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Multistable mechanical metamaterials are materials that have multiple stable configura-
tions. The geometrical changes caused by the transition of the metamaterial from one sta-
ble state to another, could be exploited to obtain multifunctional and programmable
materials. As the stimulus amplitude is varied, a multistable metamaterial goes through a
sequence of stable configurations. However, this sequence (which we will call the defor-
mation sequence) is unpredictable if the metamaterial consists of identical unit cells. This
paper proposes to use small variations in the unit cell geometry to obtain a deterministic
deformation sequence for one type of multistable metamaterial that consists of bistable
unit cells. Based on an analytical model for a single unit cell and on the minimization of
the total strain energy, a rigorous theoretical model is proposed to analyze the nonlinear
mechanics of this type of metamaterials and to inform the designs. The proposed theoreti-
cal model is able to accurately predict the deformation sequence and the stress–strain
curves that are observed in the finite-element simulations with an elastic constitutive
model. A deterministic deformation sequence that matches the sequence predicted by the
theory and finite-element simulations is obtained in experiments with 3D-printed samples.
Furthermore, an excellent quantitative agreement between simulations and experiments
is obtained once a viscoelastic constitutive model is introduced in the finite-element
model. [DOI: 10.1115/1.4034706]

1 Introduction

Mechanical metamaterials are materials whose effective prop-
erties arise from the underlying architecture, rather than from the
bulk behavior of their constituents [1]. For example, acoustic
metamaterials can exhibit unusual acoustic behavior, such as the
ability to guide or stop elastic wave propagation along a desired
path [2–4]. Other interesting and unconventional properties of
metamaterials include negative bulk modulus [5–8], negative
Poisson’s ratio [9,10], high specific energy absorption [11,12], or
negative (dynamic) mass [5,8,13,14].

However, the functionality of a mechanical metamaterial is lim-
ited if its properties cannot be tuned after fabrication of the meta-
material. Recent studies have shown great interest in developing
tunable metamaterials by exploiting elastic instabilities that can
cause configurational changes in the microarchitecture of these
metamaterials [15]. For example, reversible changes in the micro-
architecture geometry due to elastic instabilities have been used to
tune the bandgaps in acoustic [16–20] and photonic [21,22]
metamaterials.

A snap-through instability is a kind of elastic instability in
which a structure instantaneously jumps from one configuration to
another configuration when an applied stimulus reaches a critical
level [23]. The design of mechanical metamaterials with snap-
through instabilities has been the focus of active research in recent

years [24–28]. For example, Correa et al. [25] and Restrepo et al.
[26] developed metamaterials that are made up of multiple unit
cells that each includes an initially curved beam. Through the
elastic snap-through of high number of unit cells arranged in
series, this kind of metamaterial can exhibit large hysteresis loops
in response to cyclic loads. Because of these hysteresis loops,
these metamaterials dissipate a large amount of mechanical
energy. In contrast to traditional honeycombs that rely on plastic
energy dissipation, the deformation can be fully recovered in these
metamaterials. While some of the proposed metamaterials with
snap-through instabilities are monostable, i.e., they return to their
undeformed configuration after removal of the load (for example,
the negative stiffness honeycombs designed by Correa et al. [25]),
other designs are multistable, i.e., they have multiple stable con-
figurations. For example, Shan et al. [24] developed multistable
metamaterials using bistable tilted beams. These metamaterials
can achieve large deformations and offer significant energy
absorption capacity due to the ability of the material to trap elastic
energy in a stable deformed configuration in response to an
impact. Haghpanah and Salari-Sharif [28] investigated another
design for multistable metamaterials, based on bistable structural
elements designed to be considerably stronger than the previous
designs. While these previous studies focus on multistable meta-
materials in response to compressive loads, Rafsanjani et al. [27]
showed that the design of architectures that exhibit multistability
in response to tensile loads is possible.

In multistable metamaterials, a sequence of stable configura-
tions is obtained as the stimulus amplitude is increased. However,
this sequence (which we will call the deformation sequence) is
unpredictable if, as in most previous works, the metamaterials
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consist of identical unit cells [24,26]. Imperfections in the geome-
try, material properties [29–31] or in the boundary conditions
determine the deformation sequence in the case of a multistable
metamaterial with identical unit cells. Although previous papers
about multistable metamaterials give important insight into the
design and mechanics of these metamaterials, these previous
works have not investigated strategies that would make it possible
to control their deformation sequence.

The objective of this paper is to develop and analyze
approaches to tune the deformation sequence of one kind of multi-
stable metamaterial. To achieve this objective, a rigorous theoreti-
cal model, based on an analytical model for a single unit cell and
on the minimization of the total strain energy, is developed to ana-
lyze the nonlinear mechanics and deformation sequence of multi-
stable metamaterials. Experiments with 3D-printed samples are
used to test the theory. One possible application of metamaterials
with a deterministic deformation sequence could be the control of
elastic waves. In a multistable metamaterial with a deterministic
deformation sequence, a preload could be applied to cause a pre-
dictable switch to another stable configuration; this switch in the
geometry of the microarchitecture would affect wave propagation
due to a predictable change in the frequency bandgaps of the
metamaterials. In contrast to previous tunable metamaterials
which requires to maintain the stimulus [16,19], these metamateri-
als would remain in a deformed configuration after removal of the
preload due to multistability. Thus, although tuning the deforma-
tion sequence only requires snap-through buckling, multistable
metamaterials are the focus of this paper because multistability
could have advantages in applications such as the development of
tunable metamaterials with switchable properties.

