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                              Abstract 

   The ideas of ray tracing from geometrical optics and wave propagation in a slowly 

varying medium are used to study the propagation of plaentary waves in the atmosphere. 

Kinematic wave theory is applied to wave solutions of the linearised quasi-geostrophic poten-

tial vorticity equation on the sphere. An index is defined for planetary wave propagation 

in the vertical-meridional plane and it is shown that wave activity is refracted towards larger 

values of this index. 

   Ray solutions for stationary planetary waves are calculated for simple basic states and 

for basic states representative of Northern Hemisphere summer, autumn and winter condi-

tions. The results agree with those from observational and numerical model studies of 

stationary planetary waves in the atmosphere. It is shown that the sphericity of the Earth 

and the curvature of the zonal flow are important factors determining the propagation of 

planetary waves.

1. Introduction 

  There have been many theoretical studies of 

the vertical propagation of planetary waves in 

the atmosphere since the classic paper by 

Charney and Drazin (1961). These can be 

divided into two broad groups. The first includes 

analytical studies (e.g. Charney and Drazin, 

1961; Dickinson, 1968a) where a simple basic 

state is assumed so that the wave equation is 

separable. The horizontal and vertical wave 

structures can then be considered separately. 

The second group includes numerical model 
studies (e.g. Matsuno, 1970; Schoeberl and 

Geller, 1977) where realistic basic states make 

the wave equation non-separable and wave solu-

tions are found using numerical models. 

 In Hoskins and Karoly (1981, hereafter HK), 

the theory of waves propagating in a slowly 

varying medium was applied to Rossby waves 

propagating in a barotropic atmosphere. Ray 
solutions for horizontal propagation in the tropo-

sphere agreed well with observational and 

numerical model results. In the present paper, 

this theory is extended to study vertical as well
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as horizontal propagation of planetary waves in 

a baroclinic atmosphere. 

  In section two, wave solutions of the linearized 

quasi-geostrophic potential vorticity equation are 
found. Kinematic wave theory is used to deter-

mine the variation of the group velocity and 

wavenumber for an arbitrary zonally-symmetric 

basic state and tests for the validity of this wave 

solution are suggested. An index is defined which 

determines the propagation of planetary waves 

in the vertical-meridional plane. A general 

result is proved showing that the direction of 

propagation of wave activity is refracted towards 
the gradient of this index. The study is then 

limited to the consideration of stationary plane-

tary waves only. In this case the notion of 

refractive index has been introduced by Matsuno 

(1970). 

  Ray solutions are calculated for a constant 

angular velocity flow and a simple jet model 

of the stratosphere in section three. The sphe-

ricity of the Earth is shown to be important in 

refracting rays towards the horizontal as they 

approach the equator. However, for a sufficiently 

strong jet, a vertical waveguide can exist which 

prevents this equatorward propagation. 
  In section four, ray solutions are calculated 

for realistic representations of Northern Hemi-

sphere summer, autumn and winter conditions.
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The rays, the vertical group velocities and the 

vertical phase tilts are in broad agreement with 

observations of stationary planetary waves. The 

curvature of the mean zonal flow profile is 

shown to be important in determining the 

refractive index. 

2. Wave theory 

a. Quasi-geostrophie wave equation 

  We take as our starting point a set of quasi-

geostrophic equations of motion on a sphere 
using pressure as vertical coordinate. When 

linearized about a basic state with zonal mean 

zonal wind u (*, p) at latitude * and pressure 

p, they may be reduced to a single equation 
for the streamfunction when two approximations 

consistent with quasi-geostrophic scaling are made 

(see Dickinson, 1968b; Hollingsworth et al., 
1976). This equation for the perturbation stream-

function * in spherical coordinates (*, *, p) may 

be written:

and to scale the streamfunetion:

Then cost2* times (1) gives

where fM = 2* cos* sin* is the Coriolis parame-

ter in Mercator coordinates,

and

if variables are non-dimensionalised using as 

horizontal length scale the radius of the Earth 

a, vertical length scale H0 and time scale *-1 

where * is the angular velocity of the Earth then 

(6) becomes

where

Here the buoyancy frequency N, defined by and

is T/T0 times the Brunt-Vaisala frequency, T(p) 
being a standard temperature distribution with 

T0 a characteristic value and H0 = RT0/g. 

