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Abstract  

3D printing provides a fast, cost-effective way to produce and replicate complicated designs with 

minimal flaws and little material waste. Early use of 3D printing for engineering applications in 

the petroleum industry has stimulated further adoption by geoscience researchers and educators. 

Recent progress in geoscience is signified by capabilities that translate digital rock models into 

3D-printed “rock proxies.” With a variety of material and geometric scaling options, 3D printing 

of near- identical rock proxies provides a method to conduct repeatable laboratory experiments 

without destroying natural rock samples. Rock-proxy experiments can potentially validate 

numerical simulations and complement existing laboratory measurements on changes of rock 

properties over geologic timescale. A review of published research from academic, government, 

and industry contributions indicates a growing community of rock-proxy experimentalists. 3D-

printing techniques are being applied to fundamental research in the areas of multi-phase fluid 

flow and reactive transport, geomechanics, physical properties, geomorphology, and 

paleontology. Further opportunities for geoscience research are discussed. Applications in 

education include teaching models of terrains, fossils, and crystals. The integration of digital 

datasets with 3D-printed geomorphologies supports communication for both societal and 

technical objectives. Broad benefits that could be realized from centralized 3D printing facilities 

are also discussed.  
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INTRODUCTION 

The phrase “3D printer” has entered the popular lexicon as “a 21st Century technology that turns 

digital designs into 3D physical objects, whenever you want them at low cost.” Many forward 

thinkers and visionaries in industry, academia, and government see value in 3D printing. 3D-

printed objects (“3D prints”) complement digital presentations and visualization tools, providing 

a physical representation of 3D geometries that enhances communication. While digital models 

can be viewed only on a screen, a 3D print can be experienced with all the senses: it can be 

viewed, manipulated, smelled, tasted, and more importantly experimented with in the laboratory. 

3D printing provides a way to quickly test new concepts and can generate different objects over 

a wide range of scales with high accuracy and repeatability. These “rapid prototyping” 

capabilities provide cost-effective approaches that are shaping the future of manufacturing. 3D 

printing is expected to drive new innovations, initiating a decentralized industrial revolution, and 

to impact business by up to $550 billion per year by 2025 (Cohen et al., 2014). Benefits of 3D 

printing for engineering applications in the petroleum industry are already being realized. 

Flexible options for design and a variety of materials have supported 3D printing of drill-bits and 

tools such as a drill sleeve with built-in flow monitoring, a fine mesh in a downhole fluid 

analysis tool, a hydraulic manifold and a hydraulic line for subsea well stimulations and acid 

treatments (Jacobs, 2016).  

Reduced costs of 3D printers, open-source software, and free access to digital model 

repositories are opening new avenues for many fields of research. Among these, geoscience is 

poised to use 3D printing to bridge the gap between computational and experimental analyses. 

Recognizing this opportunity, this paper provides an overview, limitations, and potential 

applications of 3D-printing technology, as applied to geoscience research and education as well 
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as the petroleum industry.  

 

3D PRINTING METHODS 

Similar to traditional laser- or inkjet “2D” printers, 3D printers construct images in layers (a form 

of additive manufacturing; Burns, 1993). While a 2D printer prints a single, very thin layer of 

ink, a 3D printer builds a stack of layers in one or more materials. Therefore, we use the term 

“printing” in the rest of the paper to represent “3D printing.” All 3D printing methods evolved 

from stereolithography (SLA) technology patented by C. Hull in 1986. In SLA, a digital 3D 

geometry (e.g., Computer-Aided Design (CAD) file) is transformed into a physical object, layer-

by-layer (Berman, 2012). Prior to 3D printing physical objects, digital models are “sliced” to 

create the layer templates. Printing specifications set by the user include the thickness of each 

slice, the vertical and horizontal dimensions, and the print speed. Printed objects often require 

post-processing, such as ultraviolet (UV) light curing or removal of support material (that holds 

the internal porous structure and external elements during printing to avoid deformation or 

damage of intricate designs). 

3D printing methods that use a layer-by-layer technique differ by power source, resolution, 

precision, accuracy, build volume, materials, and price (Table 1) and can be grouped as follows: 

(1) photopolymerization (SLA, Digital Light Processing (DLP)) that involves UV or light curing 

layers of the liquid material on a build platform; (2) extrusion (Fused Deposition Modeling 

(FDM) and Fused Filament Fabrication (FFF), Inkjet (Material jet or Polyjet), Direct Ink Writing 

and Direct Laser Writing (DIW and DLW)) that jets a liquid or melted material through the 

print-head nozzle; (3) fusion (Selective Laser Sintering and Melting (SLS and SLM), Electron 

Beam Melting and Welding (EBM andEBW), Laser Engineered Net Shaping (LENS)) involving 

 4 



a laser energy source that fuses powder material to build fully dense objects; and (4) deposition 

(Laminated Object Manufacturing (LOM), Selective Deposition Lamination (SDL), Binder 

Jetting) that involves layering of the powder material cured by glue or lamination of solid layers 

cut by laser or tungsten blade to create surface roughness (Gibson et al., 2014). 

 

FROM DIGITAL MODELS TO 3D-PRINTED ROCK PROXIES  

The convergence of 3D printing with methods that digitally capture the 3D structure of a rock on 

multiple scales has created new opportunities for geoscience research. Academic researchers and 

government agencies have been at the vanguard (Choi et al., 2011; Hasiuk et al., 2015; Ishutov et 

al., 2015; Martinez et al., 2015; Osinga et al., 2015; Head and Vanorio et al., 2016; Jiang et al., 

2016a; Watson et al., 2016; Hasiuk et al., 2017). A primary research focus is the reproduction of 

the internal structure of a rock (e.g., pore architecture, fractures) with controlled solid and 

surface properties for the purposes of experimentation (e.g., wettability). We refer to these 

reproductions as “rock proxies.” The scale of rock proxies can vary over the orders of 

magnitude: from nanometer-size features to the size of the 3D printer’s build volume. In 

addition, a combination of multiple proxies could produce larger-scale modules (e.g., 3D printing 

facies of a reservoir rock). Rock proxies are generated from digital models and provide a novel 

way to link numerical modeling and laboratory experiments (Figure 1). Digital models are 

commonly defined by multi-scale geoscience data (e.g., tomographic, microscopic, core, well 

logs, seismic, and outcrop data) which are then translated for printing via: (1) CAD files for 

volume or shape generated models; (2) deterministic inputs (e.g., directly from tomography or 

microscopy); or (3) stochastic inputs (e.g., from pore sizes and distributions).    

Rock proxies can support the quantitative assessment of rock properties and processes such 
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as fluid transport (e.g., porosity, permeability, wettability, migration), electrical response (e.g., 

resistivity), mechanical behavior (e.g., Young’s modulus, Poisson’s ratio), chemical interactions 

(e.g., reactive transport), and acoustic signatures (e.g., sonic velocity). The substitution of rock 

proxies for natural rock samples in laboratory experiments provides a way to repeat 

measurements with systematic changes in the rock texture or environment. Repetition of physical 

experiments (e.g., tomographic imaging of flow and transport in porous media) today is limited 

by the fact that they are routinely conducted in a destructive manner or on a small number of 

samples (Blunt et al., 2013; Bultreys et al., 2016) and can involve chemical reactions which 

trigger precipitation and dissolution inside pore space (Luquot et al., 2014; Menke et al., 2016). 