The organization of this article is as follows. First, the theoreti-
cal model and the experimental methods are presented. Then two
methods, both based on small variations in the unit cell geometry,
are proposed to obtain a deterministic deformation sequence.
These methods are validated using theoretical analysis, finite-
element simulations, and experiments performed on 3D-printed
samples.

2 Methods

2.1 Theoretical Model for Multistable Metamaterials. The
mechanics of a specific kind of multistable metamaterial, shown
in Fig. 1(a), is investigated using a theoretical model. The meta-
material is made up of multiple bistable unit cells (that are similar
to [26]), whose geometrical parameters are shown in Fig. 1(b).
The unit cell consists of thick horizontal and vertical elements and
a thin curved part. As in the previous studies [24,26], because the
loading is intended to be only in the y-direction, these metamateri-
als are called one-dimensional (1D) metamaterials.

2.1.1 Overview of Single Unit Cell Model. Analyzing the
mechanics of multistable metamaterials first requires a model of
the unit cell. The model of Qiu et al. [32], developed for a single
initially curved beam without any mode imperfection, was
extended to allow the presence of a mode shape imperfection. The
curved part of the unit cell is modeled as an initially curved
clamped–clamped Euler–Bernoulli beam, while other parts of the
unit cell are assumed to be rigid (Fig. 1(c)). A transverse force, f,
is applied at the midpoint of the beam. The governing equation
for this beam is

EI
d4w

dx4
�
d4w0

dx4

� �

þ p
d2w

dx2
¼ �fd x�

l

2

� �

(1)

where w is the lateral deflection of the beam, w0ðxÞ is the initial
shape of the beam, E is the Young’s modulus, I is the area
moment of inertia of the beam, p is the compressive force, l is the
beam span (Fig. 1(b)), and d is the Dirac delta function. In the
case of the model without any mode imperfection, w0ðxÞ is
given by

w0 xð Þ ¼
h

2
W1 xð Þ (2)

where h is the initial apex height of the beam, and W1ðxÞ ¼
1� cosð2px=lÞ is the first buckling mode of a clamped–clamped
Euler–Bernoulli beam. A model with an imperfection proportional
to the third-buckling mode was also considered in order to obtain
a deterministic deformation sequence. In this model, w0ðxÞ is
given by

w0 xð Þ ¼
h

2
W1 xð Þ þ dW xð Þ (3)

where dWðxÞ is the mode shape imperfection, which is prescribed
to be given by

dW xð Þ ¼ a3
h

2
W3 xð Þ (4)

where W3ðxÞ ¼ 1� cosð4px=lÞ is the third-buckling mode of a
clamped–clamped beam, and a3 is the mode imperfection size.
The case of a model without imperfection corresponds to a3¼ 0,
such that the model with the mode imperfection is a generalization
of the model without imperfection. For a single unit cell, the

Fig. 1 Theoretical model for 1D multistable metamaterials. (a)
An example of a 1D multistable metamaterial with three rows,
each with 3 unit cells. (b) Geometrical parameters of a single
unit cell. (c) Simplified clamped–clamped beam model of the
unit cell (a transverse force, f, is applied at the midpoint of the
beam). (d) and (e) Comparisons of normalized force and nor-
malized strain energy versus normalized deformation curves
between theory and finite-element model for a single unit cell
without third-mode imperfection (a350). (f) and (g) Compari-
sons of the normalized force and normalized strain energy
versus normalized deformation curves between theory and
finite-element model for a single unit cell without third-mode
imperfection (a35 0.1). The geometrical parameters have the fol-
lowing values: l=h5 30; h=t 5 10; w 5 15t ; H 51:5t , and T5 30t.
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compressive force, p, is caused by the shortening of the beam total
length and is given by

p ¼ �EA
Ds

s0
(5)

where A is the cross section area of the beam, Ds is the change in
the beam length, and s0 is the initial beam length. The beam
length, s, is given by

s ¼

ðl

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
dw

dx

� �2
s

dx (6)

such that the following approximations, valid for ðdw=dxÞ � 1
and ðdw0=dxÞ � 1, are used

Ds ¼

ðl

0

1

2

dw

dx

� �2

�
dw0

dx

� �2
" #

dx

s0 ¼ l

(7)

The lateral deflection of the beam at the beam midpoint, d, is
given by

d ¼ w0ðl=2Þ � wðl=2Þ (8)

Since d corresponds to the change in the height of the unit cell
when the transverse load is applied, we will refer to d as the defor-
mation of the unit cell. To make the results scale-independent, the
following normalizations [32] are used:

f ¼
l3

EIh
f ; d ¼

d

h
; U ¼

l3

EIh2
U (9)

where U is the strain energy, and an overbar denotes a normalized
quantity. The procedure and equations needed to obtain the rela-
tionship between the normalized force, normalized strain energy,
and normalized deformation are given in Appendix A.