  It is convenient, as in HK, to use a Mercator 

projection of the sphere:

Then

and

is cos* times the meridional gradient of quasi-

geostrophic potential vorticity on the sphere. 
 The wave equation (7) is the extension of the 

barotropic wave equation (5.9) in HK to a baro-

clinic atmosphere. It is also the Mercator pro-

jection analogue of the wave equations used by 
Matsuno (1970) and Schoeberl and Geller (1977) 

in numerical models of planetary wave propa-

gation. 
 Assuming that uM and *M are slowly varying, 

the dispersion equation for plane wave solutions

The Mercator basic zonal flow uM=u/cos* is 

proportional to the angular velocity. It is also 

convenient to use as vertical coordinate

of (7) is
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As described by Whitham (1960), for example, 

the activity of almost-plane waves moves with 

the group velocity 

    cg = (ug, vg, wg), 

where

and prevents the use of the simple analysis often 

used in determining the validity of this WKB 

type of solution (e.g. Dingle, 1973). 

 However it is possible to define an improved 

solution to (7) for varying l and m using the 

phase-integral form

and

where the "total wavenumber" K = (k2 +l2+ 
*2m2)1/2. Defining a ray to be everywhere in 

the direction of the local group velocity, wave 

activity propagates along a ray with speed equal 

to the group velocity. Hayashi (1980) obtained 

expressions for the zonal and vertical group 

velocity for stationary Rossby waves on a *

plane for constant zonal flow which are a 
simplified form of (10). 

 Kinematic wave theory (Whitham, 1960) is 

used to give the variation of the wave frequency 

and wavenumber along a ray. Since the dis-

persion equation has no explicit dependence on 
x and t, k and * are constant along a ray. The 

variation of the meridional and vertical wave-

number are given by

Some idea of the validity of this approximate 

solution can be obtained by considering the 

meridional variation of the coefficients in (13) 

for constant m and z and the vertical variation 

for constant l and y. These analyses suggest 

criteria for the validity of the phase-integral 

solution, as in HK, that

i.e. that the wavelength is slowly varying. It is 

not possible to define these criteria as a function 

of y and z for a given frequency and basic state. 

However it is possible to define two parameters 

which are related to these criteria and which 

can be determined once the basic state is speci-

fied. These can be regarded as WKB parame- 

ters for the meridional and vertical wavenumbers,

where

where dg/dt=*/*t+cg** is the advective deri-

vative moving with the group velocity. Equations 

(10) and (11) form a Hamiltonian set of equa-
tions for the group velocity and wavenumber 

which may be integrated to give the wave rays 

for a given frequency and basic state. 

b. Phase-integral solution 

 The plane wave expression (8) is an approxi-

mate solution to the wave equation (7) with 

varying coefficients. Since we have shown that 

k and w are constant along rays, a solution is 

posed of the form

Substituting (12) into (7) gives the elliptic 

equation

where the wavenumber term l2+*2m2 [defined 

by (9)] and *2 are functions of y and z. This 

functional dependence makes (13) non-separable

assuming that the variation of * is small . The 
ratios K/l and K/*m are large only close to 

turning points of a ray in the meridional and 

vertical directions respectively, where l*0 or 

m*0 and the phase-integral solution is not valid. 

Elsewhere the magnitudes of Wl and Wm provide 

an indication of the validity of the phase-integral 

solution for a given basic state. 

c. Wave amplitude 

 Bretherton and Garrett (1968), see also Stur-

rock (1962) and Whitham (1965), showed that 

the conservation of wave action can be written 

in the useful form

where E/*' is the wave action density, E the 

wave energy density and *' = * - uMk the 

Doppler shifted frequency. Andrews and Mc-

Intyre (1978) have discussed the derivation of 

a general form of this equation and its simplifi-

cation to (16) for small amplitude waves in a



112 Journal of the Meteorological Society of Japan Vol. 60, No. 1

conservative, slowly varying medium. 

