minimization of EV-matrix band

 1 3 4 2 6 5
1 1 1 0 0 0 0
3 0 1 1 0 0 0
2 0 0 0 1 1 0
4 0 1 0 0 1 0
5 0 0 0 0 1 1

 1 2 3 4 5 6
1 1 0 1 0 0 0
2 0 1 0 0 0 1
3 0 0 1 1 0 0
4 0 0 1 0 0 1
5 0 0 0 0 1 1

2 1

6
34 5

1 2

3 4
5

21 63 4 5

31 54 2 6

WL=11, Max-cut=3

WL=7, Max-cut=2

Band-width minimization

Figure 5 Illustration of good and bad initial linear placement of partitions
into layers

After the initial layer assignment, placement is performed on
each layer starting with the top layer (layer 0) and continuing
downwards till the last layer (layer L-1). The placement of every
layer is based on edge-weighted quad-partitioning using the
hMetis partitioning algorithm, and is similar to the approach in
[13], which has the same quality as VPR but at 3-4 times shorter
run times. Edge weights are computed inversely proportional to
the timing slack of the corresponding nets. However, we also

Input:
 G(V,E)
Algorithm:
1. Build EV-matrix
2. Build “Left” array of indices of right-most

non-zero elements. Sort array swapping rows
3. Build “Top” array of indices of bottom-most

non-zero elements. Sort array swapping
columns

4. Build “Right” array of indices of left-most
non-zero elements. Sort array swapping rows

5. Build “Bottom” array of indices of top-most
non-zero elements. Sort array swapping
columns

Input:
 Tech mapped netlist .net G(V,E)
 Architecture description file
Algorithm:
1. Initial min-cut partitioning into layers for

via minimization
2. For all layers i=0 to L-1 from top to bottom
3. Partitioning based placement of layer i
4. Update timing slacks
5. Re-enumerate critical paths
6. Greedy overlap removal
7. Constraint generation for layers below

(only for critical nets)
8. Write .p placement output file

selectively bias weights of the most critical nets. The set of critical
nets is comprised of edges on the current k-most critical paths. The
placement algorithm has an integrated static timing analysis engine
as well as a path enumeration algorithm [14]. The delay of the
circuit (and therefore slacks) and the set of the most critical paths
are periodically updated based on the delay assigned to all current
cut nets by the partitioning engine. This ensures accurate
estimation of the circuit delay as the placement algorithm
progresses. The rate of delay update and critical paths re-
enumeration is dictated by the runtime / estimation accuracy trade-
off.

The recursive partitioning of a given layer stops when each
placement region has less than four blocks. Complete overlap
removal is done using a greedy heuristic which moves non-critical
blocks (i.e., not on any critical paths) to the closest available
empty location. When the placement of a layer is finished, we
propagate placement constraints for the most critical nets. In layers
that have net bounding box constraints, terminals that have
placement restrictions are fixed in appropriate partitions before a
call to the hMetis partitioning engine. This technique explicitly
minimizes the 3D bounding-boxes of critical nets, which leads to
minimization of the total wire-length and circuit delay. Steps 3 to 8
of the algorithm shown in Fig. 2 are performed for all layers, and
when the last layer is finished the circuit is completely placed.

III. SA-TPR: SIMULATED ANNEALING BASED 3D
PLACEMENT

In addition to the partitioning-based approach, we have also

extended the simulated annealing based placement algorithm of
VPR [4] to 3D (we call this engine SA-TPR, where SA stand for
Simulated Annealing). As in VPR, our SA engine can place
circuits with constraints of both wire-length and timing. SA-TPR
can deliver better wire-length / delay quality at higher runtime
costs compared to TPR.

Wire-length of a net is calculated as the weighted sum of its
projected 2D bounding box and its vertical span. The weight on
the vertical span is set to a high value to discourage usage of
scarce vertical vias. The cost of a net e is described by the
equation below.

)(_)(
2

)(
3

elayersNum
z

Spane
D

Costqe
D

Cost ⋅+⋅+⋅= βα

where q is a correction factor to 2D bounding box computation,
which accounts for nets that have more than 3 terminals (the
original VPR code uses this factor); Cost2D is the half-perimeter
bounding box of the projection of all the terminals of the net;
Spanz is the vertical span of the net, and Num_layers is the number
of layers on which terminals of net e are placed. Factors α and β
are used to constrain the maximum length of vertical segments as
well as the vertical channel density. To see the importance of using
these factors, let us consider the two placements in Fig. 6.