The theoretical model was validated using nonlinear finite-
element analysis (FEA) in ABAQUS/standard using the static/gen-
eral nonlinear procedure. The FEA model is built with four-node
bilinear quadrilateral plane-stress element with reduced integra-
tion (CPS4R in ABAQUS) and an elastic, isotropic constitutive
model. The model is stimulated using displacement control, such
that the vertical (y) displacement on the top edge of the unit cell is
prescribed. The other boundary conditions are the following: the
bottom edge of the unit cell is fixed, and the top edge of the unit
cell has a fixed x-direction displacement.

Results of Figs. 1(d)–1(g) show that there is excellent agree-
ment between the theoretical model and the FEA simulation, both
in the case a3¼ 0 which corresponds to the model developed by
Qiu et al. [32] (Figs. 1(d) and 1(e)), and in the case a3 6¼ 0 which
corresponds to the model extension of this paper (Figs. 1(f) and
1(g)). It can be seen in the normalized force versus normalized
deformation curve that there is one critical point whose normalized
force value is f cr, from which point the beam begins to exhibit a
negative stiffness. In a force control simulation, this point would
correspond to the point at which the unit cell would snap through.
In the normalized strain energy versus normalized deformation
curve, there is a global minimum (point I in Figs. 1(e) and 1(g))
when d ¼ 0, and a local minimum (point III in Figs. 1(e) and 1(g))
when d � 2. These are the two stable equilibrium positions that
correspond to points I and III in Figs. 1(d) and 1(f). Moreover, there
is one local maximum (point II in Figs. 1(e) and 1(g)) in the strain
energy versus deformation curve, which is an unstable equilibrium
position corresponding to point II in Figs. 1(d) and 1(f).

2.1.2 Multiple Cells in Series: Equations and Algorithm. The
mechanics of a multistable metamaterial that is comprised of a

series of bistable unit cells can be derived from the model for a
single unit cell. Consider the metamaterial with n unit cells in
series (Fig. 2(a)) and the corresponding theoretical model shown
in Fig. 2(b). In the theoretical model, the beams are connected by
a rigid link. The bottom beam (beam 1) has clamped–clamped
boundary conditions; the left and right sections of the other beams
(beams 2, 3,…, n) are only allowed vertical (y-direction) displace-
ment. The thicknesses and mode imperfection sizes of the curved
part of each unit cell are ti and a3,i, respectively. For all unit cells,
the initial height of the curved parts is h. The displacements of the
midpoint of the curved part of unit cell i is ui (see Fig. 2(b)); the
deformations of the unit cells can be expressed as d1¼ u1, di ¼
ui � ui�1 for i¼ 2,…, n, and the total deformation is
dtot ¼

Pn
i¼1 di. The total deformation, dtot, the total strain energy,

Utot, and the loading force, f, are normalized with respect to the
parameters of unit cell 1, i.e., the following definitions are used
for the normalized force, f , the normalized deformation, d tot, and
the normalized strain energy, U tot:

f ¼
l3

EI1h
f ; d tot ¼

dtot

h
; U tot ¼

l3

EI1h2
Utot (10)

where I1 is the area moment of inertia of beam 1. When each of
the unit cells is isolated, a subscript i refers to the properties of the
ith unit cell. For single unit cells, the applied force fi, the deforma-
tion, di and the strain energy, Ui, are normalized with respect to
the properties of unit cell 1

fi ¼
l3

EI1h
fi; d i ¼

di

h
; U i ¼

l3

EI1h2
Ui (11)

where f i; d i, and U i are the normalized force, deformation, and
strain energy for unit cell i, respectively.

The deformations of each unit cell can be expressed as a vector
ðd1; d2;…; dnÞ. In order to determine the values of the compo-
nents in this vector when the total normalized deformation d tot is
increased, an algorithm similar to the algorithm proposed by Oh
and Kota [33] and Overvelde et al. [34] for multistable mecha-
nisms can be used. This algorithm requires calculating the total
normalized strain energy of the system, U totðd1; d2;…; dnÞ, which
can be computed by

U totðd1; d2;…; dnÞ ¼
X

n

i¼1

U iðdiÞ (12)

Fig. 2 (a) Multiple unit cells in series and (b) schematics of the
theoretical model with multiple unit cells in series
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where dn ¼ d tot �
Pn�1

i¼1 d i. The normalized strain energy for
each unit cell U i is determined using the theoretical model of Sec.
2.1.1. In this algorithm, the loading from d tot ¼ 0 to d tot;max is dis-
cretized into small steps of amplitude dd . Assuming that at step k
of this algorithm, the values of ðd1; d2;…; dnÞ are ðd

k

1; d
k

2;…; d
k

nÞ
; at step kþ 1, the values are found by solving the following opti-
mization problem:

minU totðd1; d2;…; dnÞ
with respect to ðd1; d2;…; dn�1Þ

subject to dn ¼ d tot �
X

n�1

i¼1

d i

(13)

This optimization problem is solved using a local optimization
algorithm (the interior-point algorithm using the fmincon function
in MATLAB). Using a local minimization algorithm is critical; dur-
ing loading the metamaterial does not switch to a state that corre-
sponds to the global minimum but remains in the neighborhood of
the current configuration.

Once the values of d i are obtained at all steps for the loading
(or unloading), the values of d i can be plotted as a function of d tot

to analyze the sequence of deformed configurations the metamate-
rial goes through when the loading parameter is increased. In the
case of a metamaterial with 2 unit cells in series, the curve of d1

as a function of d tot completely characterizes how the material
deforms during loading. This curve will be referred to as the
deformation path of the metamaterial.