Destructive testing has the limitation that comparative analysis of fluid behavior can only be 

performed if multiple near-identical rock samples are available; this is usually not the case 

because two rock samples are never identical, even for a homogeneous rock. 3D printing thus 

provides the opportunity to perform destructive testing on near-identical pore networks that are 

representative of the natural rocks. 

 

Capabilities and Limitations for 3D Printing of Rock Proxies 

Advanced applications of rock proxies require a close match between the natural rocks to be 

replicated and their 3D-printed proxies. Future research will need to minimize errors associated 

with printing, artifacts, and inaccurate geometries that may impact experimental results. We 

identify four primary challenges for 3D printing of rock proxies: (1) achieving appropriate 

imaging resolution for data capture; (2) achieving adequate precision and accuracy in 3D-printed 

proxies of intricate internal geometry in natural rocks, including pore throats (the smallest flow 

elements in the pore system); (3) developing materials that respond in a similar manner to rocks 
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(e.g., chemical, geomechanical); and (4) developing multi-material and multi-fluid 3D printing 

methods to represent a natural fluid-rock system. 

Image Resolution: Accurate replication of a natural rock depends on image resolution, image 

data processing, and the method and material used in 3D printing (Ishutov and Hasiuk, 2014). 

The resolution of rock images continues to improve, with capabilities to capture very fine-scale 

features of rocks, such as nanopores in shales (Nelson, 2009). However, analysis of digital rock 

models is challenged by two factors: (1) a given image pixel or voxel size may obscure the 

boundaries between rock features making edge identification difficult; and (2) file size and 

computational intensity increase with improved image resolution (Idowu et al., 2014). These 

limitations tend to drive the selection of small sample sizes that may be unrepresentative of rock 

properties at a larger scale, making it difficult to integrate plug- and core-scale rock properties 

with well log, seismic, and outcrop data (Andrä et al., 2013; Guice et al., 2014). 

Proxy Accuracy and Precision: The accuracy of a printed proxy is impacted by the 3D printing 

methods, materials used, printing parameters (e.g., layer thickness), post-processing methods 

(e.g., UV curing, glue impregnation, airflow), image resolution, dimensions of digital models, 

and the degree of scaling of the digital model to the 3D-printed object (Dimitrov et al., 2006). 

The maximum precision and resolution depend on the mechanical processes associated with each 

3D printing method. For example, in the extrusion method the resolution is determined by the 

precision of the print-head movement in the X-Y direction and the physico-chemical properties 

of the build material; in the photopolymerization method, the resolution is primarily controlled 

by the size of the laser spot or resolution of the light projector; and in fusion and deposition 

methods, the resolution depends on the size of powder particles and their layering pattern on the 

build platform. Currently, the DIW and DLW methods provide the highest resolution, precision, 
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and accuracy among all 3D printing methods (~1 micron for solid features; Table 1). However, 

no studies to our knowledge have yet validated individual grain or pore sizes at this resolution. 

To overcome resolution and accuracy challenges, the digitally captured rock fabric may need to 

be rescaled for a given experiment. Rescaling is an increase or a decrease in the digital model 

size to build a proxy according to the 3D printer’s resolution and, or build volume or to 

accommodate experimental conditions. This rescaling will impact measurements of rock 

properties (e.g., permeability) and will need to be factored into the interpretation of experimental 

results. Given recent progress improving 3D printing resolution and introduction of automated 

precision systems in 3D printers (Gao et al., 2015; Brommer et al., 2016; Duarte et al., 2016), we 

anticipate that improvements in 3D-printing capabilities will achieve a closer representation of 

the true internal geometry of natural rock (on a sub-micron scale).  In addition, development of 

calibration or standard models is necessary for quantification of printing resolution and 

identification of artifacts. These models will allow us to determine how accurately a 3D-printed 

proxy reproduces a digital model in terms of geometry (e.g., size and surfaces) and properties 

(e.g., porosity and density). 

Material Properties: 3D printers can use a range of build materials (plastic, metals, resin, 

ceramics, mineral powder, paper, biomaterials). While no currently available material is capable 

of replicating all the relevant properties of natural rock simultaneously, different materials 

impact the resolution achievable in a rock proxy. At present, materials can be selected for a given 

model based on their suitability to be used to investigate an individual property separately (e.g., 

flow, electrical, acoustic, mechanical).  

The chemical properties of mineral powders (e.g., gypsum, silica, and calcite) used to 3D 

print rock proxies are close to natural rock, but the mechanical properties of proxies are often 
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weaker (with Uniaxial Compressive Strength (UCS) < 3 MPa (435 psi); Farzadi et al., 2015; 

Fereshtenejad and Song, 2016) and have artifact porosity between powder particles. Moreover, 

these proxies require infiltrant (glue) impregnation in post-processing that can lead to erroneous 

microporosity values as measured via gas or mercury porosimetry. Gypsum material can be 

suitable for pore systems with large pore throats (>500 microns; Ishutov et al., 2016), which have 

a minimal risk of either becoming clogged by powder particles or trapping remaining infiltrant 

droplets. 

Plastic materials used in fusion or material jetting technologies can change the dimensions of 

3D-printed proxies due to shrinkage or expansion. Some plastics (e.g., acrylonitrile butadiene 

styrene (ABS), polylactic acid (PLA)) have inadequate strength for destructive mechanical or 

core-flood experiments because they can break or flow at lower stresses (e.g., <40 MPa (5,800 

psi); Jiang and Zhao, 2015). Differences in the flow properties between 3D-printed samples and 

the original rocks can also result from the clogging of the pore space by the residual plastic 

during or after printing. Thermoplastics can be used for studies of more homogeneous pore 

systems to avoid warping and deformation of solid objects and the associated changes in pore 

volumes.  

Metals are one of the stiffest 3D printing materials that can currently be used in studies of 

mechanical properties of rock proxies. While they offer potential for use in electrical and 

acoustic experiments, the prices of 3D printers that print metal are not yet at the commodity 

level. In addition, the resolution of these 3D printers (50 microns; Gao et al., 2015) is not yet 

high enough to 3D print porous rocks without rescaling.  

Resin is an organic material with physical and chemical properties that can be adjusted by 

mixing different resin components, by adding pigments, and by varying post-processing 
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procedures. The material supports fast 3D printing; for example, a core plug (one inch (2.54 cm) 

in diameter and two inches (5.08 cm) in length) can be printed in 4 hours. When hardened, the 

resin can reach a stiffness of ~86 MPa (12,500 psi) (Ju et al., 2014). The resolution (200 microns 

for the smallest feature; Head and Vanorio, 2016) of resin-based 3D printers is relatively high 

when compared to other methods used to reproduce the pore systems of homogeneous rocks 

(Table 1). The wettability of resin-based proxies can be altered by using a chemical polish, vapor 

deposition, or silanization (Martinez et al., 2015; Zhao et al., 2016). Clear materials can be used 

for the development of optically transparent devices to help real-time process imaging, especially 

in models with areas that are difficult to access by conventional polishing methods. 