  For stationary solutions, the divergence theo-

rem can be applied to the wave action flux along 

a ray tube, following Lighthill (1978), to give

where dA is the cross section of the ray tube. 

For a horizontal section,

where *x and *y are representative of the 

magnitude of the section in the zonal and meri-

dional directions. Since the ray equations are 

independent of x, *x is constant and (17) be-

comes

Then

Using dgl/dt=-*F/*y and the z component 

of (22), (24) gives

Similarly

From (23), the rate of change of * following 

a ray is given by

Using (23), (25) and (26), we have

The wave energy density

per unit volume

where * is the horizontal mean density and A 

the amplitude of the scaled streamfunction, Sub-

stituting (19) into (18) gives the expression for 

the variation of the streamfunction amplitude 

along a ray

This expression allows the amplitude variation 

to be determined along a ray in, regions where 

the phase integral solution is valid. It does not 

make it possible to determine the wave amplitude 

as a single-valued function of y and z for a given 

basic state, as was possible in HK. 

d. Ray refraction: a general result 

  Consider a dispersion equation for any waves 

in the two dimensional space (y, z) which is per-

fectly general except that it is isotropic in the 

y and z wavenumbers l and m in the sense that

where K2 = k2 +l2+ m2, k being constant. The 

group velocity in the y-z plane is

The angle * of a ray to the horizontal is given 

by

Now consider waves of a particular frequency 

* and define K* such that F (y, z, K*) = *.

where i is a unit vector in the "x" direction. 

Thus rays are always refracted towards the 

direction of *K*. 

 To be more specific, if r is the radius of cur-

vature of a ray and x is the angle from cg' to 

*K* then dg*/dt=cg'/r and

Referring to Fig. la, this is the distance AB 

along the normal to the K*, contour at A. (28) 

states that the centre of curvature must lie on 

the line CB. The actual position on this line is 

implied by the direction of the ray at A. 

  For a given basic state and frequency *, the 

wavenumber K*, can be found as a function of 

y and z only and the refractive index for wave 

propagation is fixed. From (28), ray refraction 
is large for large gradients in K*, near turning 

points (K*, *k) and for rays nearly tangent to 
K* contours. It is clear, as shown in Fig. 1b, 

that a ridge in the K* field will act as a wave 

guide for rays propagating sufficiently parallel 
to the ridge. The erect is similar to that of an 

underwater ridge or sandbank on ocean surface 

waves. 

  We note also that with a dispersion relation 

of the form (21), the problem is time-reversible 

and rays can represent propagation in either 

direction. 

e. Ray refraction: planetary waves 

  Apart from the variation of *, the dispersion 

equation for planetary waves (9) may be put in 
the standard form (21) by using a stretched 

vertical coordinate z=z/a. Neglecting the varia-



February 1982 D. J. Karoly and B. J. Hoskins 113

Near a turning point, the first term always domi-

nates. Elsewhere, the relative variation of K*2 

usually exceeds that of *2 and the above results 

on ray refraction hold qualitatively. 

  For stationary planetary waves, *=c=0 and 

(29) becomes

We note that

Thus where the phase speed of a wave is much 

smaller than the zonal flow, its rays are almost 

the same as those for stationary waves. Neglect-

ing the last term in (32), from maps of Ks it is 

easy to determine those for K*. For small 

propagation speeds in a westerly flow, i.e. 0< 
*c *<uM, K*, is larger for eastward moving waves 

which are thus able to propagate into regions in 

which stationary waves of the same zonal wave-

number cannot exist. The propagation of west-

ward moving waves is inhibited. 

 From (10) the three dimensional group velocity 

for stationary planetary waves may be written

In isotropic coordinates, the magnitude of the 

group velocity is

Fig. 1(a) Diagrammatic representation of the curva-

    ture of a ray at point A in a medium of refrac-

    tive index K* , with gradient *K*. The distance 

    AB along the normal to the K* contour at A 

   is given by (28) and depends only on k and K*.

   The line BC on which the centre of curvature 

    lies is parallel to the tangent at A. The actual 

   position of C on this line for any ray is given 
   by the direction of the ray at A, i.e. the inter-

   section with BC of the normal to the local cg. 