In addition to the theoretical model, a corresponding FEA
model with elastic material is built using the boundary conditions
shown in Fig. 2(a), i.e., the bottom edge of unit cell 1 is fixed, the
left and right sides of these unit cells have a fixed x-direction dis-
placement, and the top edge of unit cell n also has a fixed x-
direction displacement. The deformation path and the force versus
deformation curves predicted by a static nonlinear FEA simulation
with displacement control are used to validate the theoretical
model.

2.2 Experimental Methods. Samples were fabricated by a
multimaterial 3D printer (Objet Connex 260, Stratasys, Edina,
MN). The printing material is DM9895, which is a digital material
derived by mixing two base materials. One of the two base materi-
als is TangoblackPlus, which is a rubbery material at room tem-
perature; the other one is Verowhite, which is a rigid plastic at
room temperature. The in-plane dimensions of the printed samples
are about 10 cm� 10 cm; the out-of-plane thickness is 1 cm.

In order to determine the deformation sequences of printed
samples, compression tests were conducted on a universal Mate-
rial Testing System (MTS, Model Insight 10, Eden Prairie, MN)
in a displacement control manner with a 10 kN load cell. The sam-
ples were compressed (at room temperature) using a customized
compression fixture (Fig. 6(b)) at a testing velocity of 10mm/min
until all unit cells collapse. A digital camera was used to record
the whole testing process.

3 Results

In this section, the theoretical model for elastic multistable
metamaterials is first applied to a metamaterial that consists of
two unit cells in series to demonstrate the validity of the model.
The same algorithm is then applied to design metamaterials with a
larger number of unit cells.

3.1 Analysis of the Strain Energy Landscape for
Metamaterials With Identical Unit Cells. Using the theoretical
method from Sec. 2.1, the total strain energy contours of the meta-
material with two unit cells in series can be obtained as a function
of d tot and d1, as shown in Fig. 3. The strain energy contours
show that there are four local minima, A, B, C, and D (that corre-
spond to stable equilibria) and one local maximum of the total

strain energy (that corresponds to an unstable equilibrium). The
presence of multiple minima indicates the multistability of this
metamaterial. The global minimum A is the initial undeformed
configuration. The local minima B and C correspond to cases
when only unit cell 2 has collapsed and only unit cell 1 has col-
lapsed, respectively. The local minimum D is when both unit cell
1 and unit cell 2 have collapsed. Because the two unit cells are
identical, the local minima B and C have the same strain energy
value, which means the deformation path (the curve d1ðd totÞ) dur-
ing loading can follow the sequence A–B–D or A–C–D. In an
experiment, the presence of imperfections, for example, caused by
the manufacturing process or in the experimental setup (for
instance in the application of the boundary conditions), would
determine which of the deformation paths is preferred.

Based on the analysis of the metamaterial with identical unit
cells, it can be seen that the sequence of stable configurations the
metamaterial switches in response to a given stimulus is unpre-
dictable if it consists of identical unit cells. In order to get a deter-
ministic deformation sequence, small variations in the unit cell
geometry are utilized, specifically varying the thicknesses or ini-
tial shapes of the curved parts of the unit cells. These variations
will give different values of the critical forces (as defined in Sec.
2.1.1) for each unit cell. When the unit cells are assembled
together, the unit cell with smallest critical force will deform first,
followed by the unit cell with next smaller critical force. These
two methods are analyzed next.

3.2 Using Thickness Variation to Obtain a Deterministic
Deformation Sequence. One method to obtain a deterministic
deformation sequence is to use thickness variation, i.e., varying
the thickness value of the curved part of the unit cell ti from row
to row; for example, t2¼ 1.5t1 for a metamaterial architecture
with two unit cells (Fig. 2(a)). The results for single unit cells
show that the critical force value of unit cell 2, f cr;2, is higher than
the critical force value of unit cell 1, f cr;1, which means unit cell 2
requires a larger loading force to collapse. Moreover, the strain
energy of unit cell 2 is also greater than that of unit cell 1.

Fig. 3 Contour plot of normalized total strain energy for two
identical unit cells in series as a function of the normalized
deformations d tot and d 1 (* denotes the local maximum), the
numerical values on the contour lines correspond to the values
of the normalized strain energy U tot. The solid line corresponds
to one of the possible deformation paths during loading, the
dashed line corresponds to the other possible path.
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If the unit cells are combined in series, the theoretical results of
the total strain energy contour, deformation path and normalized
force versus deformation curves can be determined using the algo-
rithm of Sec. 2.1.2 as the solid lines in Figs. 4(c)–4(e), respec-
tively. As shown in the contour plot of this metamaterial’s total
strain energy (Fig. 4(c)), the four local minima of the strain energy
are different, such that a unique deformation path is obtained. In
order to validate the theoretical results, the simulation results for
the corresponding FEA model are given in Figs. 4(d)–4(e), as the
blue dashed lines. Note the excellent agreement for the deforma-
tion path between the theoretical model and the FEA simulation
(Fig. 4(d)). Both the theoretical model and the FEA simulation
show that the deformation sequence is A–C–D for loading and
D–B–A for unloading. As shown in Figs. 4(c) and 4(d), when the
normalized total deformation d tot is about 3.4, there will be one
snap-back of unit cell 1 (i.e., the value of d1 drops instantane-
ously) during loading when unit cell 2 snaps through. In the nor-
malized force versus normalized deformation curve 4e, the first
peak has a smaller amplitude than the second peak due to the
lower stiffness of unit cell 1; futhermore, the force goes below the
horizontal axis (which means a tensile force is observed) twice
during loading.