3D Printer Methods.  Beyond the challenges of proxy precision, accuracy, and materials, 3D 

printers still need further development to meet the specifications of rock proxies.  With the 

expiration of two key 3D printing patents in 2014 (Deckard, 1989; Bourell et al., 1990), 3D 

printers can now be designed in a broad range of configurations to achieve higher resolution, 

faster printing speed, and controlled physical and chemical properties of materials. For example, 

SLA and inkjet 3D printers can be used to manufacture features that are less than one micron in 

size by using new infrared laser polymerization (Vaezi et al., 2013; Skylar-Scott et al., 2016). 

The novel CLIP (continuous liquid interface production) method that uses oxygen at the bottom 

of the resin pool after each UV light pass resolves the issue of liquid material trapped in the 

voids of the 3D-printed object (Tumbleston et al., 2015). The interdrop or interparticle porosity 

in the 3D printing material can be reduced or even eliminated with adjustable drop shape in 

nanofluidic printers (Meister et al., 2009). These advances will enable more accurate 3D printing 

of pore shapes, improving measurements of flow properties. In addition, future development of 

binder jet methods may involve an introduction of a binder that can change the wettability of 
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powder grains during or after the 3D printing process, similar to methods of wettability control 

that are used in microfluidic devices (Gerami et al., 2016). Knowing contact angles between 

solid and liquid constituents in the 3D-printed proxy will help to predict relative permeability in 

multi-phase flow experiments. Multi-material 3D printers can be widely applied in 

manufacturing of natural rock proxies with heterogeneous textures. Multi-material printing 

requires a synthesis of two or more 3D printing methods, but the advantage is that physico-

chemical properties for each material can be designed independently (e.g., metal powder and 

alloy ink; Jakus et al., 2015). Another area of development for the majority of 3D printing 

methods is post-processing. More efficient ways to remove support material in inkjet, binder jet 

(powder-based), and photopolymerization 3D printers are needed to enable accurate printing of 

fine details and features, such as channels, specifically in microfluidic devices. Incomplete 

removal of such support material can result in erroneous experimental measurements. 

 

FUNDAMENTAL RESEARCH, EDUCATION, AND APPLICATIONS  

The following section builds on recent advances for 3D printing of rock proxies to discuss how 

this approach can benefit geoscience research as well as broader applications for geoscience 

education and communication. We provide examples of how 3D printing helps in studying 

natural rock properties and processes associated with their changes at microscopic and 

macroscopic scales over geologic time. Recommendations on the improvement of existing 

methods of 3D printing proxies outlined in this section can also lead to generation of novel ideas 

for broadening the applications of 3D printing in the petroleum industry.  
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Microfluidics and Flow in Geological Systems 

“Microfluidics” is a set of technologies used in the fabrication of micro-devices for fluid analysis 

in the physical sciences (Gunda et al., 2011). The term has evolved to include all non-trivial 

devices for fluid-flow experiments and flow phenomena that occur at micron scales (Whitesides 

and Stroock, 2001; Stone et al., 2004). The field has highlighted new physical phenomena at 

micrometer scales that are characteristically different from those at larger scales (Lenormand et 

al., 1988; Tabeling, 2005). Scaling laws are introduced when a system is reduced in size from 

macroscopic- to the microscopic scale. For instance, surface forces and volumetric forces, such 

as gravity, scale differently. Surface forces are important in fluid investigations, including 

wetting, adhesion, friction, and lubrication (e.g., coatings, biotechnology, super hydrophobic 

surfaces, and micro-electro-mechanical systems). In a rock, wetting and the boundary layers at 

the fluid-rock and fluid-fluid contacts strongly influence fluid flow over geologic and production 

timescales. Furthermore, chemical reactions (e.g., during diagenesis or fluid injection) increase 

the flow complexity by changing the interfacial forces. Large-scale, 3D-printed fluidic systems 

(rock proxies), that mimic natural rocks and include micro-channel structures with tunable 

surface chemistry, can help to deepen our understanding of multi-scale flow (Figure 2).  

One of the first implementations of 3D printing in microfluidics (McDonald and Whitesides, 

2002) used printed molds to create a polydimethylsiloxane replica of a 3D network of channels. 

Using this technique, Wu et al. (2003) created a chaotic advective mixer by generating braided 

and out of plane networks of 3D channels. These early 3D-printed devices had a surface 

roughness of several microns. This scale of roughness can reduce the integrity of seals between 

surfaces. However, consumer-grade SLA printers today can achieve a sub-micron surface 

roughness (Comina et al., 2014). More recently, Bhargava et al. (2014) constructed a toolbox of 

 12 



3D-printed, discrete microfluidic elements and interconnects for a modular 3D-microfluidics 

platform. They constructed microfluidic circuits in which each discrete element had well 

catalogued properties and for which pressure-flow relationships were obtained by network 

analysis (as in an electrical circuit). Other examples of 3D-printed microfluidic devices include 

membranes (Femmer et al., 2014), devices with integrated valves (Rogers et al., 2015), scaffolds 

for tissue engineering (Hollister, 2005) and Li-ion microbatteries (Sun et al., 2013). 

In the petroleum industry, microfluidic devices (commonly referred to as micromodels) date 

back to the 1950s (e.g., Chatenever and Calhoun, 1952). They have been heavily used to 

investigate the displacement of oil by an immiscible fluid and other two-and three-phase flow 

phenomena. Micromodel studies have provided insights to percolative processes, relative 

permeability of water and oil, and the Saffman-Taylor instability (Saffman and Taylor, 1958), all 

of which affect oil recovery. While not technically micromodels, Hele-Shaw cells (Bischofberger 

et al., 2014) and packed glass beads still provide significant insight to fluid flow processes 

(Murison et al., 2014). The first micro-devices used in the petroleum industry were rudimentary, 

with simple pore structures fabricated in glass. The pore structures were generated either by 

etching or by adding repetitive elements such as small spheres (Karadimitriou and Hassanizadeh, 

2012). 

To achieve a closer 3D representation of natural rocks, Park et al. (2015) used SLA to create 

“2.5D” rock micromodels (in which the same 2D geometry is repeated in the third dimension). 

Song et al. (2014) developed methods to fabricate microfluidic channels in natural calcite to add 

more realistic surface physics to their micromodel similar to carbonate rocks. Similarly, Mugele 

et al. (2016) used oxidized silicon wafers with adsorbed nanoparticle clays to fabricate micro-

channels in an attempt to simulate the typical composition of a sandstone. They were able to tune 

 13 



the wettability of the micro-channels to gain insight to the fundamental aspects of low-salinity 

water flooding. In contrast, Zhao et al. (2016) used a photocurable polymer with soft imprint 

lithography to systematically alter the wettability of microfluidic samples and analyze fluid-fluid 

displacement efficiency as a function of wettability.  

Experiments have also been used to explore the feasibility of 3D printing to model soil 

macropore networks. Bacher et al. (2014) used X-ray computed tomography to digitize the 

macropore structure which was then 3D-printed using SLA in various polymeric materials. The 

morphologies of soil pore-network structures have been replicated at high resolution (tens of 

microns) to study fungal growth in soil microcosms (Otten et al., 2012) and the impact of micro-

heterogeneities on soil-water dynamics (Dal Ferro et al., 2015).  

Progress in microfluidic models combined with pore-scale imaging and 3D printing provide a 

foundation for future geoscience research. This research can advance flow experiments that are 

used typically to study physico-chemical interactions between fluids and rocks (McDougall and 

Mackay, 1998; Bultreys et al., 2016). In multi-phase flow studies, such as enhanced oil recovery 

or carbon capture and storage, the replication of wettabilities will be crucial (Ryazanov et al., 

2014; Zhang et al., 2016a). A better understanding of fluid trapping and mobilization could be 

achieved through a priori knowledge of wettability distribution as defined in a model design. 

