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Background

�ree-dimensional (3D) printing is being increasingly applied to the treatment of car-

diovascular diseases, especially in the diagnosis and treatment of structural heart dis-

ease [1–3]. Conventional, mostly rigid, 3D heart models are chiefly useful in displaying 

the cardiac structure. However, the development of flexible printing materials allows 

the fabrication of functional cardiovascular models that are further capable of hemody-

namic testing and preoperative simulation. �eir ability to help decide clinical strategy 

maximizes the value of 3D printing in this field.

The origins and medical applications of 3D printing

�ree-dimensional printing employs the principle of additive manufacturing to pro-

duce prototypes or final products by stereoscopically stacking discrete materials under 

computer control. Specific software slices a 3D digital model into several two-dimen-

sional planes. Specific printing materials such as powder or resin are then accumulated 
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layer-by-layer using a laser beam or hot melting. �e superimposed layers then form 

the final product. �e core idea of 3D printing originated at the end of the nineteenth 

century with the development of photosculpture and geomorphic forming technology. 

In 1984, Charles Hull applied optical technology to rapid prototyping, and in 1986 set 

up the world’s first company to produce 3D printing equipment, 3D Systems [4, 5]. Four 

core 3D-printing technologies—stereolithography (SLA) [6], selective laser sintering 

(SLS) [7], fused deposition modeling (FDM) [8], and three-dimensional printing (3DP) 

[9]—were patented between 1986 and 1993. �ey defined the preliminary development 

of the industry, and the current 3D printers still mainly employ them.

Recent medial applications of 3D printing include in dentistry [10–14], orthopedics 

[15–17], craniomaxillofacial surgery [18, 19], and even drug delivery [20–28]. For exam-

ple, a 3D-printed SLS drill guide can be used to accurately sculpt a facial tumor [19]. 

Printed models can be used during orthopedic surgery to fix articular fractures and pre-

cisely position plates [16]. In drug delivery, digitally controlled 3D printing can create a 

personalized drug delivery system through the layer-by-layer fabrication of active and 

excipient ingredients according to the needs of the patient. Spritam®, containing the 

antiepileptic drug Levoacetam, is the first FDA-approved 3D-printed drug. When com-

pared with traditional tablets, its pharmacological activity is similar, but the solubiliza-

tion time is shorter.

Although the research on applying 3D printing to the treatment of cardiovascular dis-

eases is relatively scant, the technique can potentially play important roles in preoper-

ative practice, diagnosis, and treatment. Schievano et  al. [29] studied 12 patients who 

planned to undergo pulmonary valve implantation, and found that surgeons considered 

a 3D-printed heart model to be more beneficial than image data when determining 

whether to perform valve replacement. Sodian et  al. [30] made a 3D model based on 

magnetic resonance imaging (MRI) data as an aid to determine an operation plan for a 

patient with a left subclavian artery complicated with descending aorta malformation. 

�e disinfected model was then used in the operating room for intraoperative localiza-

tion. Overall, printed cardiovascular models show great potential advantages in assist-

ing both preoperative decision making and intraoperative navigation. �e history of 3D 

printing and its medical applications are summarized in Fig. 1.

Overview of cardiovascular 3D printing

Imaging data acquisition

Accurate and reliable imaging data are the basis for accurate 3D model printing. At pre-

sent, these data are most commonly from computed tomography (CT) imaging, cardiac 

MRI, and echocardiography. Cardiovascular CT imaging has high spatial and density 

resolutions, and so it is the most often used technique for cardiac modeling in clinical 

studies. As the heart is composed of muscle and connective tissue, its internal density 

differences are difficult to show clearly under the conditions of a plain CT scan. Angi-

ography CT scanning can enhance the display of cardiac structures. In contrast mode, 

the areas of high-density display in CT images are cardiac chambers and blood vessels, 

so CT images are the preferred data source for 3D printing of the cardiac cavity and vas-

cular structure [31–33]. Models for maxillofacial surgery usually use data reconstructed 

from slice thicknesses of 0.5–1 mm, whereas models of the pelvis and long bones can 
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use slice thicknesses up to 2 mm. Cardiovascular modeling commonly employs 0.75 to 

1  mm slice thicknesses with a smoother kernel. However, as CT scanning uses radio-

active materials and is an invasive examination, not all cardiac structures are suitable 

for cardiac CT imaging. Cardiovascular magnetic resonance (CMR) has certain advan-

tages over cardiac CT in displaying the heart’s soft tissue or valves [34–37]. Significant 

improvements to the spatial and temporal resolutions of transthoracic and transesopha-

geal 3D echocardiography make it another alternative technology for acquiring reliable 

source data for 3D printing [38–41].