3.3 Using Mode Shape Imperfection to Obtain a Deterministic
Deformation Sequence. Besides the method of varying the thick-
ness, the deformation sequence can also be tuned by varying the
mode shape imperfection size a3 (where the imperfection in the

initial shape of the beam, dW(x), is given by Eq. (4)). In order to
prove that the deformation sequence can be tuned by mode shape
imperfection, the force-deformation (Fig. 5(b)) and strain energy-
deformation (Fig. 5(c)) curves are first compared for a unit cell
without a mode shape imperfection (i.e., a3¼ 0) and a unit cell
with a 10% third-mode imperfection (a3¼ 0.1). The results of
both the theoretical model and FEA simulations show that the crit-
ical loading force and the strain energy of a single unit cell
decrease when the model has a third-mode imperfection.

After obtaining the results for a single unit cell, the results for
the metamaterial with two cells with different mode imperfection
sizes can be determined using the same procedure as was used in
Sec. 3.2. Consider the metamaterial with two unit cells in series,
where unit cell 2 is perfect (a3,2¼ 0) and unit cell 1 has a 10%
third-mode imperfection (a3,1¼ 0.1). In contrast to the case of
identical unit cells, the local minima of the strain energy are dif-
ferent, which makes the deformation path unique (Fig. 5(d)). The
deformation sequence is A–C–D for loading, and D–B–A for
unloading. As in the case of the metamaterial with two cells using

Fig. 4 Theoretical analysis of the effect of varying the thick-
ness from row to row on the deformation path. (a) Normalized
force versus deformation curves for single unit cells of different
thicknesses. (b) Normalized strain energy versus deformation
curves for single unit cells of different thicknesses. In (a) and
(b), solid lines correspond to the theoretical model and dashed
lines to FEA simulations. (c) Contours of the total strain energy
of a metamaterial with two unit cells with different thicknesses.
The deformation path obtained using the theoretical model is
shown for loading (solid line) and unloading (dashed line). (d)
Comparison between the deformation paths of the metamaterial
obtained using the theoretical model and FEA simulations. (e)
Normalized force versus normalized total deformation (for load-
ing only).

Fig. 5 Theoretical analysis of the effect of mode shape imper-
fection on the deformation path. (a) Metamaterial with two unit
cells in series: unit cell 2 has no mode shape imperfection
(a3,25 0), unit cell 1 has a third-mode shape imperfection
(a3,15 0.1). (b) and (c) Comparison curves of normalized force
versus deformation and normalized strain energy versus defor-
mation for single unit cell 2 with a350 and unit cell 1 with
a35 0.1 (solid lines are theoretical results, dashed lines are
results from FEA). (d) Contour plot of total strain energy for the
metamaterial with two unit cells (shown in a). The deformation
path obtained using the theoretical model is shown for loading
(solid line) and unloading (dashed line). (e) Comparison
between the deformation paths of the metamaterial (shown in a)
obtained using the theoretical model and FEA simulations. (f)
Normalized force versus normalized total deformation (for load-
ing only).
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thickness variation, there will be one snap-back of the unit cell 1
during the initial snap-through of unit cell 2 (Fig. 5(d)), when the
normalized total deformation d tot is about 3.3. As in the case of
thickness variation, the first peak in the normalized force versus
normalized deformation curve has a smaller amplitude due to the
smaller critical force in unit cell 1 (Fig. 5(f)); furthermore, a ten-
sile force is observed twice during the loading. However, in con-
trast to the case of the thickness variation, the first peak has a
smoother shape than the second peak because adding an imperfec-
tion significantly affects the shape of the normalized deflection
versus normalized deformation curve for a single unit cell (see
Fig. 5(a)).

3.4 Experimental Validation of the Two Methods

3.4.1 Qualitative Validation: Deformation Sequence. Several
multistable architectures were fabricated using a 3D printing tech-
nique. These samples were tested using a customized compression
fixture (shown in Fig. 6(b)) to experimentally validate that the
methods of thickness variation and mode shape imperfection can
be used to tune the deformation sequence. Moreover, considering
the viscoelasticity of the samples, FEA models with a viscoelastic
constitutive model were built for comparisons with the experi-
ments (see Appendix B). In these models, the bottom edge is fixed
and the top edge has a fixed x-direction displacement, while its y-
displacement is prescribed to move at a constant velocity; the left
and right edges are left free. The response to stimulation of the
metamaterial at a constant strain rate was simulated using nonlin-
ear quasi-static FEA simulations (VISCO procedure in ABAQUS)
with displacement control.

One of the printed samples is the multistable metamaterial
shown in Fig. 6(a) (metamaterial A), which consists of five rows,
each with 5 unit cells (in the rest of the paper, we will call a meta-
material with N rows, each withM unit cells as an N�M metama-
terial). For this 5� 5 multistable metamaterial, the thickness is
constant within each row, while the thickness varies from row to
row (t1< t5< t2< t3< t4, where the unit cells are ordered from
bottom to top). Figures 6(b)–6(c) shows snapshots of the response
of the multistable architecture at different effective strains � for
both experiment and finite-element simulation. These snapshots
demonstrate that the deformation sequence matches what is

expected from the previous analysis (i.e., row 1 collapses first,
then row 5, row 2, row 3, and row 4).