Similarly, the generation of rock proxies with realistic chemical properties can improve our 

insights into reactive transport processes. This could be accomplished by altering chemical 

composition at specific sites (e.g., replicated grain surfaces) in a rock proxy.   

3D printing can be also used to investigate the scaling relationships of flow processes (e.g., 

changes in permeability). Unknown pore-scale heterogeneity prevents comparisons of results 

from pore-scale and Darcy-scale flow experiments on the same natural rock. With 3D printing, it 
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is possible to make a rock proxy with known pore geometries (Figure 2). This can provide 

repeated models that are at or below the scale of the representative elementary volume. The 

combination of many such models can be used to construct a larger (and heterogeneous) model 

to improve and test rescaling methods for both chemically inert and reactive transport problems 

(Li et al., 2008). 

For advances in core-flood and reactive transport experiments, we envisage an integrated 

experimental design in which parts of the experimental rig are included in the rock proxy. 

Integration of a core holder and fluid inlet and outlet lines with the rock proxy would allow 

fluids to be introduced at various locations instead of just at the edges. This configuration would 

reduce edge effects, such as capillary end effects arising due to the differences between pore 

sizes in the core and the width of channels in the end piece platen or gaps due to the roughness of 

the end of the core. It would also enable the study of more complicated mixing scenarios, for 

example the injection of incompatible brines through multiple but distinct channels to ensure 

first mixing occurs in the porous medium rather than in the inlet lines. 

Embedded sensors in 3D-printed rock proxies would strengthen understanding of the 

chemical and physical processes and greatly improve the validation of numerical simulations. 

Leigh et al. (2012) demonstrated that sensors could be created and integrated with 3D printing to 

measure capacitance and flexure. Rock proxies could also be printed with in-situ fiber optic 

sensors (Maier et al., 2013) enabling parameters such as pressure, temperature or chemical 

composition to be monitored internally. Lin et al. (2016) demonstrated that smart microgels can 

be used as sensors to detect real-time chemical changes in microfluidic platforms. 

Some 3D printing materials also offer a way to explore the impacts of physical properties on 

flow (e.g., due to microporosity in carbonate rocks with wide pore size distributions; Pak et al., 
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2016). Binder Jetting Powder Deposition (BJD) printers use fine powder (calcium hemisulfate, 

calcium polyphosphate, or hydroxyapatite) that is held together with an organic binder (Butscher 

et al., 2012). The 3D-printed solid, however, retains micropores between the individual powder 

grains. As such, the solid yet microporous printed powder can mimic micrite in carbonates and 

may support a method to systematically control the amount and distribution of micropores within 

a rock proxy. This approach is similar to the use of BJD 3D printers in bioengineering to 

generate synthetic porous bone tissue scaffolds (Pilliar et al., 2001; Farzadi et al., 2015). 

Representations of microporosity in rock proxies highlight an opportunity to study multi-scale 

interactions between macro-scale pore- and fracture- and microporous systems.  

Significant advances have been made to numerically model single- and multi-phase flow 

displacement processes through realistic pore geometries (Blunt, 2001; Blunt et al., 2013; 

Meakin and Tartakovsky, 2009; Joekar-Niasar et al., 2013).  However, there remains uncertainty 

when defining parameters for numerical simulations, for instance in relation to surface 

wettability and contact angles (Sorbie and Skauge, 2012). 3D printing experiments can help to 

validate the results of numerical simulations and more rigorously quantify displacement 

processes through joint interpretation of experimental and numerical results.  

Several of the approaches discussed above (e.g., embedded sensors, multi-scale experiments, 

validation of numerical models) are applicable to experimentation in other geoscience disciplines 

(e.g., geomechanics, geophysics) that are discussed in the sections that follow. 

 

Macroscopic Physical Rock Properties  

Macroscopic properties are defined by bulk measurements that represent a spatially averaged 

quantity beyond the microscopic scales of the pore dimensions. These properties include, but are 
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not limited to, flow-, electrical- (resistivity), acoustic- (P and S wave velocities, sonic, 

ultrasonic), and magnetic- (e.g., Nuclear Magnetic Resonance (NMR)) properties. Electrical 

properties of the subsurface have been key for oil exploration since the inception of resistivity 

logging and the development of Archie’s empirical law to calculate water saturation in a 

sandstone (Archie, 1942). Therefore, the dielectric response of the mineral-fluid system in the 

porous matrix of rocks has been a subject of intense research. Acoustic properties of a 

Newtonian fluid imbibed in an elastic porous matrix can be described by Biot’s theory (Biot, 

1956). This formalism has been applied in several areas of geoscience, including the 

determination of fluid saturations in rocks (Murphy et al., 1986) and acoustic propagation in 

fractured rocks (White, 1975; Müller et al., 2010). Insight into these fluid and rock properties has 

helped to strengthen interpretations of acoustic logs (Cheng, et al., 1982). NMR has been applied 

via wireline logging (Akkurt et al., 2009) and laboratory measurements in core samples (Lonnes 

et al., 2003). Information from NMR measurements is useful to obtain physical and chemical 

properties such as porosity and fluid saturation (Timur, 1969) and viscosity (Nicot et al., 2007), 

and wettability (Freedman et al., 2003; Odusina et al., 2011). 

Models that relate rock and fluid properties (stress state and saturation state, fluid density, 

and viscosity) to the macro-scale properties (flow, electrical, acoustic, magnetism) are key for 

interpretations in the subsurface. For example, modeling the effects of fluid saturation on seismic 

velocity is used to ascertain the influence of pore fluids on acoustic signatures. Gassmann’s 

equations (Berryman, 1999), which are essentially the lower frequency limit of Biot's (1956) 

more general equations of motion for poroelastic materials, are most widely used to calculate 

seismic velocity changes resulting from different fluid saturations in reservoirs. However, many 

of the basic assumptions in Gassmann’s equations are invalid for some common reservoir rocks 
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and fluids (Han and Batzle, 2004). Laboratory experiments play a vital role in understanding the 

basic rules needed to inform both simulations and modeling. As much as we strive to achieve 

controlled conditions in laboratory experiments, it is extremely difficult to be complexly 

prescriptive for all of the possible responses of heterogeneous rocks and fluids. This level of 

complexity requires a different approach. 

With 3D-printed rock proxies, the experimental procedure can be improved substantially. 

The uncertainties in measuring density, porosity, and bulk modulus can be greatly reduced by the 

use of homogeneous materials with consistent compositions to avoid the complications that arise 

from multiple mineral constituents. By printing multiple copies of the same rock proxy, the 

effects of different fluid saturations on velocity can be isolated (Figure 3).  