As the heart is a relatively complex organ, a single data source may not be able to pro-

vide a complete picture of its anatomy. �e recent work has fused images from multiple 

sources for 3D printing [36, 42–44] to significantly improve the depiction of complex 

anatomical details in the heart and provide more comprehensive information to aid 

intervention for structural heart disease and preoperative planning.

Imaging data postprocessing

Postprocessing isolates the target structures from a 3D volume dataset (in DICOM for-

mat) derived from medical imaging data. Commonly used software for medical image 

postprocessing includes 3D-Slicer, Horos, OsiriX, Mimics, and 3-Matic. �ese programs 

usually employ threshold segmentation to segment the required structure according to 

the different gray values of different tissues in the image. For example, the blood pool 

shows a lower signal intensity than the neighboring tissues, thereby delineating the 

intraluminal contour. �e final digital model is exported in STL format and input into a 

3D printer to obtain a 3D cardiovascular structure model.

3D printing procedures

As described above, 3D printers are of four main types: SLA, SLS, FDM, and 3DP. SLA 

uses liquid photosensitive resin for rapid prototyping, which can quickly condense to a 

solid under laser irradiation. Its major advantage is the ability to create complex shapes 

with internal structures and extremely high feature resolution (~ 1.2 μm) [45]. However, 

there are few types of photosensitive resin, and the cost is relatively expensive. FDM is 

the most widely used 3D printing method. It involves first melting the material, and then 

spraying it through a computer-controlled extrusion nozzle. A 3D model is established 

Fig. 1 History of 3D printing and its medical applications
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by the layer-by-layer accumulation of the material. Disadvantages include low printing 

accuracy and poor printing effect for soft materials. Detailed advantages and disadvan-

tages of the four printing types are listed in Table 1.

�e financial and time costs depend greatly on the size and complexity of the printed 

structure and the material used. An FDM print of the mitral annulus takes about 30 min 

[46], whereas a simplified heart model may take about 3 days [47]. �e photosensitive 

resin for SLA printing is usually more expensive than the plastic polymer used in FDM 

printing. An SLA print of the left atrial appendage using TangoPlus (a photosensitive 

resin) costs about $250 [48], whereas an FDM print of the full heart using ABS (a plastic 

polymer) only costs about $10 [49].

Accuracy and reliability of 3D printed models

�e mean deviation between a 3D printed heart model and medical images is about 

0.4 mm [50], which can be considered negligible in clinical use. �is is because the 3D 

printing process works within tolerances, and models typically contract as the polymer 

solidifies. Greil et al. [34] used multislice CT and CMR imaging to scan the hearts of five 

patients with congenital heart disease, and obtained high-resolution 3D models by SLA 

printing, whose accuracy (about 0.15  mm) was higher than that of the imaging tech-

niques, confirming that printing will not reduce the imaging accuracy. Figure 2 shows 

the workflow of 3D printing.

Anatomical 3D models and cardiovascular disease

Conventional materials used for 3D anatomical models

Conventional materials used for 3D printing (excepting bioactive materials used for 3D 

bio-printing) mainly include liquid photosensitive resin and polymers (either powders 

or fibers) [51]. In the past, 3D printing was mainly used to design personalized implants 

Table 1 Comparison of four common 3D printing methods

Printing method SLA SLS 3DP FDM

Resolution High Medium Medium Low

Surface quality Smooth Medium Medium Rough

Cost Relatively expensive Medium Medium Low-cost machines 
and materials

Materials Photosensitive resin Wax, metal, ceramic 
powder

Wax, metal, ceramic 
powder

Polymers: PLA, ABS, 
PVA

Other features Limited to photopoly-
mers; supports 
printing of flexible 
materials

Design freedom; no 
need for support; 
no post processing 
needed

Adhesive sprayed 
through nozzle

Limited to materials 
that melt

Fig. 2 Workflow of 3D printing
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for orthopedic and joint surgery patients or to aid surgical navigation for such patients. 