Another printed sample is the 5� 5 multistable metamaterial
shown in Fig. 7(a) (metamaterial B). The unit cells of this 5� 5
metamaterial have a uniform mode imperfection size within each
row, but the imperfection size varies from row to row. The thick-
ness of each unit cell’s curved part is 1mm. Snapshots of the
response at different strains � for both experiment and finite-
element simulation (Figs. 7(b)–7(c)) demonstrate that the defor-
mation sequence matches the expected sequence (i.e., row 1 col-
lapses first, then row 5, row 2, row 3, and row 4).

3.4.2 Quantitative Comparisons. The experiments were also
analyzed more quantitatively by plotting the value of the normal-
ized deformation of each unit cell, d i, as a function of the total
deformation, d , in Figs. 8(a) and 8(b). The normalized deforma-
tion was computing using frames of the movies recorded using the
digital camera during the compression test. For the experiments,
FEA simulations (with the same boundary conditions as in Sec.
3.4.1) and theoretical model, the same clear deformation sequence
can be seen by inspecting the results (i.e., row 1 collapses first,
then row 5, row 2, row 3, and row 4 in both Figs. 8(a) and 8(b)).
While both the FEA simulations and the theoretical model are
able to qualitatively capture the deformation sequence, only the
FEA simulations are able to quantitatively match the experiments.
In particular, the unit cells in the theoretical model deform earlier
than in the FEA models and experiments. Moreover, there is an
instantaneous snap-back in theoretical model; however, a more
gradual and limited snap-back is observed in the FEA model and
in experiments (for example, see �¼ 18% for d1 in Fig. 8(a) and
�¼ 15% for d1 in Fig. 8(b)). The inaccuracies of the theoretical
model are due to two sources: (1) the viscoelasticity of the printed
materials (see Appendix B for the relaxation modulus of the mate-
rial) and (2) the assumption regarding the kinematics in the theo-
retical model (a small rotation assumption is used and parts of the
unit cell are assumed to be rigid). The smoothing of the curves
seen in the experiments and FEA simulations (with a viscoelastic
model) are primarily due to the viscoelasticity of the printed sam-
ples. Simulations with finite element with an elastic constitutive
model (not shown in the manuscript) do show a discontinuous
instability jump similar to what is seen in the theoretical model. In
spite of the quantitative differences between the theory and

Fig. 6 Experimental validation of the method of thickness variation to obtain a determinis-
tic deformation sequence (metamaterial A). (a) 535 multistable metamaterial with unit cells
of thickness t varies from row to row. (b) The customized compression fixture. (c) and (d)
Snapshots of the multistable architecture at different values of the effective strain � ((c)
experiment, (d) FEA).
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experiments, the theoretical model does capture the important
characteristics of the deformation paths of this multistable meta-
material and can be used to inform the design of metamaterials
with a deterministic deformation sequence.

The effective stress versus strain curve was also obtained dur-
ing the compression test and compared with the FEA model with
viscoelastic material as shown in Figs. 9(a) and 9(c). The effective
stress is calculated from the compression force divided by the

bottom area of the model, and the effective strain is calculated
from the total deformation divided by the initial height of the
model. For both metamaterials, there is a good quantitative agree-
ment between the experiments and FEA simulation results. This
excellent quantitative agreement is interesting because of the dif-
ference in the boundary conditions applied in the FEA and in the
experiments: the top edge of the sample was prescribed to move
at a constant velocity in the FEA simulations; in the experiments,

Fig. 8 Quantitative analysis of the deformation sequence. (a) Metamaterial A (see Fig. 6(a)). (b) Metamaterial B
(see Fig. 7(a)). d i is the normalized deformation of row i defined as Eq. (11). The dashed black vertical lines are cor-
responding to the effective strains of the snapshots in Figs. 6 and 7.

Fig. 7 Experimental validation of the method of mode shape imperfection to obtain a deter-
ministic deformation sequence (metamaterial B). (a) 53 5 multistable metamaterial with unit
cells of mode imperfection size a3 varies from row to row. (b) and (c) Snapshots of the multi-
stable architecture at different values of the effective strain � ((b) Experiment, (c) FEA).
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the top edge of the compression fixture was prescribed to move at
a constant velocity and the top edge of the sample was not
attached to the compression fixture. In the case of an elastic sam-
ple, a separation of the top edge of the sample from the compres-
sion fixture would have been expected when one the row of the
samples snap-through. However, the presence of viscoelasticity
significantly affects the kinetics of the snap-through process, such
that the sample remains in contact with the compression fixture.
The experiments and FEA simulations with a viscoelastic consti-
tutive model do not show that the force crosses the horizontal
axis, which could be wrongly interpreted as the absence of multi-
stability. However, the multistability was experimentally verified
by letting the metamaterial relax to any of the expected stable
configurations. Furthermore, the first peak has a higher amplitude
than the second peak, in contrast to what has been observed in
Figs. 4 and 5.