Huang et al. (2014) used 3D printing to create 4% porosity models of rocks in ABS 

thermoplastic. They created fractured media proxies which increased the porosity by 20% and 

studied changes in ultrasound propagation in fractured and unfractured media that were air or 

water saturated. Head and Vanorio (2016) linked experimental diagenesis, multi-scale imaging 

techniques, and 3D-printed proxies of varying carbonate microstructures to study the evolution 

of bulk porosity and permeability. They were able to mimic the process of compaction and 

dissolution, producing porosity-permeability trends that were quantitatively distinct from each 

other. Such results allow researchers to determine which factors underpin the theoretical 

predictions of porosity-permeability evolution during diagenesis that have previously been 

derived using numerical pore-scale modelling (van der Land et al., 2013). These are only a few 

of the exploratory efforts in the use of 3D printing to investigate macroscopic rock properties. 3D 

printing will continue to improve rapidly in utility and contribute to our ability to access delicate 

samples and to test the impact of microstructural alteration on bulk physical properties in the 
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laboratory in a highly consistent, repeatable manner. The following section on multiphase flow 

discusses novel ideas that build on this emerging technology to implement new experimental 

approaches. 

The constitutive relations that define how multi-phase flow properties (e.g., the bulk porosity, 

permeability, capillary pressure, and relative permeabilities) change due to mineral precipitation 

(Zhang et al., 2016b), have not been validated experimentally. Constant salt precipitation during 

core-flood experiments makes it difficult to achieve the steady-state flow that is required to 

measure multi-phase flow properties. 3D printing will allow experiments to be paused and 

examined: the pore structure modified by salt precipitation can be imaged at discrete time points. 

Then each image can be printed separately and used to establish the capillary pressure and 

relative permeability curves. This unprecedented approach decouples the measurement of multi-

phase flow properties from the continuous salt precipitation in a core-flood experiment. The 

validated constitutive relations will have significant impacts on the prediction of formation 

damage caused by salt precipitation (Zhang and Liu, 2016).  

The dependence of permeability on effective stress is important for the petroleum industry, 

especially in natural gas recovery from tight shale reservoirs which can show high stress 

sensitivity. Zheng et al. (2015) developed a series of theoretical models for the relationship 

between permeability and effective stress based on the concept of the Two-Part Hooke’s Model 

(TPHM). The TPHM conceptualizes an intact rock into a hard part which corresponds to the rock 

matrix and a stress sensitive soft part which corresponds to the microcracks in the rock. The 

model has been validated against experimental data on natural rock samples. The volume ratio of 

the two parts is used as a tuning parameter to fit experimental data, but cannot be isolated in 

natural rocks. With 3D printing, the volume and distribution of micro-cracks can be precisely 
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controlled and used to quantify the impact of the volume ratio on stress-dependent permeability. 

Instead of being a tunable parameter, the volume ratio would then be a known value. 

Experiments with systematically designed rock proxies can be used to test whether the TPHM 

provides an appropriate model to explain the observed stress-permeability trends.   

 

Geomechanics  

3D printing can be used to substitute rock proxies in experimental analysis of rock deformation 

and failure. A key advantage is the ability to control rock textures and the generation of near-

identical samples with homogeneous properties so that experiments can be repeated with the 

same “rock” while systematically changing the experimental conditions. 3D printing also enables 

the systematic inclusion of various heterogeneities, such as microcracks, stylolites, joints, and 

vugs across multiple, near-identical test specimens. By knowing and controlling inter-sample 

variability in terms of porosity, fracture networks, grain size distribution, and density 

distribution, 3D printing of geomaterials provides a valuable tool to validate numerical models, 

develop scaling laws and constitutive relationships, quantify the degree of influence of pore 

geometry, fracture network characteristics, and structural heterogeneity on macroscopic 

properties (Figure 4). This also becomes critical for understanding the impact of deformation on 

fundamental fluid-flow processes such as relative permeability or capillary pressure and enables 

a new generation of reservoir-geomechanical experiments to be designed for validating coupled 

processes embedded in simulation models. 

 Reports of geomechanical experiments based on 3D printed rock or soil proxies are growing 

in the literature. Jiang and Zhao (2015) used PLA and FDM to produce test specimens for 

preliminary compressive shear and tensile strength experiments. The study highlighted the 
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limitations of PLA as a material for experimentation, demonstrated the influence of 3D-printed 

structure specimen response and identified the need to use a more suitable rock-like material for 

printing. Jiang et al (2016a) utilized both PLA and FDM and powder-binder systems to print 

specimens as substitutes for natural rock specimens in experimental deformation studies. These 

experiments confirmed the inapplicability of PLA for producing rock-like specimens and 

highlighted that the compressive strengths of powder-binder printed specimens of less than 10 

MPa (1,500 psi) are below those of most rocks. Osinga et al. (2015) printed directly with sand 

(D50 of 148 μm) using BJD and reported compressive strengths approaching 20 MPa (2,900 psi) 

and a cemented grain structure that reflects natural sandstone (Figure 4). In a preliminary effort 

to visualize the internal structure and stress distribution of rocks, Ju et al. (2014) describe 

methods to capture fracture geometries in natural coal rock and the stress concentrations 

associated with them. By “freezing” rock stresses and using photoelastic effects they were able 

to visualize stress concentrations and local stress gradients around discrete fractures during 

mechanical testing and compare these images with numerical solutions. Jiang et al. (2016b) 

pursued a method to model the surfaces of natural joints as a way to reduce experimental errors 

originating from the use of natural samples in shear tests. In their study of soil mechanical 

behavior, Matsumura and Muzutani (2015) used X-ray CT scans of gravel to print replicas and 

compare their mechanical responses with those of natural samples. While there were differences 

in the mechanical responses between natural (stiffer) and replicated samples, modifications to the 

replicas provided a demonstration of the way that particle arrangements impact load-

displacement curves.  

The details of the 3D printing process also make a difference to the properties of the systems: 

in printing the porosity structure of natural bone, Fazardi et al. (2015) found that delay times (50 
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to 500 ms) between printing each layer introduced differences in compressive strength, 

toughness and tangent modulus as well as higher dimensional accuracy. While exploring the 

impact of layer orientation on sample strength for the purposes of optimizing bone strength, 

Vlasea et al. (2015) found the weakest orientations for compressive strength to result from 

layering perpendicular to, or at 45o to the compression direction, while layering parallel to the 

compression direction created the strongest samples. The same approach could be used to control 

the strength of samples relative to the maximum loading direction in deformation experiments on 

textured rock proxies. Phase composition and macroporosity were found to be more influential 

than pore geometries on the strength of calcium phosphate scaffolds used as bone substitutes 

(Schumacher et al., 2010). New techniques, such as topological optimization in tissue 

engineering to meet design requirements (e.g., stiffness), offer further ways to condition material 

properties by ensuring that tissue scaffold stiffness remains the same until porosity reaches a 

certain value (Almeida and Bartolo, 2010). Nevertheless, as yet, there are no standards for 

mechanical testing of 3D printed materials which, in particular, require careful consideration of 

anisotropy in mechanical properties introduced as the result of most 3D printing methods 

(Roberson et al., 2015).  

 Clearly, further advances in 3D printing for geomechanics will require an expanded research 

effort to create materials and textures suitable to represent different rock types and minerals. 

Improvements in printing resolution can support the inclusion of specific flaws and 

heterogeneities in a rock proxy for investigations of geologic controls on strain localization. 