�erefore, rigid materials, such as photosensitive resin and metal powder were mostly 

considered, as they meet the requirements of hardness and stress. More recent research 

has considered 3D printing polymers (such as PLA and ABS) for use in treating car-

diovascular diseases. �ese materials are relatively inexpensive, and can depict specific 

structures of the heart, although with very different hardness and elasticity.

Applications of anatomical 3D models in treating cardiovascular diseases

�e above materials simulate only the shape but not the physical properties of cardiac 

and other tissue structures. �ey are therefore mostly used in the diagnosis and treat-

ment of structural heart disease (such as cardiovascular disease and valvular disease), 

aneurysm, and other large vascular diseases, as they can clearly display pathological or 

abnormal structures. Models of congenital heart disease such as atrial and ventricular 

defects can clarify their locations and relationships with neighboring structures such as 

the superior and inferior vena cava, aorta, mitral valve, and tricuspid valve, and so they 

help to evaluate whether the patient is suitable for interventional closure and the selec-

tion of an appropriate size of occluder. Wang et al. [52] used CT data to print a 3D heart 

model of a patient after atrial septal defect surgery, which clearly showed that the sealing 

device completely covered the edge of the defect, and so confirmed the role of 3D print-

ing in postoperative evaluation. Table 2 summarizes the cardiovascular applications of 

3D models.

Limitations of anatomical 3D cardiovascular models

Although anatomical models can assist clinicians, especially surgeons, in planning oper-

ations and selecting devices, it is not guaranteed that a decision made using a rigid 3D 

Table 2 Applications of 3D anatomical models to treating cardiovascular diseases

Condition Material Printing method Purpose

Congenital heart disease

 Atrial septal defect [33, 
53, 54]

PLA, resin, polyurethane 
filament

FDM SLA Preoperative evaluation; 
transcatheter device closure 
simulation

 Ventricular septal defect 
[55–58]

PLA, gypsum, cyanoacrylate FDM Congenital heart disease edu-
cation for medical students; 
transcatheter device closure 
simulation

 Complex congenital heart 
disease: e.g., endocar-
dial cushion defect [54, 
59], double-outlet right 
ventricle [56, 60–62]

PLA, resin, VeroMagenta FDM SLA Improve understanding of 
congenital heart disease; 
surgical management

Heart valve disease

 Mitral valve disease [63–65] PLA, ABS FDM Surgical management

 Tricuspid valve disease [66] ABS FDM Clinical decision-making; sur-
gical planning; education

 Aortic valve disease [67, 68] Resin, PLA FDM SLA Surgical planning and training

Others

 Arterial aneurysm [69] Resin SLA Preoperative planning; post-
operative evaluation
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model perfectly suits in vivo reality. Consider an atrial septum defect, for which the com-

pression ratio of an implanted occluder and the shunt around it under normal cardiac 

pressure could clearly not be obtained using a rigid 3D model with very different proper-

ties form the actual heart. Researchers have therefore attempted to maximize the advan-

tages offered by 3D printing by seeking realistically functioning cardiovascular models 

(with such as opening and closing valves and pulsating blood vessels). �e recent emer-

gence of flexible 3D printing materials (like TangoPlus) and the establishment of mock 

circulatory systems in vitro represent significant progress. Relevant research has com-

bined 3D printing with mock circulatory systems to produce functional models of blood 

vessels, valves, and other structures to maximize the clinical usefulness of 3D printing.

Functional models and cardiovascular disease

To properly simulate tissue function requires both a flexible 3D cardiovascular model 

and its coupling with a mock circulatory system. Functional 3D models and their cou-

pling with a mock circulatory system are shown in Fig. 3.

Flexible materials for 3D cardiovascular models

Any model for studying hemodynamics must accurately replicate the mechanical prop-

erties of the relevant tissues, and so must be more elastic and softer than conventional 

3D printing materials. Recent advances include the 3D printing of rubber-like materi-

als, which are gradually becoming widespread. A representative example is the Tango-

Plus series of materials, which can be printed as soft heart valves. �e Connex3 Ojet 

series of 3D printers (Stratasys, Eden Prairie, MN, USA) can combine materials of dif-

ferent color and hardness, allowing reproduction of complex cardiac structures. Vukice-

vic et al. [70] used TangoPlus and Verowhite, respectively, to simulate the mitral valve 

and calcification on it, and tested the resulting model’s mechanical parameters (such as 

bending and tensile moduli) in comparison with porcine leaflet tissue; the parameters 

were close to and consistent with those of the tissue. Maragiannis et  al. [71] used the 

Fig. 3 Functional 3D models and their coupling with a mock circulatory system. Images in the figure are 

from the literature [72–74]
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same two materials to create aortic valve complexes, and confirmed their feasibility for 

ultrasound imaging. Biglino et al. [72] made a blood vessel model using TangoPlus, and 

demonstrated its suitability for fabricating arteries, although its mechanical properties 

might not be suitable for modeling softer blood vessels.