Because of the viscoelasticity of the 3D-printed sample, the the-
oretical model cannot be directly compared to the experiments or
the FEA simulations with a viscoelastic material; hence, the theo-
retical model was compared to FEA simulations with an elastic
constitutive model (Figs. 9(b) and 9(d)). For both metamaterials,
the theoretical result has excellent agreement with the FEA with
elastic material and captures the major characteristics of this
metamaterial, showing its multistability (i.e., crossings of the hori-
zontal axis) and growing stress peaks. This implies that the
absence of a tensile force and the fact that the second stress peak
has a lower amplitude than the first peak are due to the viscoelas-
ticity of the 3D-printed samples (note, however, that obtaining a
tensile force would also require to use an adhesive between the
compression fixture and the sample, as done, for example, in Ref.
[24]). Because of the assumption of small rotation, some parts
being rigid in the theoretical model, the values of the strain corre-
sponding to maxima and minima are somewhat shifted in the the-
oretical model compared to FEA with an elastic constitutive
model.

4 Summary and Conclusions

In this paper, we propose to use the methods of small geometric
variations to tune the deformation sequence of one kind of meta-
material that consists of a quasi-periodic microarchitecture with
multiple stable states. This work overcomes the limit shown in the

previous studies that when the unit cells used in a multistable
metamaterial are identical, the stable configuration that the meta-
material switches to is unpredictable due to the effects of imper-
fections in the manufacturing process and in the boundary
conditions. Two different methods of thickness variation and
mode shape imperfection are analyzed and used to obtain a deter-
ministic deformation sequence. In order to obtain a deterministic
deformation sequence, a rigorous theoretical model is developed
to analyze the mechanics and help to design this metamaterial.
The theoretical model is validated by comparison to finite-
element simulations of a model that consists of multiple bistable
unit cells in series. Both the loading and unloading response of the
theoretical model are in excellent agreement with finite-element
simulations.

Moreover, the results of finite-element simulations and experi-
ments on 3D-printed samples demonstrate that the deformation
sequence of multiple unit cells can be tuned using either varied
thickness or higher mode shape imperfection of the unit cell
curved parts. Despite viscoelasticity, which is not taken into
account in the theoretical model, the theory does predict the
experimentally observed deformation sequence. Excellent quanti-
tative match between experiments and FEA simulations is
observed when viscoelasticity is taken into account. Despite the
presence of manufacturing imperfections, a deterministic defor-
mation sequence is obtained for thickness variations or mode
shape imperfections of moderate sizes. The validity of the pro-
posed model was demonstrated for systems with a small number
of unit cells and with simple variations in the model parameters.
However, the proposed model is general and could be applied to
more complex metamaterials with a large number of unit cells
with spatial variations in multiple geometrical and material
parameters and might be particularly useful for the analysis of
multistable materials of larger sizes, which could be useful for the
design multifunctional metamaterials with programmable and
switchable properties.
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Appendix A: Theoretical Model for a Single Unit Cell
With a Mode Shape Imperfection

In order to determine the normalized force versus normalized
deformation curve, the deflection of the beam is decomposed into
the sum of the buckling mode shapes for an initially straight
clamped–clamped beam

wðxÞ ¼
X

1

i¼1

AiWiðxÞ (A1)

whereWiðxÞ are the mode shapes, and Ai are the modal amplitudes
(for the numerical results, only the first 13 modes were taken into
account). As in Ref. [32], the expressions for WiðxÞ are

Wi xð Þ ¼ 1� cos Ni

x

l

� �

Ni ¼ iþ 1ð Þp

9

=

;

i ¼ 1; 3; 5;…

Wi xð Þ ¼ 1� 2
x

l
� cos Ni

x

l

� �

þ
2

Ni

sin Ni

x

l

� �

Ni ¼ 2:86p; 4:92p;…

9

=

;

i ¼ 2; 4; 6;…

and system of nonlinear equations for the modal amplitudes, Ai,
can be obtained by a variational method. The variation of the total
potential energy @p is given by

Fig. 9 Stress versus strain curves for metamaterial A (a and b)
and for metamaterial B (c and d). In (a) and (c), experimental
data are compared to FEA with a viscoelastic constitutive
model. In (b) and (d), the theoretical model is compared to FEA
simulations using an elastic constitutive model.
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@p ¼ @Ub þ @Uc � @Uf (A2)

where @Ub, @Uc, and @Uf are the variations in the bending strain
energy, compression strain energy, and potential energy of the
external force, respectively. These variations are given by,

@Ub ¼ @

ðl

0

EI

2

d2w

dx2
�
d2w0

dx2

� �2

dx

" #

@Uc ¼ �p@Ds

@Uf ¼ f@d

(A3)

The following normalizations from Ref. [32] are introduced

x ¼
x

l
; w xð Þ ¼

w xð Þ

h
; f ¼

fl3

EIh
; d ¼

d

h
; Bi ¼

Ai

h
;

p ¼
pl2

EI
; Ub ¼

Ubl
3

EIh2
; Uc ¼

Ucl
3

EIh2
; pc ¼

pl3

EIh2

(A4)

Using Eqs. (5), (A1), (8), and (A4), the normalized deforma-
tion, d , and the normalized compression force, p, can be
expressed as a function of the normalized modal amplitudes, Bi

d ¼ 1� 2
X

i¼1;5;9;13:;…

Bi (A5)

p ¼ 12Q2 N2
1 þ a23N

2
3

16
�
X

1

i¼1

B2
i N

2
i

4

" #

(A6)

where Q ¼ h=t. Moreover, the variation in the total potential
energy, @p, can be expressed as