Similar methods have been used to design populations of fractures within a rock proxy. With this 

approach we envisage experiments that measure variations in acoustic properties with increasing 

complexity of fracture arrays and networks that might be designed in discrete fracture network 

 22 



models (Huang et al., 2015). In addition to printing multi-phase or multi-material models, new 

materials will need to be able to withstand subsurface conditions for high temperature and 

pressure experiments. Developments in biomedical fields also point to more sophisticated 

possibilities for experimentation: 3D printing of bone scaffolds is beginning to incorporate 

controlled chemistry and interconnected porosity, and capabilities for site-specific growth factor 

and drug delivery (Bose et al., 2013). With these advances, future rock deformation experiments 

might include controls on fluid content location and chemistry to investigate coupled 

deformation and reactive transport as well as embedment of sensors (similar to examples 

discussed for fluid flow studies above) directly within the test specimens. 3D printing of rock 

proxies can serve as the foundation for the next generation of experimental investigations of 

multi-scale, multi-physics reservoir geomechanical processes. Explicit control over the 

heterogeneous nature of test specimens will help to reduce uncertainties regarding the delineation 

of geological features over a wide range of length scales, to represent these features 

appropriately in reservoir geomechanical simulations, and to quantify the impact of deformations 

on flow, as well as their impacts on evolving multi-phase fluid distributions. In summary, with 

suitable technological advances in hardware and materials, 3D printing has significant potential 

to deliver new fundamental knowledge in geomechanics. 

 

Geomorphology and Paleontology 

3D printing can be used to generate rescaled representations of the Earth’s surface, subsurface 

morphologies, and relief on planetary bodies. 3D-printed geomorphic representations 

complement computer-generated models and provide important tools for communication, 

teaching, and scientific research (Peterson et al., 2015; Hasiuk et al., 2017). While geoscientists 

 23 



have strived to perform their work in the digital realm, considerable value still resides in the 

physical representation of geologic systems. Previously, translation of digital data (such as 

Digital Elevation Models (DEMs)) into physical models was achieved through molding and 

sculpting, limiting the level of detail and materials employed and requiring significant labor. 

Initially, 3D printing was identified as a tool to generate the molds for raised relief maps (Ahmed 

et al., 2005; Higgins, 2010). Today, 3D printing offers a rapid method to generate physical 

objects from digital files, enabling easier visual inspection and the use of a wider range of 

materials (Horowitz and Schultz, 2012). Hasiuk et al. (2017) document the development of a 

direct digital manufacturing platform that simplifies the process of generating 3D-printable 

terrain models to selecting a polygon in a web browser’s map. 

Initiatives to combine 3D printing with other technologies have realized further advances. 

The potential to link spatial analysis tools such as ArcGIS™ (ESRI software) to 3D printing can 

serve to integrate multi-disciplinary geologic information accurately on printed surfaces (e.g., 

superimposing RADAR, SONAR, and satellite imagery). The feasibility of this approach has 

already been demonstrated in the context of urban planning (Ghawana and Zlatanova, 2013). In 

the development of a collaborative land navigation system, Li et al. (2014) combined augmented 

reality with 3D printing to facilitate interactions between an explorer and a remote overseer.  

3D printing of morphologies also has value to geoscience research. In the experiments of 

rock-breakdown processes (weathering and erosion of rock masses that form sedimentary 

debris), Bourke et al. (2008) used 3D printing to replicate the morphology of rock blocks for 

testing under various environmental conditions. Although the experiments were limited to 

morphology and did not replicate the internal structure or residual stresses, they generated new 

insights to the persistence of fluvial features subject to weathering (Figure 5). In another 
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example, DEMs of gravel-bed morphologies were captured through water and air to define 3D-

printed models of river beds as substrates in hydraulic experiments (Bertin et al., 2014). This 

study showed that the 3D printed model provided a dense and accurate set of check-point data 

that could be used to assess the quality of the DEMs (as opposed to lower precision survey check 

points). 

Description, classification, and preservation of paleontological specimens has also benefited 

from 3D printing. In a study of the remains of a dwarf elephant, Mitsopoulou et al. (2015), 

scanned the original bones via laser to capture the surface morphology and combined them in 

3D-printed proxies. 3D-printed microfossils developed from tomographic imaging combined 

with 3D-PDFs have now supported an improved taxonomy (Mahmood et al., 2014). Balanoff 

and Rowe (2007) used tomographic scanning to digitally extract and 3D print the embryonic 

skeleton of an elephant bird egg without breaking the eggshell. Paleoichnological research has 

also benefited from the ability of 3D printers to enlarge natural objects (Hasiotis et al., 2011). 

Such approaches create an opportunity to compare and study morphologies without risk to the 

original specimen. 3D printing will facilitate the democratization of access to research 

collections by allowing non-experts to interact with high-quality specimens, either digital or 3D-

printed, without a trip to a distant museum or specialized training. For example, the British 

Geological Survey is overseeing the 3D scanning of all type fossils in British collections for 

distribution through the GB3D website (www.3d-fossils.ac.uk). Overall, the ability of 3D 

printing to accurately duplicate geologic morphologies is opening up new associations between 

physical models, digital data, and tools that support the communication of integrated 

information, rigorous quantification for research, and fast, complete archiving. 
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Education and Communication 

It is natural that geoscientists, who work regularly with 3D data, might embrace 3D printing to 

communicate their interpretations to other geoscientists, students, stakeholders, and the broader 

public (Hasiuk, 2014). For those who are not used to thinking spatially, 3D-printed models are 

easier to understand than a 2D representation (such as a map) because physical models are less of 

an abstraction. Printed models preserve the 3D nature of the original data (including the internal 

structure) rather than relying on other features (e.g., contour lines, map symbols) to convey the 

third dimension. As shown in Figure 6, geoscientists have used 3D printing to make terrain 

models (e.g., Horowitz and Schultz, 2014; Hasiuk et al., 2017), fossil specimens (e.g., Hasiotis et 

al., 2011; Rahman et al., 2012; Mahmood et al., 2014), crystallographic models (Casas and 

Estop, 2015), geological structures (Reyes et al., 2008), and pore networks (Otten et al., 2012; 

Ishutov et al., 2015). Models printed in plastic are often more rugged than plaster or wooden 

counterparts. While 3D topographic maps have existed for decades, they are typically only 

available for charismatic locales (e.g., the Grand Canyon, USA). Now educators can print any 

terrain for which elevation data exist (Hasiuk et al., 2017). In addition, the generation of libraries 

of physical objects makes areas of geoscience more accessible to people in general, including the 

visually handicapped. The promise of 3D printing for educational purposes has been recently 

reinforced by energy industry sponsorship of the Fab Foundation (www.fabfoundation.org) to 

open 3D printing laboratories (Fab Labs) across the United States of America.  

In addition to education, 3D printing has value for the communication of geoscience to 

generalist audiences, for example to convey changes associated with urban development and 

environmental policies, to support legal arguments, and to provide general knowledge of natural 

heritage in national parks. In museums the “third wave industrial revolution” is supporting the 
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replication and restoration of artifacts that facilitates sharing exhibits among archiving 

institutions (Short, 2015). 3D printing has been used in the restoration of museum collections. 

Scanning of preserved fossils and modeling of missing parts enabled the University of Michigan 

Museum of Paleontology to assemble a mastodon skeleton for display (Fisher et al., 2012). A 

missing femur was replicated by 3D scanning, digital mirroring, and printing the opposite femur. 

Similarly, the Smithsonian National Museum of Natural History 3D-scanned an entire fossil of a 

whale skeleton in Chile for 3D printing in the USA. The digital model was used to reduce the 

size of the skeleton so it would fit in the exhibit space (Reese, 2014; Byers and Woo, 2015).  