Although directly printing rubber-like materials, such as TangoPlus can largely simu-

late the mechanical properties of cardiovascular tissues, it is relatively expensive. Using 

a rigid 3D model as a mold, a flexible model can alternatively be obtained by painting 

it with silicone (such as smooth-on, Echoflex). Scanlan et  al. [73] compared 3D mod-

els of the tricuspid valve obtained by the two methods, and reported that both closely 

replicated the patient’s anatomy, while the silicone model was better at simulating the 

texture of cutting and stitching. Based on the ultrasound images, a mitral valve prolapse 

model created by Olivia et  al. [74] using Echoflex 00–30 also had good fidelity to the 

preoperative three-dimensional echocardiogram. Such materials are promising for the 

production of low-cost functional 3D cardiovascular models. �e properties of common 

materials used in 3D printing are compared with those of human tissues in Table 3.

In vitro mock circulatory systems

A mock circulatory system is an experimental simulation of human hemodynamics that 

can be used to evaluate ventricular assistance devices, artificial valves, and other artifi-

cial cardiovascular components and to study the blood flow characteristics of cardiovas-

cular diseases. Its basic components are described below.

Drive unit

A vacuum pump or air compressor is usually used as an actuator to power the device. 

�e actuator is externally connected to a programmable logic controller to control 

the pulse of the heart or blood vessels. Pantalos et  al. [77] placed a silicone ventricle 

in a chamber full of compressed gas to control its rhythmic contraction and relaxation. 

Table 3 Properties of  common materials used in  3D printing compared with  those 

of human tissues

a Data from manufacturers’ websites

00–30: Grade 00 hardness, much lower than shore hardness

Material Printing method Elastic modulus (MPa) Shore hardness Cost

Printing  materiala

 PLA FDM 3000–4000 – Low

 ABS FDM 2200 – Low

 Verowhite SLA (Polyjet) 2000–3000 83–86 Scale D Medium

 VeroClear SLA (Polyjet) 2000–3000 83–86 Scale D Medium

 Mold Star 15 Casting on 3D printed model 2.7 15 Scale A Low

 Echoflex 00–30 Casting on 3D printed model 1.4 00–30 Low

 TangoPlus FLX930 SLA (Polyjet) – 26–28 Scale A Expensive

Human Body

 Aorta/vena cava – 0.04–1.9 [75] – –

 Valves – 1.0–1.3 [76] – –

 Vasculature – 0.1–0.55 [76] – –

 Heart muscle – 0.08 [76] – –
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Olivia et al. [74] used compressed gas to drive pneumatic pistons, which were connected 

to contractile loops around different levels of a ventricle model, to simulate the move-

ment of different ventricular segments.

Blood �ow test system

Doppler ultrasound: Doppler ultrasound can display the morphological characteristics 

of cardiovascular structures, evaluate the diameters of heart chambers and blood ves-

sels, and monitor the blood flow velocity and pressure at different observation points in 

real time. Doppler flow imaging can also be used to evaluate the effects of surgery simu-

lated in vitro, such as whether there is perivalvular leakage after valve replacement and 

whether there is residual shunt around the device.

4D-flow MRI: With the development of MRI technology and related software, 4D-flow 

MRI is gradually being applied in scientific research and clinical practice. It is a phase 

contrast technique that codes flow rates in the x-, y-, and z-directions [78]. It can quan-

titatively and visually evaluate characteristics of flow velocity (e.g., minimum and peak 

velocity, stroke volume, net flow, and reverse stroke) and wall shear stress (e.g., flow rate, 

pressure differential diagram, pulse wave velocity, and energy loss). �e technique’s dis-

advantages include long imaging times and the time-consuming postprocessing analysis.