Figure 6 Two possible placements of the same net, showing different
number of layers occupied

The two placement scenarios would be treated identically if we
did not separately consider both the vertical span of a net, and the
number of layers in which its terminals are placed. Each of these
cost components are scaled by appropriate scaling factors: α,
which discourages placing the terminals of a net far apart in the z
dimension (otherwise the routing of the net would require longer
vertical vias), and β, which restricts the number of vertical vias
(vertical channel density is lower than the horizontal channel
density and β reflects that ratio). In Fig. 6, the placement on the
left is preferred to the one on the right, as it could potentially use
only one vertical segment of length two to connect the terminals in
different layers. But the placement on the right is likely to use
more vertical routing resources.

Timing slack of a net determines its criticality weight. To
compute the criticality of a net, the source-sink connection is
projected onto 2D and its ∆x and ∆y separations in the 2D
projection plane are calculated. Lookup tables are used to calculate
the best-case 2D delay values, wherein unlimited routing resources
are assumed. To accommodate a 3D structure, the separation of the
connection in the third dimension is found and its delay is looked
up using only one dimension of the delay tables (i.e., a net that
spans a distance of ∆z in the vertical dimension, has the same
delay as a 2D net with (∆z,0) bounding box).

The movement of cells in the third dimension is unrestricted in
order to fully explore the vertical dimension. However, the
annealing engine constrains movement in x and y directions more
stringently as annealing proceeds (initially movement is allowed
across the entire dimension of the chip and then gradually it is
shrunk to neighboring CLB’s).

IV. ROUTING ALGORITHM

Our 3D routing engine is shared by TPR and SA-TPR. The 3D

FPGA architecture – described in the architecture file – is
represented as a routing resource graph. Each node of the routing
resource graph represents a wire (horizontal tracks in the x and y
channels of all layers and vertical vias in the z channels) or a logic
block (i.e., CLB) input or output pin. A directed edge represents a
unidirectional switch (such as a tri-state buffer). A pair of directed
edges represents a bi-directional switch (such as a pass transistor).
An example of a routing resource graph construction is shown in
Fig. 7.

Figure 7 Illustration of the routing graph construction

TPR 3D detailed router is based on the Pathfinder negotiated
congestion algorithm [18]. The routing is a rip-up and re-route
iterative process, which routes every net by the shortest path using
a breadth-first-search technique. The cost of overused routing

Num_layers(e) = 2
Spanz = 2

Num_layers(e) = 3
Spanz = 2

Source A_out Wire 1 Wire 3 B_in1

B_in2

Sink

Wire 2 Wire 4

Wire 5
Wire 6 Sink C_in1

LUT A LUT B
B in1 B in2 A out

LUT C
C in1

Wire 2
Wire 1

Wire 4
Wire 3

Wire 6

Wire 5
Switch-box

resources is gradually increased so that the algorithm forces nets
with alternative routes to avoid overused routing resources, leaving
behind only the net, which needs a given resource most. We add
extra penalties to bends of a route created by a horizontal track and
a vertical via as well as to vias themselves in order to discourage
the routing engine to prefer vias and therefore to avoid a net placed
totally in one layer to be routed using tracks in different layers.
This will make, for example, the routing engine find the routing
shown in Fig. 8.b rather than the routing solution shown in Fig. 8.a

Figure 8 Illustration of two routings for a two terminal net

TPR router can find the minimum horizontal and vertical
channel widths for which the circuit is fully routable. Vertical
channel width starts with a value specified by the architecture file
and is incremented every time when routing fails for a pre-
determined number of different values for the horizontal channel
width.

V. SIMULATION RESULTS

A. 3D Architectures

Our goal is to study the variation of the circuit delay and the
total wire-length for a number of layers equal to five when the
delay of an inter-layer wire (i.e., vertical via) has different values.
We considered two different architectures: Sing-Seg and Multi-
Seg. In both architectures, each plane has a routing architecture
that resembles the Xilinx Virtex II architecture (they have wire
segments of lengths 1, 2, 6, and long lines). However, Sing-Seg
has vertical (inter-layer) vias of length one only, while Multi-Seg
has vertical vias that span 1, 2, and all planes. Length one vertical
segment is assumed to have the same delay and wire-length as 2D
unit-length segments. This is a reasonable assumption, because 3D
fabrication methods such as [8] can create inter-layer vias that are
merely 5-10µm long. In such vertical segments, the switch delay
dominates the delay of the segment, which is similar to the 2D
case.