A recent Italian initiative illustrates the value of 3D printing for communicating geology to 

industry stakeholders (DeFilippis et al., 2015). The project involves 3D printing reservoir models 

created from seismic and well data, representing colored rock layers and faults that help to make 

geological concepts and data more accessible (DeFilippis et al., 2015). Such approaches support 

collaborations among colleagues from diverse disciplines: a geologist and engineer can plan well 

placements based on reservoir geometry and local topography using the same 3D-printed proxy 

that complements digital geological data; a manager can use the same model to discuss 

developments with local governments and communities. Reducing the cognitive burden of 

understanding 3D concepts will facilitate more efficient communication and will reduce errors or 

misunderstandings. 

 

Development of Central Facilities  

3D printers enable low-volume production and mass-customization in an economical manner. 

Obtaining access to a low-cost 3D printer is straightforward but rarely will it automatically meet 

the specific needs for scientific research or commercial objectives. Advanced 3D printers that 
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can handle large volume- (meter- or foot-scale), multi-material- or extremely high resolution 

prints are commonly beyond the budgets of potential users (well over $100,000; Table 1). A 

leasing option can be more cost-effective than a full purchase given the rapid evolutions in 3D 

printing technology. Laboratory space, however, would still be needed. Central (or mobile) 

facilities for 3D printing minimize upfront investment for low-volume users and can provide 

access to the latest equipment and materials, support co-developments, and handle printing 

requests submitted online.  

3D printers have been accessible via community- or university libraries for several years 

(Britton, 2012; Free, 2012; Scalfani and Sahib, 2013; Colegrove, 2014). Dedicated 3D printing 

facilities are also now established and growing in several US universities and government 

laboratories (Fidan and Ghani, 2007; Choi et al., 2011; Budig et al., 2013; Raviv et al., 2014; 

Tibbits et al., 2014; Torrado Perez et al., 2014; Bechtold, 2015). Sandia National Laboratories 

offer rapid prototyping services for small businesses as part of America Makes, the US national 

business accelerator for additive manufacturing. A similar public-private partnership underpins 

rapid prototyping services via China’s National Laboratories for 3D Printing (Simon, 2015). As 

of 2015, there were over twenty online platforms to support 3D printing services in a digital 

market place (e.g., Lan, 2009; Rayna et al., 2015; Tapley et el., 2016).  

In the context of geoscience research and education, centralized 3D printing facilities and 

exchanges within their user communities are likely to accelerate the development of specialized 

methods for 3D printing of geologic geometries and textures. Those who have considered 

printing their “reservoir” (Agar et al., 2013; Ishutov and Hasiuk, 2014) might eventually submit 

geocellular models online to a facility that not only prints reservoir models to a specified scale 

but also runs scientific experiments on large models in the same location. In addition, cloud 
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computing services could numerically simulate properties of the digital model online. Williams 

(2013) recognized the opportunity to generate shared file collections so that educators could print 

samples locally or remotely for use with courses, citing their variably scaled models of the 

Mariana Trench and San Andreas Fault as part of a tectonic plate boundary collection. The 

National Institutes of Health “3D Print Exchange” provides an example of how such digital 

collections might work (www.3dprint.nih.gov) through an interactive website for sharing 

biomedical 3D-print files and modeling tutorials and educational material.  

The potential to disrupt manufacturing sites and supply chains with new and relocatable 3D 

printing “factories” is widely recognized (Waller and Fawcett, 2014). With this shift, come 

numerous concerns related to intellectual property that have spawned new business models. 

Some 3D printing companies have adopted a selectively open innovation strategy by which user-

generated content complements proprietary hardware and software (West and Kuk, 2016). 

However, the petroleum industry is still in the early stages of developing systems to protect 3D 

printing intellectual property while supporting collaboration and innovation (Eldred and 

Basiliere, 2015). Whether so-called direct digital manufacturing (DDM) actually disrupts rather 

than complements the manufacturing economy has yet to be seen (Sasson and Johnson, 2016), 

but the opportunities for co-creation between inventors and 3D printing centers or firms is 

already changing paths to innovation (Rayna et al., 2015). 

A central facility would ensure high-quality research instrumentation for 3D printing. If it 

encompassed the multiplicity of 3D printing methods and materials (Pham and Gault, 1998), it 

would not only be extremely expensive but also require an abundance of support personnel. 

More feasible would be a facility that generates proxies at a specific scale (overall dimension of 

the 3D-printed model) and resolution (smallest observable feature). For the petroleum industry, 
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such a facility might initially aim for the core-plug scale with pore-scale resolution. Future 

developments could move to larger scales (e.g., whole core, mini-reservoir) and, or higher 

resolutions and a wider range of materials.  

Centralized facilities could support the 3D printing of large (tens of meters or hundreds of 

feet) artificial reservoir models as a means to interrogate the near-wellbore environment. The 

“reservoir print” could be manufactured with and without a wellbore to test the effects of drilling 

on subsequent well performance, the use of completion tools and logging tool responses. Again, 

sensors could be embedded into a large model as it is 3D-printed for internal monitoring. It 

might be possible for such large models to calibrate seismic responses to known reservoir 

architecture. The construction of multi-scale geologic features over seven or more orders of 

magnitude clearly presents a challenge. However, the feasibility of large model development is 

supported by the fact that 3D printers are capable of printing house-size structures (Kenney, 

2016) by using cementitious materials, fiber-reinforced plastic, and glass fiber-reinforced 

gypsum as feedstock (Sevenson, 2015).  

A centralized facility for printing rock proxies should also have the capability to verify the 

accuracy of 3D-printed objects. Just as standards for mechanical testing were discussed above, a 

repository could serve to establish standards for collecting and reporting metadata from all the 

steps in 3D model making and printing. A repository of examples with different 3D printing 

capabilities could be used to coordinate inter-laboratory comparisons of 3D printing accuracy 

and precision. 

 

CONCLUSIONS  

Based on our direct experience and the examples discussed above, 3D printing is positioned for 
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an expanded role in geoscience research and education as well as more broadly in the petroleum 

industry. Building on early progress that can now translate digital rock models into rock proxies, 

3D printing methods have the potential to support diverse investigations of properties and 

processes in rock proxies over multiple scales. These methods could be used to complement and 

validate numerical simulations. Currently 3D printing of rock proxies is limited by several 

factors, particularly the precision achievable for internal geometries as well as a lack of suitable 

materials for rock replication. Nevertheless, cost reductions in hardware are making high-

resolution and multi-material 3D printers more readily accessible, supporting an expanded 

community of geoscience experimentalists in 3D printing. Potential and growing areas of 

applications for research include multi-phase fluid flow, reactive transport, geomechanical 

behaviors, and physical rock properties. Large, multi-disciplinary experiments might also be 

supported at scales suitable for near-wellbore or reservoir flow unit investigations. Beyond 

geoscience research, 3D printing complements digital visualization for the communication of 

concepts and ideas whether these are in the context of education, community, or industry. A 3D 

printing future for the geosciences is likely to be strengthened by a growing number of central 

facilities. These facilities would not only provide 3D printing services, but also support the 

development of open repositories of digital models and standards for verification of proxy 

accuracy and precision while stimulating multi-disciplinary connections around geoscience 