Catheter-based monitoring: With a monitoring system such as Mac-Lab, a catheter-

based monitoring device can plot pressure with respect to time. �e plot’s peak (rising 

or falling branch) can be used to evaluate fluid parameters such as vascular resistance 

and flow rate.

Particle image velocity measurement: Particle image velocity measurement is an opti-

cal method of measuring flow velocity by capturing (and analyzing) multiple snapshots 

to record the positions of particles in the flow field. It is commonly used for fluid imag-

ing, and can easily obtain physical information, such as eddy currents and pressures, but 

it has high optical requirements for imaging particles in the fluid [79].

Blood mimicking �uid

Simulations of blood flow resistance generally use solutions, such as mixtures of water 

and glycerin that have a viscosity similar to that of blood (3.5–4.5 mPa /s). However, dif-

ferent test systems have different requirements for blood mimicking fluids. When using 

Doppler ultrasound, the addition of 5 μm diameter nylon scattering particles to a fluid 

matrix containing water, glycerol, dextran, and surfactants improves the acoustic prop-

erties of the fluid and provides better imaging [80]. Velocity measurement using particle 

images requires the addition of tracer particles to the fluid.

Application of functional cardiovascular models in diagnosis and treatment

Heart valve disease

Heart valve disease mainly includes valve stenosis and regurgitation, and usually involves 

changes in the structure and/or function of a valve owing to various causes. Recent 

advances in interventional operation, transcatheter valve replacement, valve repair, and 

valvuloplasty have increased treatment options. Accurate assessment of the location and 

extent of heart valve disease before surgery is therefore becoming increasingly impor-

tant to treatment. Conventional heart valve models can display anatomical features, 
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but cannot test their function. Printing a functional valve model with flexible materials 

and placing it in a mock circulatory system to test velocity, pressure gradient, and other 

parameters can help understand the severity of valvular disease. It can also simulate the 

operation to aid device selection, predict possible complications, and improve its success 

rate.

Severity assessment and surgical simulation of valvular disease: Maragiannis et al. [71] 

used TangoPlus and Verowhite to simulate the aortic valve leaflet and valvular calcifica-

tion, respectively. �ey printed valve models of eight patients with severe aortic steno-

sis, and placed them in a mock circulatory system. Valve orifice area was measured by 

ultrasound Doppler and Gorlin formula to evaluate the severity of the disease. �e blood 

flow velocity, pressure gradient, and valve orifice area measured on the model were con-

sistent with in vivo measurements. �is confirms the feasibility of using a 3D-printed 

functional aortic valve model combined with a simulated circulatory system to assess 

the severity of valve stenosis.

Vannelli et  al. [81] created a left heart system model including left ventricle, aor-

tic valve, and mitral valve by mold modeling. Driven by gas pressure, it simulated the 

contraction and relaxation of normal human ventricles and the opening and closing of 

the valve, with a left ventricular ejection fraction (51%) within the normal range. Azad 

Mashari et  al. [82] used similar devices to simulate the motion state of a pathological 

mitral valve during opening and closing, and obtained a blood flow spectrum consist-

ent with that measured in vivo. Although the above studies to a certain extent simulated 

the motion of normal and pathological mitral valves and in  vivo hemodynamic char-

acteristics, due to the lack of systematic resistance in the device, the anterior velocity 

and pressure gradient generated by the ventricle during systole were not sufficient, and 

the results were not satisfactory. Olivia et al. [74] created 3D models of 10 patients with 

mitral valve regurgitation, and set up a pipe about 0.85  m high in a mock circulatory 

system to simulate the hydrostatic pressure generated by the aorta in vivo. �e device 

could generate 107 mmHg pressure during systole, more accurately reflecting the in vivo 

hemodynamic state. In addition, this study also simulated mitral valve repair, mitral clip, 

and other operations in 3D models, and determined the best surgical strategy by observ-

ing the changes in hemodynamics before and after surgery. It evaluated the effects of 

surgery, and predicted possible postoperative complications. Ultrasound images col-

lected from the model were consistent with in vivo images, confirming the clinical value 

of 3D-printed heart valves in the diagnosis and treatment of diseases when coupled with 

mock circulatory devices.