B. Experimental Results

We cannot compare our results to any of the previous works for a
couple of reasons. First, our place and route tool is the first to
report comprehensive results on wire-length and circuit delay as
well as on all other metrics such as chip area, horizontal and
vertical channel widths, and run-times on all twenty circuit
benchmarks of the VPR package. We cannot compare to the only
previous existing results reported in [2] because the authors of [2]
used only six circuit benchmarks (unavailable to us) different from
those we use (except Apex2). Moreover, the authors of [2] report
only wire-length and minimum channel width results obtained for
a very simple architecture, which only contains horizontal and
vertical routing segments of length one. This is in contrast to our
architectures, which have mixed – Virtex II-like – routing
resources both horizontally and vertically.

We placed and detailed routed all circuits on 3D architectures
with five layers. We recorded the average circuit delay and the
average total wire-length of four different runs for each circuit.
Results are presented in Tables 1 and 2. The Average row is the

arithmetic mean of the values (in the HCW/VCW columns, only
the HCW is averaged). The ratio row shows the ratio of the
average values compared to TPR 2D (Table 1) and SA-TPR 2D
(Table 2). Routing area is the total number of transistors used in all
switchboxes in all layers (includes the third dimension switches).
Footprint routing area of the 3D placements is the total routing
area, divided by the number of layers (5 in our experiments).
HCW (VCW) is the channel width in the planes (between layers).

We observe that when using the TPR algorithm, delay decreases
on average by about 22% (24%) compared to the 2D case for Sing-
Seg (Multi-Seg) architecture. In all cases, delay achieved using
SA-TPR is smaller compared to TPR, which is not surprising,
because annealing takes longer runtimes. When using SA-TPR,
delay decreases by 19% (18%) compared to the 2D case placed by
SA-TPR (which is the same as VPR). Note that these numbers are
the relative improvements as a result of using a 3D architecture for
the particular algorithm: either TPR or SA-TPR. We will compare
all results in Table 3.

As shown in Tables 1 and 2, wire-length after detailed routing
decreases by 21% and 10% on average using TPR and SA-TPR
algorithms for both architectures (Multi-Seg and Sing-Seg). Wire-
length is better minimized by SA-TPR. The smaller wire length
results in smaller circuit delay. It can also have favorable impact
on routing congestion (hence channel width), as well as power
dissipation (especially because most of the power dissipated in
FPGAs is due to interconnects, which account for more than 80%
of the total area) as predicted by Rahman et al. [10].

Variations of the routing area and horizontal channel width are
also presented in Tables 1 and 2. We observe that the overall area
(i.e., chip foot-print area multiplied by the number of layers)
slightly increases. This increase is due to the higher connectivity
inside of a switch box (i.e., a track entering a 3D switch box will
have to connect to 5 corresponding tracks as opposed to only 3 in
the 2D case). Horizontal channel width decreases significantly in
3D placements.

Although not reported here (due to space limitations) we
observed that, overall, run-times of SA-based placement are about
twice the run-times of detailed routing and about an order of
magnitude longer than run-times of partitioning-based placement.
Therefore, partitioning-based placement can be used for efficient
solution space exploration and different architectural feature
exploration. The vertical channel widths, reported in Tables 1 and
2, are 1/3-1/4 of the horizontal channel widths, which
demonstrates that our layer partitioning and linear placement as
well as the routing algorithm are very well tuned to minimize the
use of vertical tracks. Another advantage of using fewer vertical
tracks greatly reduces the required area for switchboxes.

C. Experiments Using Mixed Partitioning- and SA- based
Placement Algorithm (Hybrid)

We also implemented a mixed partitioning and simulated-
annealing placement algorithm, called the hybrid algorithm. The
reason for that is that the initial partitioning and assignment to
layers does a very good job at minimizing the number of vertical
vias. This technique combined with SA-based placement on each
individual layer (under the restriction of not moving cells between
layers) leads to high quality placements with minimum vertical
connectivity. This strategy indeed leads to a decrease in wire-
length whereas delay is virtually the same compared to full SA
placement, which results in slightly smaller horizontal channel
width (see Table 3). These results show that the quality of our
layer partitioning and linear placement is very good. We can see
that the hybrid algorithm leads to best results both in terms of

a)

Source Sink

b)

delay and wire-length but its run-time is the same as of SA-TPR
and its area is slightly bigger.