questions. 
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Figure 1. Selected examples of published studies using 3D printed rock proxies generated from 
digital models. (A) Matsumura and Mizutani (2015) 3D printed gravel material to evaluate the 
mechanical behavior of soil structures. Shown are X-ray micro-CT scan sections and images 
representing natural and 3D printed gravel. (B) Dal Ferro et al. (2015) used 3D printing to 
represent large undisturbed soil cores. 3D representations shown are of X-ray micro-CT scans 
and images of the associated 3D printed soil core. (C) Similarly, Otten et al. (2012) employed X-
ray micro-tomography imaging to generate a range of 3D printed soil replicas to study soil-
fungal relationships. (D) Jiang and Zhao (2015) generated 3D printed rock proxies from CAD 
models to study a mechanical behavior of 3D printed rock proxies.    
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Figure 2. Selected examples of published studies using 3D printed devices and rock proxies for 
microfluidic and flow phenomena. (A) Yazdi et al. (2016) and (B) Bonyar et al. (2010) both 
show examples of translucent microfluidic devices designed for fluid mixing and 
homogenization for visualizing sample and reagent interactions. (C) Watson et al. (2016) 
demonstrated the utility of translucent 3D printed microfluidic devices for comparison of flow 
and transport experiments with direct numerical simulations. (D) This is an example of a 3D 
digital representation of a natural sandstone core plug (left) and the 3D printed rock proxy used 
in core flood experiments (right) at the Aramco Research Center in Houston.  
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Figure 3. Workflow for comparison of macroscopic rock properties to digital models and 3D 
printed rock proxy properties. Macroscopic properties are defined by bulk measurements that 
represent a spatially averaged quantity beyond the microscopic scale and include, but are not 
limited to, flow (e.g., relative permeability), electrical (e.g., resistivity), acoustic (e.g., P and S 
wave velocities), and magnetic (e.g., NMR) properties. 
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Figure 4. Applications of 3D printing to geomechanical experiments. (A) Osinga et al. (2015) 
manufactured proxies for uniaxial compression testing using a sand-binding 3D printer. (B) Ju et 
al. (2014) used 3D printing to visualize fracture geometries and associated stress concentrations 
in naturally occurring coal. (C) Fereshtenejad and Song (2016) tested uniaxial mechanical 
strength of rock proxies printed in gypsum powder. (D) Vlasea et al. (2015) explored the impact 
of layer orientation relative to compression direction on sample strength.  
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Figure 5. Examples of 3D printing applications in geomorphology and paleontology. (A) Bourke 
et al. (2008) generated a 3D printed rock proxy from a CAD model of a vesicular basalt clast for 
use in rock-breakdown experiments. Horowitz and Schulz (2012) used 3D printing to 
demonstrate geomorphic features on Mars, including (B) a 3D print of the Gale Crater generated 
from a colored topographic map and (C) several 3D models of Mars with different vertical 
exaggerations. (D) Byers and Woo (2015) discussed the use of 3D printing of paleontological 
samples from the Smithsonian digital fossil dataset. (E) Barco et al. (2010) established 3D 
printing as a viable technique for preservation and display of macrofossils; an example digital 
model and representative 3D print are shown. 
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Figure 6. Examples of 3D printing applications in education and communication. (A) Ghawana 
and Zlatanova (2013) review 3D printing applications for urban planning, with public 
participation in planning using a 3D printed terrain model shown. (B) shows a 3D printed 
seismic volume as a way to visually enhance spatial perspective (Reyes et al., 2008). (C) Hasiuk 
and Harding (2016) discuss the use of 3D printing digital terrain models for use in teaching. 
Shown is an example workflow for printing the Grand Canyon. (D) Casas and Estop (2015) used 
3D printed dissection models for teaching crystallographic concepts.  
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Table 1. Overview of 3D printing methods and specifications. Compiled from Pham and 1 

Gault, 1998; Camisa et al., 2014; Gao et al., 2015. 2 

 3 

Technology Material Power 

source 

Resolution 

(XY/Z), 

microns 

Accuracy, 

microns 

Maximum model 

dimensions, mm3 

Cost, 

US$x1,000 

Applications in 

geosciences 

Capabilities 

ereolithography 

A), Digital Light 

ocessing (DLP) 

Ceramics 

(alumina, 

zirconia), 

polymers, resins 

Ultraviolet 

laser light 

75/25 50 500x500x600 3-700 • Geomechanics 
(fracture studies) 

• Flow experiments 
on sandstones and 
macroporous 
carbonates 

• Geomorphology 

• High building 
speed 

• Minimal to absent 
material 
microporosity 

sed Depositional 

odeling (FDM), 

used Filament 

brication (FFF), 

Inkjet/Polyjet 

Thermoplastics, 

ceramic slurries, 

metal pastes, 

wax 

Thermal 

energy 

150/25 20 500x500x500 0.5-200 • Geomorphology 
• Flow experiments 
on sandstones and 
macroporous 
carbonates 

• High building 
speed 

• Multi-material 
printing 

 
 

irect Ink/Laser 

Writing 

(DIW/DLW) 

Colloidal gels, 

suspensions, 

polymer melts, 

waxes, 

concentrated 

polyelectrolyte 

complexes 

Thermal 

energy; 

Laser 

1/0.15 0.5 85x50x25 40-3,000 • Flow experiments 
microporous 
carbonates 

• Microfluidic 
studies 

• Microfracture 
studies 

• Highest resolution 
• Absence of 
material 
microporosity 

• Fastest build time 

elective Laser 

intering (SLS) 

Polymers, 

metals, 

ceramics 

High- 

powered 

laser 

150/50 50 330x380x425 200-750 • Scaled reservoir 
models built from 
seismic and well 
data 

 

• High strength/ 
stiffness of 3D 
printed models 

• High accuracy 
• Powder recycling 
 

elective Laser 

Melting (SLM) 

Metal 

(stainless steel, 

Co, Cr, Ti) and 

ceramic 

powders 

200/100 100 350x350x400 250-400 • Testing acoustic 
and electric 
properties of 
deterministic 
reservoir rock 
models  

 

• 3D printed models 
have high stiffness 
and strength 

  
 

Electron Beam 

Melting (EBM), 

lectronic Beam 

Welding (EBW) 

Electron 

beam 

100/100 100 200x200x100 130-1,500 • Pore scale flow 
experiments 

• 3D printed models 
have high stiffness 
and strength 
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ser Engineered 

Net Shaping 

(LENS) 

Molten metal 
powder 

Laser 25/100 10 91x91x152 200-1,700 • Flow experiments 
on sandstones 
macroporous 
carbonates 

• Rock physics 
experiments 

• Functionally 
graded material 
printing 

• High accuracy  
 

 minated Object 

Manufacturing 

OM), Deposition 

mination (SDL) 

Plastic film, 

metallic sheet, 

ceramic tape, 

paper, polymer 

Laser, 

Tungsten 

blade 

10/100 200 800x550x500 12-150 • Geomorphology 
 

• High surface finish 
• Low costs for 
supplies 

 

Binder Jetting Powder (silica, 

plaster, ceramic, 

metal) 

Thermal 

energy 

100/50 50 350x350x450 70-700 • Scaled reservoir 
models built from 
seismic and well 
data 

• Geomechanics 
(fracture studies) 

• Geomorphology 

• Color printing 
• Wide material 
selection 
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