@p ¼
N4
1 � pN2

1

2
B1 �

N4
1

4
þ 2f

� �

@B1

þ
N4
2 � pN2

2

2
B2

� �

@B2

þ
N4
3 � pN2

3

2
B3 �

a3N
4
3

4

� �

@B3

þ
X

i¼4;6;7;…

N4
i � pN2

i

4

� �

@B2
i

þ
X

i¼5;9;13;…

N4
i � pN2

i

2
Bi þ 2f

� �

@Bi

(A7)

The theorem of minimum potential energy, @p ¼ 0, leads to the
following system of nonlinear equations:

N4
1 � pN2

1

2
B1 �

N4
1

4
þ 2f

� �

@B1 ¼ 0

N4
2 � pN2

2

2
B2

� �

@B2 ¼ 0

N4
3 � pN2

3

2
B3 �

a3N
4
3

4

� �

@B3 ¼ 0

N4
i � pN2

i

2

� �

Bi@Bi ¼ 0 for i ¼ 4; 6; 7;…

N4
i � pN2

i

2
Bi þ 2f

� �

@Bi ¼ 0 for i ¼ 5; 9; 13;…

(A8)

For the theoretical model of the initially curved beam, the sec-
ond mode is constrained, i.e., only symmetric solutions were con-
sidered (because it is observed that the deformation mode of the
unit cell is almost symmetric in FEA simulations), such that
B2¼ 0.

Model With a Third-Mode Imperfection

With a third-mode imperfection (a3 6¼ 0), there is only one form
of solutions. The normalized modal amplitudes are given by

B1 ¼ �
1

2

N2
1

p � N2
1

þ
4f

N2
1 p � N2

1

� �

B3 ¼ �
1

2

a3N
2
3

p � N2
3

Bi ¼
4f

N2
i p � N2

i

� � ; i ¼ 5; 9; 13;…

Bi ¼ 0; for other i values

(A9)

From Eqs. (A6) and (A9), we can get a quadratic equation for the
normalized force, f

af
2
þ bf þ c ¼ 0 (A10)

where

a ¼
X

i¼1;5;9;13…

4 p � N2
1

� �2

N2
i p � N2

i

� �2

b ¼ �N2
1

c ¼
p p � N2

1

� �2

12Q2
�
N2
1p p � 2N2

1

� �

16
þ
a23p 2N2

3 � p
� �

N2
3 p � N2

1

� �2

16 p � N2
3

� �2

(A11)

In order to obtain the normalized force versus normalized
deformation curve, a vector is first formed for the normalized
compression force, p. Equation (A10) is solved for each entry of
this vector. If the discriminant of Eq. (A10), D, is negative, it
means that the value of the normalized compression force is
impossible. If D is positive, then two roots are obtained for the
normalized force, f . For each of these roots, the mode coefficients
Bi can be obtained from Eq. (A9), and the normalized deformation
can be derived from Eq. (A5). Thus, the value of normalized force
can be plotted as a function of the normalized deformation for
each root. Connecting the points obtained for each entry of the
vector for p that corresponds to D> 0, a curve f versus d is
obtained for each of the two families of roots; these two curves
converge to the point that corresponds to D¼ 0. A single normal-
ized force versus normalized deformation curve is obtained by
connecting the two curves.

Model Without Imperfections

If there is no third-mode imperfection (a3¼ 0), then, the solu-
tions are comprised of two forms of solutions.

� Solution 1: if p < N2
3 , a solution of the form as in the case

a3 6¼ 0 is obtained. The equations obtained in the general
case can be applied by setting a3¼ 0.

� Solution 2: If p ¼ N2
3 , then another form of solution is

obtained. In that case, the value of B3 cannot be found
directly using Eq. (A8), while the values of all other Bi are
the same as in the case a3 6¼ 0. Using Eq. (A5) and the equa-
tion p ¼ N2

3 , a linear equation that relates the normalized
force, f , and the normalized deformation, d , is obtained

f ¼ �

�
N2
1

N2
3 � N2

1

þ d � 1

X

i¼1;5;9;13…

1

N2
i N2

3 � N2
i

� �

(A12)

In the model without imperfections, the normalized force ver-
sus normalized deformation curve is obtained by connecting the
two forms of solutions, as described in Ref. [32].
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Appendix B: Viscoelastic Material Model

In order to more accurately characterize the deformation path,
finite-element simulations with a viscoelastic, isotropic constitu-
tive model were considered. The material was modeled in ABAQUS

finite deformation viscoelastic model using a generalized standard
linear solid with N¼ 4 viscoelastic branches, where the relaxation
shear modulus, G(t), is given by

G tð Þ ¼ G1 þ
X

N

i¼1

Gie
� t

si (B1)

where G1 is the long-term shear modulus, Gi is the shear modulus
of branch i, and si is the relaxation time constant. These parame-
ters were fit to relaxation data of one printed sample
(3mm� 1mm� 10mm) using the printed material (DM9895) at
room temperature, as shown in Fig. 10. The Poisson’s ratio was
assumed to be equal to 0.495 and to be time-independent. The
value of G1 is set to 0.0167MPa, and the values of Gi and si are
shown in Table 1.
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