Fig. 1(b) Diagrammatic representation of the wave-

   guide effect of a ridge in the K* field. Rays 

   propagating sufficiently parallel to the ridge are 
   focused into the ridge.

tion of *, the results (27) and (28) are then exact 

in the y-z plane and

where c is the zonal phase speed */k . If the 
variation of * is included, it can easily be shown 

that (27) is modified to

For Ks2* *2n2, this simplifies to an extension of 

the barotropic result in HK that wave activity 

propagates along a ray at a speed double that 

of the component of the basic flow in the direc-

tion of the three dimensional ray. 

 For the remainder of this study, only stationary 

waves will be considered.

3. Simple basic states 

  The ray theory of the preceding section is 

applied to two simple basic states, a constant 

angular velocity flow and a simple model of the 

stratosphere, so that the importance of different 

terms in determining the variation of the station-

ary wavenumber can be investigated. 

a. Constant angular velocity flow 

 The simplest basic state on the sphere is a 

constant angular velocity flow (super-rotation) 
with uM=*, a constant. In addition , we assume 
that the temperature and static stability are 

constant. This leads to the simplifications
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and

The stationary wavenumber is independent of 

height and longitude and its variation with lati-

tude is due solely to the sphericity of the Earth. 

Since Ks is independent of height dgm/dt=0 

and m is constant along a ray. Thus l varies 

along a ray to satisfy l2=Ks2 - k2 - *2m2. 

  Consider a wave propagating upward, pole-

ward and eastward. The vertical wavenumber 

is constant so the vertical group velocity will 

always be positive. Since Ks is a decreasing 

function of latitude, l decreases toward the pole 

and the ray becomes more vertically and zonally 

oriented. The latitude at which Ks2 = k2 + *2m2 

is the turning point for the ray in the meridional 

direction. Near this latitude, the phase-integral 

solution is not valid but the group velocity is 

unchanged when a higher order approximate 

solution is considered. After reflection at the 

turning point, the wave propagates equatorward, 

the ray becomes more meridionally oriented as 

l increases and the phase-integral solution be-

comes valid again. Since *Ks is horizontal and 

directed towards the equator, the ray is refracted 

towards the direction of *Ks and becomes more 

meridionally oriented as the equator is ap- 

proached. 
  For actual numbers, we refer to the super-

rotation used in HK with * =1/30.875 and the 

speed at the equator is *15ms-1 We choose 

values representative of the stratosphere for the 

scale height *6.5km and the Brunt-Vaisala 

frequency *4.5 * 10-4 s-2. 

  To calculate a wave ray for this basic state, 

the equations (10) and (11) for the group velocity 

and wavenumber are numerically integrated with 

respect to time using a fourth order Runge-

Kutta scheme for given initial position and 

wavenumber. The frequency is calculated in-

dependently using the dispersion equation to 

maintain a check on the accuracy of the numeri-

cal procedure. The phase-integral expression for 

the wave phase in (14) is used to give the phase 

variation along the ray. An initial position is 

chosen and the stationary wavenumber calcu-

lated. For each value of integer zonal wave-

number less than Ks, there is an infinite number 

of wavenumber combinations (l, m) which satisfy 

the dispersion equation and an infinite number 

of directions for wave propagation in the y-z 

plane. A number of combinations representa-
tive of the range are used with each zonal wave-

number to give the initial wavenumbers for the 

rays. 

 To separate the dependence of Ks on the 

variation of *M from that due to the variation 

of *, * is kept constant with latitude at its value 

at 45*. Thus the refraction of the rays is due 

only to the *Ks term in (30). The rays for zonal 

wavenumber one from a source at 45* in this 

basic state are shown in Fig. 2(a) with crosses 

marking points at 1 day time intervals along 

each ray, indicating the speed of wave propa-

gation. The analytic expression for these rays 
is found by integrating the ray slope in the y-z 

plane to give

where cos*=k [*/2(1+*)]1/2 and k2=k2+

Fig. 2 Rays and propagation times marked by 

    crosses every day for zonal wavenumber one 

    from a source at 45* and z=0.7 in the super-

   rotation flow. Solutions for (a) * kept constant 

   at its value at 45* and (b) full variation of *.
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*2(m2+1/4) . The maximum meridional propa-

gation is to the latitude * where l=0 and Ks2 = 
k2 + *2m2. 