Hemodynamic testing of artificial valves: In the past decade, transcatheter aortic valve 

replacement has become a life-saving alternative for patients who cannot tolerate con-

ventional valve replacement [83]. �e hemodynamic assessment of prosthetic valves 

relies on 3D-printed cardiovascular models to reproduce the anatomical structure and a 

mock circulatory system to simulate the in vivo blood flow state. Wentao Feng et al. [84] 

explored the possible deformation of artificial valve devices with different leaflet thick-

nesses for a patient with aortic root calcification by evaluating the effective valve area 

of the prosthetic valves, the average transvalvular pressure, and the valvular regurgita-

tion. As the thickness of the valve increased, valve regurgitation due to device deforma-

tion became more severe. De Gaetano et al. [85] tested the pressure gradient, flow rate, 
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effective valve orifice area, reverse flow, and other parameters of a new polymer heart 

valve under continuous and pulsating flow conditions using a mock circulatory device, 

and expected that this new kind of valve would soon find clinical applications. �e above 

studies prove that 3D printing coupled with a mock circulatory system can help evaluate 

artificial valves and develop new devices for clinical use.

Coronary heart disease

Coronary artery disease, usually caused by coronary artery atherosclerosis, is one of the 

world’s most fatal diseases. Percutaneous coronary intervention, especially intracoro-

nary stent implantation, has proven to be an effective treatment. However, postopera-

tive stent restenosis is a persistent problem. Improper stent implantation positions will 

enlarge the area of low WSS and subsequently stimulate epithelial cells in the vascular 

wall to grow outward; thereby, increasing the risk of postoperative restenosis [86]. HuJun 

Wang et al. [87] investigated the effects of different stent implantation positions on coro-

nary artery hemodynamics and the area of the low-WSS region using 3D coronary artery 

models. �e initial strategy was ostial stenting with the stent’s top end staying in the 

upper area of the original stenosis. �ree subsequent tests each raised the stent position 

1.38 mm upward along the branch. �e second position, called the half-cover strategy, 

had the fewest low-WSS areas, and was considered the best among the four compared. 

�is shows that 3D printing coupled with a mock circulatory system can find the best 

position for implanting a coronary stent.

In addition to clinical strategy planning, 3D printing coupled with a mock circula-

tory system can also be used for setting standards for certain parameters for function 

evaluation. In addition to coronary angiography, intravascular ultrasound, and optical 

coherence tomography, the coronary flow reserve fraction (FFR), a function evaluation 

parameter for coronary artery stenosis and ischemic assessment, has received increasing 

attention. It is defined as the ratio of mean intravascular pressure in the distal end of cor-

onary lesions to that in their proximal end in the state of maximal myocardial microcir-

culation congestion induced by adenosine and other drugs [88]. Kranthi et al. [89] used 

a 3D coronary model to test its variation in coronary stenosis vessels under different 

aortic pressures, finding that for a given stenotic vessel, the value gradually decreased as 

the aortic pressure increased. �is also provides a reference for setting a standard of FFR 

for the evaluation of coronary stenosis in vivo.

Vascular disease

�e treatment and diagnosis of aneurysms and macrovascular diseases can be aided 

using 3D-printed models coupling with a mock circulatory system. Anderson et al. [90] 

combined 3D printing with 4D phase contrast MRI in the visualization and quantifica-

tion of blood flow characteristics in aneurysms. Hemodynamic simulation could also 

assess the rupture risk of aneurysm in  vitro. In addition, the study also simulated the 

implant of a diverter in vitro, and observed changes of local hemodynamic character-

istics before and after surgery, which helped predict the outcome of the procedure. 

Biglino et al. [72] used TangoPlus for 3D modeling and in vitro hemodynamic testing of 

patients with left ventricular hypoplasia syndrome with aortic coarctation. �e anatomi-

cal structures of the ascending aorta, aortic arch, and descending aorta of the patient 
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were reconstructed. �e model did well in replicating capacity bearing (70/40 mmHg), 

material compliance under pressure, and the consistency and anatomical structure. 

Knoops [91] used latex to make an adult lung circulation model. Wave intensity analysis 

identified three main waves (forward compression, backward compression, and forward 

expansion) in the main pulmonary artery. �e model can be applied to the diagnosis 

of pulmonary hypertension, pulmonary unilateral stenosis, abnormal blood flow shunt 

after repair of transposition of the great arteries, and pulmonary artery disease such as 

Eisenmenger syndrome.

Table  4 summarizes applications of functional 3D models in treating cardiovascular 

diseases.