VI. CONCLUSION
Benefits which 3D FPGA integration can offer were analyzed

using a new placement and detailed routing tool. Placement can be
done using either partitioning-based or simulated annealing based

approach. Simulation experiments, after detailed routing, showed
potential total decrease of 21% (10%) for wire-length and 24%
(18%) for delay using the partitioning-based algorithm (or the SA-
based algorithm). We observed that the Multi-Seg architecture
shows slightly better delay characteristics compared to the Sing-
Seg architecture.

TABLE I DELAY, WL, HORIZONTAL CHANNEL WIDTH (HCW) VERTICAL CHANNEL WIDTH (VCW), AND AREA AFTER SUCCESSFUL

ROUTING USING TRP
TPR 2D TPR 3D (Sing-Seg arch, five layers) TPR 3D (Multi-Seg arch, five layers)

Circuit Delay
(× 10-7)

WL Routing
area

(× 10+6)

HCW Delay
(× 10-7)

WL Routing
area

(× 10+6)

HCW /
VCW

Delay
(× 10-7)

WL Routing
area

(× 10+6)

HCW /
VCW

Ex5p 1.14 38506 2.58 24 0.85 31816 2.94 18 / 6 0.88 31816 2.72 18 / 6
Apex4 1.19 43732 2.98 23 0.93 34970 3.31 18 / 6 0.93 34797 3.48 18 / 6

Misex3 1.10 47248 3.11 22 0.84 37821 4.11 18 / 6 0.78 37864 3.93 18 / 6
Alu4 1.27 40992 3.11 19 0.93 37578 3.67 16 / 5 0.88 37354 3.49 16 / 5
Des 1.13 88034 8.11 21 0.68 44224 4.43 18 / 5 0.69 44590 4.16 18 / 5
Seq 1.22 61906 4.25 25 0.91 48936 4.55 18 / 5 0.99 48936 4.28 18 / 5

Apex2 1.43 70415 4.66 25 1.04 55650 5.01 18 / 5 1.14 55650 4.70 18 / 5
Spla 1.93 164648 11.30 32 1.69 125773 11.20 22 / 5 1.64 125010 11.40 22 / 5
Pdc 2.76 220518 14.70 33 2.08 172274 15.70 23 / 5 1.90 172056 16.40 23 / 7

Ex1010 2.10 158444 10.70 24 1.56 143885 13.30 20 / 7 1.71 143885 12.50 20 / 4
Dsip 1.25 53157 5.62 19 0.65 34533 3.73 17 / 4 0.55 32074 4.25 19 / 5

Tseng 0.76 26412 2.14 19 0.74 22375 1.99 13 / 5 0.69 22328 1.97 12 / 5
Diffeq 1.13 40384 2.96 19 0.91 32786 3.17 13 / 5 0.98 32015 3.04 13 / 5

Bigkey 0.92 59786 5.07 18 0.63 45222 5.32 19 / 5 0.57 42172 4.38 17 / 5
S298 2.26 46767 2.96 16 2.11 45638 4.04 14 / 5 2.04 45916 4.38 17 / 5
Frisc 1.88 138419 9.03 27 1.87 99999 8.81 18 / 5 1.75 98698 9.24 19 / 5

Elliptic 1.98 119692 7.90 22 1.63 92207 8.56 18 / 5 1.58 92204 8.27 18 / 5
S38417 1.77 173171 12.90 20 1.59 158876 18.90 19 / 5 1.46 155657 15.90 18 / 5

S38584.1 1.95 207449 14.70 23 1.41 148967 14.90 15 / 5 1.44 148870 13.80 14 / 5
Clma 3.18 342074 22.10 28 2.45 281293 25.20 21 / 5 2.21 283350 25.40 23 / 5

Average 1.61 107088 7.54 22.95 1.27 84741 8.14 17.8 1.24 84262 7.88 17.95
Ratio 1.00 1.00 1.00 1.00 0.78 0.79 1.07 0.77 0.76 0.78 1.04 0.78

TABLE II DELAY, WL, HORIZONTAL CHANNEL WIDTH (HCW) VERTICAL CHANNEL WIDTH (VCW), AND AREA AFTER SUCCESSFUL
ROUTING USING SA-TRP

SA-TPR 2D SA-TPR 3D (Sing-Seg arch, five layers) SA-TPR 3D (Multi-Seg arch, five layers)

Circuit Delay
(× 10-7)