 Fig. 2(b) shows the rays for zonal wavenumber 

one calculated using the correct variation of *.* 

Comparison of Fig. 2(b) with 2(a) and considera-

tion of the equation for ray refraction (30) shows 

that, for * >45*, */*<0 and the ray curva-

ture is decreased whereas for *<45*, */*> 0 

and the ray curvature is increased. The tendency 

of the rays to the horizontal is more pronounced 

in low latitudes in Fig. 2(b) than in Fig. 2(a) 

and this is due to the variation of *. 

  This refraction of the rays towards the hori-

zontal is similar to that shown by the Eliassen-

Palm (EP) flux in observational and modelling 

studies of planetary waves in the atmosphere 

(Edmon et al., 1980; Sato, 1980; Dunkerton et 
al., 1981; Palmer, 1981). The EP flux is parallel 

to the meridional projection of the group velocity 

for small amplitude planetary waves in a slowly 

varying zonal wind (McIntyre, 1980). Our study 

shows that the refraction of the planetary wave 

group velocity towards the equator is a funda-
mental property of sphericity of the Earth and 

is not due to variations in the zonal flow. The 

presence of critical lines is not necessary. 
b. Uniform vertical shear 

  Simmons (1974) used a simple representation 
of the stratosphere in which the zonal wind is 

assumed to have a simple meridional variation 

between 40* and the pole with a maximum at 

65* and a uniform vertical shear. The tempera-

ture and static stability are again constant. The 

zonal flow, shown in Fig. 3a, is zero at the sur-

face and at 40* so that critical lines exist at 

the equatorward and lower boundaries of the 

flow region. The phase-integral solution breaks 

down close to a critical line but a linear analysis 

performed in the region shows that wave activity 
is absorbed by the critical line (Dickinson, 1968a). 

The non-linear behaviour of critical lines in the 

atmosphere is uncertain (Tung, 1979) but in this 

study, they are treated as total wave absorbers.

* The rays shown in Fig. 2b are complete provided 

 that there is a wave absorber in the southern 

 hemisphere. As pointed out to the authors by 

 M. Schoeberl, if the constant angular velocity flow 

 holds there as well, then the rays will be reflected 

 back into the northern hemisphere. There is then 

 vertical propagation in the wave-guide between 

 the polar regions. This corresponds to the separable 

 analytic problem in this case which implies zero 

 horizontal phase tilt.

Fig. 3 The basic state for the simple model of the 

   stratosphere. Shown are: (a) zonal wind (con-

   tour interval 20ms-1), (b) vorticity gradient, 

   *M (contour interval 1) and (c) stationary wave-
   number, Ks. (Solid contours at interval 1 for 

   0 < Ks <5. Other intermediate contours are dash-

   ed and labelled.)
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  The vorticity gradient *M and stationary wave-

number Ks are shown in Fig. 3b and c. For a 

flow with uniform vertical shear, Ks asymptotes 

to a function of latitude only as z increases and 

there are only small variations of Ks above z 

*8. There is a maximum in *M at 62*, near 

the jet maximum, indicating that the dominant 

term in the vorticity gradient is the meridional 

curvature of the zonal flow and not spherical 

effects. Close to the pole above z=1 there is a 
region where *M is negative. The stationary 

wavenumber is undefined in this region, placing 

a limit on the poleward propagation since wave 

solutions are possible only for *M > 0. There is 

a local maximum in Ks near 54* above z=8, 

on the equatorward side of the jet maximum, 

but elsewhere there is a general decrease in Ks 
with increasing latitude and height. The WKB 

parameters for this basic state are both less than 
0.3 except where the stationary wavenumber is 

small. 

  Wave rays are calculated in the same way as 

before except that, in this case, m is not con-

stant with height. In the solution as a critical 

line is approached, the ray becomes normal to 

the critical line and the group velocity tends to 

zero. The ray is terminated close to the critical 

line. 