Limitations

A variety of factors, including excitation of autonomic nerves and endocrine regulation, 

affect hemodynamic characteristics. Although 3D printing can accurately reproduce 

the anatomical structures of the heart and the intracardiac pressure, it cannot simu-

late the in vivo physiological environment. Any parameters obtained using a simulation 

only reflect the intracardiac hemodynamic characteristics to a certain extent, which the 

model will not completely match. A further limitation is the enduring high cost (in terms 

of both time and money) of building an accurate dynamic 3D model. Furthermore, the 

potential clinical value of printed models, beyond “viewing” and preoperative simula-

tion, needs to be further explored.

Future Prospects

Developments of 3D printing technology have attracted increasing numbers of research-

ers to apply it to biomedical engineering, especially in tissue engineering and regenera-

tive medicine. When compared with traditional tissue engineering, which first prints a 

scaffold and then inoculates it with cells, 3D bioprinting could directly print different 

types of cells in the right spatial locations. By seeding cells into a 3D tissue-like struc-

ture, this technology could obtain higher cell density and realize a uniform cell density 

Table 4 Applications of functional 3D models in treating cardiovascular diseases

Application Materials Purpose

Heart valve condition

 Aortic valve stenosis [71] TangoPlus, Verowhite In vitro assessment of stenosis severity

 Mitral valve stenosis [82] Mold star 15, Ecoflex 00–30 In vitro assessment of stenosis severity

 Mitral valve regurgitation [74] Mold star 15, Ecoflex 00–30 Surgical simulation: mitral valve repair, 
mitral-clip

 Artificial valve [84, 85] Silicone Device development: exploring relation-
ships between artificial valve thickness 
and valve function

Coronary heart disease

 Coronary heart disease [87, 89] Wax, VeroClear Surgical planning: optimal stent placement; 
parameter evaluation criteria: FFR

Vascular disease

 Intracranial aneurysm [90] Semi-translucent PLA Surgical simulation: diverter implantation

 Abdominal aortic aneurysm [92] Polyjet Material Rubber FLX930 Surgical simulation: transcatheter interven-
tion repair
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distribution inside and outside the tissue. Direct 3D bioprinting of tissue or organs con-

taining living cells has shown great potential, and has been widely studied, with exam-

ples including heart valves [93–95], skin [96, 97], nerves [98], liver tissue [99], alveoli 

[100], and even corneas [101] all being reported. More research is needed to meet the 

existing challenges of such as vascularization, organ rejection, and the lack of ideal bio 

ink.

Computational fluid dynamics (CFD) is another field receiving much research interest. 

CFD programs include ANSYS (ANSYS Inc., Pittsburgh, America) and COMSOL Mul-

tiphysics (COMSOL Inc., Stockholm, Sweden). Digital 3D modeling can be imported 

into CFD software after meshing. After setting boundary conditions, hemodynamic 

parameters at any point inside the model are easily obtained by CFD. CFD simulation 

has been used in drug delivery [102, 103] and the development of medical devices [104]. 

Pourmehran et al. [102] used CFD to simulate the air flow and magnetic particle deposi-

tion in a realistic human airway geometry obtained from CT images, thereby improving 

the efficiency of targeted drug delivery to the human lung in the presence of an external 

nonuniform magnetic field. CFD has also shown strong advantages in disease modeling 

and drug delivery.

Computer-aided design (CAD) was also an alternative method in planning inter-

ventions/treatment of cardiovascular diseases. For example, transcranial mitral valve 

replacement (TMVR) is an emerging method for the treatment of patients with severe 

mitral valve disease. However, the left ventricular outflow tract (LVOT) obstruction 

was a potentially fatal complication after surgery. Sung-Han Yoon et al. [105] success-

fully used CAD model based on the CT dataset to predict new LVOT area; thereby, pre-

vent possible adverse clinical outcome. Besides, augmented reality technique has gained 

more attention and help plan surgery too [106].

Conclusion

�ere are wide ranging medical uses of 3D printing technology, but most research still 

focuses on anatomical models. �e transition from static modeling to dynamic func-

tionality requires more research and the development of materials closer in properties 

to human cardiovascular tissue. �e combination of 3D-printed cardiovascular models 

and mock circulatory systems also depends on cross-disciplinary cooperation in biology, 

electrical engineering, and computer science. Further technological developments will 

ensure the increasingly important roles of 3D-printed functional heart models, maxi-

mizing the value of 3D printing in the treatment of cardiovascular diseases.
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