WL Routing
area

(× 10+6)

HCW Delay
(× 10-7)

WL Routing
area

(× 10+6)

HCW Delay
(× 10-7)

WL Routing
area

(× 10+6)

HCW

Ex5p 0.97 30319 2.16 20 0.77 26780 2.58 19 / 5 0.77 26989 2.50 19 / 5
Apex4 1.02 35108 2.58 20 0.96 32021 2.87 18 / 5 0.91 32124 2.77 18 / 5

Misex3 0.92 36634 2.76 19 0.85 34900 3.22 18 / 5 0.81 34455 3.12 18 / 5
Alu4 1.14 37335 2.68 18 0.89 33462 2.96 14 / 5 0.87 33760 2.82 14 / 5
Des 0.94 51893 5.90 16 0.58 38351 3.32 17 / 5 0.64 38619 3.08 16 / 5
Seq 0.95 46563 3.43 19 0.81 44541 4.08 19 / 5 0.86 45182 3.87 18 / 5

Apex2 1.13 51507 3.75 19 1.00 50472 4.37 18 / 5 0.89 50963 4.28 18 / 5
Spla 1.82 126218 8.91 26 1.44 108559 10.50 23 / 5 1.48 106293 9.60 21 / 5
Pdc 1.97 176412 12.30 29 1.78 149940 16.50 32 / 5 1.84 147254 13.60 26 / 5

Ex1010 2.23 123461 8.51 19 1.45 116726 10.20 18 / 5 1.48 116597 9.87 18 / 5
Dsip 1.11 29699 3.83 13 0.57 25581 2.55 13 / 5 0.55 25129 2.45 13 / 5

Tseng 0.98 131000 10.40 17 0.82 126000 12.80 16 / 5 0.84 129144 12.30 17 / 5
Diffeq 0.77 30898 2.16 15 0.75 29739 2.85 13 / 5 0.85 29549 2.74 13 / 5

Bigkey 1.17 36451 3.83 13 0.63 31909 3.17 13 / 5 0.60 32215 3.04 13 / 5
S298 1.81 39933 2.71 14 1.64 37893 3.57 14 / 5 1.59 37843 3.40 14 / 5
Frisc 1.72 105071 7.48 22 1.54 99120 8.72 19 / 5 1.47 99213 8.49 20 / 5

Elliptic 1.23 87174 7.14 19 1.33 87779 7.97 18 / 5 1.25 88105 7.70 18 / 5
S38417 1.09 136116 9.85 16 1.25 121736 11.30 14 / 5 1.38 128257 11.20 14 / 5

S38584.1 0.58 18822 1.46 13 0.60 19090 1.78 12 / 5 0.60 18969 1.78 13 / 5
Clma 2.38 260461 19.00 24 1.89 221749 19.90 19 / 5 1.75 223908 19.20 19 / 5

Average 1.29 79554 6.04 18.55 1.07 71817 6.76 17.35 1.07 72228 6.39 17.00
Ratio 1.00 1.00 1.00 1.00 0.83 0.90 1.11 0.93 0.82 0.90 1.05 0.91

TABLE III AVERAGE VALUES AND RATIOS RELATIVE TO SA-TRR 2D CASES
 Averages Ratio of averages (divided by SA-TPR 2D, i.e., VPR)

 SA-TPR
2D

SA-TPR
3D Sing-
Seg

SA-TPR
3D Multi-
Seg

TPR 2D TPR 3D
Sing-Seg

TPR 3D
Multi-Seg

Hybrid
3D Sing-
Seg

Hybrid
3D Multi-
Seg

SA-TPR
3D Sing-
Seg

SA-TPR
3D Multi-
Seg

TPR 2D TPR 3D
Sing-Seg

TPR 3D
Multi-Seg

Hybrid
3D Sing-
Seg

Hybrid
3D Multi-
Seg

Delay
(× 10-7) 1.29 1.07 1.07 1.61 1.27 1.24 1.06 1.06 0.82 0.82 1.24 0.98 0.96 0.82 0.82

WL 79554 71817 72228 107089 84741 84262 68154 66798 0.90 0.90 1.34 1.06 1.05 0.85 0.83
Routing
area
(× 10+6)

6.04 6.76 6.39 7.54 8.14 7.88 7.16 6.83 1.11 1.05 1.24 1.34 1.30 1.18 1.13

HCW 18.55 17.35 17 22.95 17.8 17.95 15.81 15.35 0.93 0.91 1.23 0.95 0.96 0.85 0.82

ACKNOWLEDGEMENTS

This work was supported in part by DARPA under

grant number N66001-04-1-8909.