  The rays for tonal wavenumber one from a 

source  at 60*, z=0.77 are shown in Fig. 4(a) 

with circles marking points at * phase intervals 

along the rays. Comparison of Fig. 4(a) with 

Fig. 3(c) shows that rays are refracted towards 

*Ks, indicating the dominance of the first term 

in (30). The general pattern of the rays is very 

similar to that for the super-rotation except that 

m varies along each ray and may change sign, 

giving a turning point in the vertical. 
  The vertical separation of the phase circles is 

used to calculate the vertical phase tilt of 

*8*km-1. This does not agree with the funda-

mental solutions of Simmons (1974) which had 

no phase tilt with height in this basic state. The 

difference is due to the absence of dissipation and 

the fixed meridional structure in Simmons' solu-

tion and the dissipation inherently assumed in 

this model to give wave absorption at critical 

lines. If this were not present the rays would 

be reflected back from the equatorward boundary. 

The phase tilt with height is in broad agreement 

with observations of stationary wavenumber one 

in the winter stratosphere (Hirota and Barnett, 

1977; van Loon et al., 1973). 

  The rays for zonal wavenumber one from a

Fig. 4 Rays for zonal wavenumber one in the sim-

   ple stratospheric basic state. (a) Source at 60* 
   and z=0.77 with phases marked by circles at * 

   intervals along each ray. (b) Source at 55* with 

   propagation times marked by crosses every day.

source at 55*, z=0.77 are shown in Fig. 4(b) 

with crosses at 1 day time intervals. Note the 

decrease in the group velocity and that the rays 

become normal to the critical line as the critical 

line is approached. These rays have many 

similarities to those from the source at 60* with 

the single major difference that one ray enters 

the region of the local maximum in Ks and is 

trapped in this region, propagating to great 

height. This shows the importance that strong 

westerly winds can have in determining the 

vorticity gradient and leading to increased verti-

cal propagation. This is in agreement with the 

idea of a strong westerly wind waveguide sug-

gested by Simmons (1974) rather than a weak 
westerly waveguide suggested by Dickinson
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(1968a). 

4. More realistic basic states 

  Several realistic polynomial representations of 

the variation of the zonal mean zonal flow and 

horizontal mean temperature have been obtained 

based on the data from Oort and Rasmusson 

(1971) and Newell et al. (1972) for the tropo-
sphere and lower stratosphere and from the 

COSPAR (1972) International Reference Atmos-

phere for the stratosphere and mesosphere. These 
representations must be continuous to at least 

the third derivative since they are used as the 

basic states for ray solutions. Polynomial expres-

sions are used for both the zonal flow and 

temperature. 

  A single hemisphere only is considered and 

propagation of wave activity out of the hemi-
sphere is prevented by changing the flow at low 

latitudes so that easterly wind exists at the 

equator at all heights. This does not affect the 

flow at middle latitudes. 

a. Northern hemisphere winter 

  The polynomial representation of the zonal 

flow in the Northern Hemisphere winter is shown 

in Fig. 5(a). It has a tropospheric maximum of 

26ms-1 at 33* and a polar night jet maximum 

of 75ms-1 at 43*, z*9. The vorticity gradient 

and stationary wavenumber are also shown in 

Fig. 5. The critical line in the Ks profile is 

shown by the multiple lines close together at low 

latitudes. 

  There are maxima in *M near the jet maxima, 

as for the simple jet model, and a local minimum 

in *M at 55*, z*2.5, near the tropopause. There 

are regions of negative *M at the surface at high 

latitudes and at upper levels at high latitudes. 

Charney and Stern (1962) showed that if the 

meridional gradient of the quasi-geostrophic 

potential vorticity changes sign in a region, the 
flow may be unstable to wave disturbances. 

Simmons (1978) investigated this instability 

mechanism for typical stratospheric conditions 

and found very small growth rates for the un-

stable modes. Leovy and Webster (1976) have 

found that this instability criterion is satisfied 

in their observations of mean winter upper 

stratospheric conditions. The possibility of any 

instability is avoided in this study by considering 

stationary waves only. 

  The stationary wavenumber profile shows many 

similarities to that for the simple stratosphere 

model, with decreasing Ks with increasing lati-

tude and height. The major differences are the

Fig. 5 Northern Hemisphere winter basic state. 