REFERENCES

[1] A. J. Alexander, J. P. Cohoon, Jared L. Colflesh, J. Karro,

and G. Robins, “Three-Dimensional Field-Programmable
Gate Arrays”, Proc. Intl. ASIC Conf., pp. 253-256, 1995.

[2] A. J. Alexander, J. P. Cohoon, Jared L. Colflesh, J. Karro,
E. L. Peters, and G. Robins, “Placement and Routing for
Three-Dimensional FPGAs”, Fourth Canadian Workshop
on Field-Programmable Devices, pp. 11-18, 1996.

[3] J. Karro and J. P. Cohoon, “A spiffy tool for the
simultaneous placement and global routing for three-
dimensional field-programmable gate arrays”, Ninth Great
Lakes Symposium on VLSI, pp. 226-227, 1999.

[4] V. Betz and J. Rose, “VPR: A New Packing Placement and
Routing Tool for FPGA Research”, Field-Programmable
Logic App., pp. 213-222, 1997.

[5] A. Marquardt, V. Betz, J. Rose, “Using Cluster-Based
Logic Blocks and Timing-Driven Packing to Improve
FPGA Speed and Density”, FPGA, pp. 37-46, 1999.

[6] S. Das, A. Chandrakasan, and R. Reif, “Design Tools for 3-
D Integrated Circuits”, Proc. ACM/IEEE ASP-DAC, 2003.

[7] S. Das, A. Chandrakasan, and R. Reif, “Three-Dimensional
Integrated Circuits: Performance Design Methodology and
CAD Tools”, Proc. ACM/IEEE ISVLSI, 2003.

[8] R. Reif, A. Fan, K. - N. Chen, and S. Das, “Fabrication
Technologies for Three-Dimensional Integrated Circuits”,
Proc. International Symposium on Quality Electronic
Design (ISQD), 2002.

[9] K. W. Lee, T. Nakamura, T. Ono, Y. Yamada, , T.
Mizukusa, H. Hashimoto, K. T. Park, H. Kurino, and M.

Koyanagi, “Three-dimensional shared memory fabricated
using wafer stacking technology”, in Technical Digest of
the International Electron Devices Meeting, pp. 165-168,
2000.

[10] A. Rahman, S. Das, A. Chandrakasan, and R. Reif, “Wiring
Requirement and Three-Dimensional Integration of Field-
Programmable Gate Arrays”, Proc. ACM/IEEE SLIP, 2001.

[11] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar,
“Multi-level Hypergraph Partitioning: Applications in
VLSI Design”, Proc. ACM/IEEE DAC, pp. 526-529, 1997.

[12] Y. Deng and W. P. Maly, “Interconnect Characteristics of
2.5-D System Integration Scheme”, Proc. ACM/IEEE
ISPD, pp. 171-175, 2001.

[13] P. Maidee, C. Ababei and K. Bazargan, “Fast Timing-
driven Partitioning-based Placement for Island Style
FPGAs”, Proc. ACM/IEEE DAC, pp. 598-603, 2003.

[14] Y-C. Ju, R.A. Saleh, “Incremental Techniques for the
Identification of Statically Sensitizable Critical Paths”,
Proc. ACM/IEEE DAC, 1991.

[15] B. Goplen and S. Sapatnekar, “Efficient Thermal
Placement of Standard Cells in 3D ICs using a Force
Directed Approach”, Proc. ACM/IEEE ICCAD, pp. 86-89,
2003.

[16] S. T. Obenaus and T. H. Szymanski, “Gravity: Fast
Placement for 3-D VLSI”, ACM Trans. on Design
Automation of Electronic Systems (TODAES), Vol. 8, No.
3, pp. 298-315, July 2003.

[17] V. Betz, J. Rose, and A. Marquardt, “Architecture and
CAD for Deep-Submicron FPGAs”, Kluwer Academic
Publishers, 1999.

[18] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns,
“Placement and Routing Tools for the Trptych FPGA”,
IEEE Trans. VLSI Systems, Vol. 3, No. 4, pp. 472-483,
Dec. 1995.

[19] C. Ababei and K. Bazargan, “Non-contiguous Linear
Placement for Reconfigurable Fabrics”, Proc.
Reconfigurable Architectures Workshop (RAW), 2004.