   Shown are: (a) zonal wind (contour interval 

   10ms-1). (b) *M (interval 1) and (c) Ks (inter- 

   val 1 for 5<Ks<0, intermediate contours are 

   dashed). The lines close together at low latitudes 

   indicate the critical line.
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large meridional gradient in Ks on the poleward 

side of the tropospheric jet, a large vertical 

gradient of Ks at the tropopause at mid-latitudes 
and regions of undefined Ks in regions of easterly 

wind and negative *M. There is a local minimum 

in Ks in the same region as that in *M. 

  The Ks profile is similar to that for the square 

refractive index Q0 of Matsuno (1970) apart 

from in the troposphere and at high latitudes. 

Q0 is related to Ks2/cost2* but was calculated 
by Matsuno assuming constant temperature and 

static stability. The flow used by Matsuno was 

adjusted so that there were no regions of nega-

tive meridional vorticity gradient. Matsuno noted 

the tendency of wave energy to avoid the region 

of the local minimum in Q0 in his numerical 

model solutions. Palmer (1981) has noted a 

tendency for the EP flux to be focussed into 
regions of large Q0 in observations of planetary 

waves in the winter stratosphere. This tendency 

and that noted by Matsuno is in agreement with 

the refraction of wave activity towards *Ks in 

accordance with (30). 

  The WKB parameters for the wavenumber 

calculated for this flow are less than 0.5 away 

from the critical line or regions of small Ks. 

However there are localised maxima of Wl*0.7 

at 40*, z=2.2 and Wm*1.2 at 50*, z=2.0 

near the minimum in Ks at the tropopause. This 

places the validity of the phase-integral solution 
in doubt in this region. However the large 

gradients of Ks in this region lead to refraction 
of the rays away from the region. This will be 

discussed again later. 

  The ray solutions are calculated in the same 

way as before. Downward wave propagation and 

initial negative vertical wavenumbers are con-

sidered and, where necessary, rays are reflected 
from the surface z=0 as from a solid boundary. 

However, it should be noted that the WKB 

parameters suggest that the small velocities near 
the surface render the solution invalid there. 

  The rays and phases for zonal wavenumber 

one from a source at 60*, z=0.4 are shown in 

Fig. 6(a). These rays have many similarities to 

those for the simple model of the stratosphere, 

with general upward and equatorward propaga-

tion, but the differences in Ks lead to some 

important differences in the rays. In general, 

the rays are trapped in the vertical below z 

*2.5 by the decrease in Ks above the tropopause 

except at high latitudes. The local maximum in 

Ks near 65* causes focussing of the rays with 

an effect like a vertical waveguide from the

Fig. 6 Rays for zonal wavenumber one in the win-

   ter basic state. (a) Rays and phases for a source 

   at 60* and z=0.4. It should be recalled that this 

    wave cannot occur in the region in Fig. 5 where 

   Ks<l. (b) Rays and propagation times for a 

    source at 45* and z=0.4.

troposphere into the stratosphere between the 

pole and the minimum in Ks. 
 The maximum vertical propagation is to z 

*7 or about 50km, a typical height for satellite 

observations of large amplitude stationary wave-

number one. The phase tilt with height in the 

troposphere is difficult to determine because the 

rays are trapped between the surface and the 

tropopause. The phase tilt in the stratosphere 

is approximately 8*km-1, in agreement with the 

simple stratosphere model but greater than 

observed phase tilts in the Northern Hemisphere 

winter stratosphere (Hirota and Barnett, 1977; 

van Loon et al., 1973). 

 The latitude of the source determines the 

number of rays which can have significant
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vertical propagation in this basic state. The 

rays and propagation times for zonal wave-

number one from a source at 45*, z=0.4 are 

shown in Fig. 6(b). The rays are similar to those 

for the 60* source except that fewer rays can 

enter the vertical waveguide at high latitudes and 

propagate into the stratosphere. For this source 
there is greater vertical propagation, to z *8 or 

about 55km, than for the 60* source. Since 

uM is small, the speed of wave propagation is 

small close to the surface and realistic dissipation 

would appear likely to be important for rays 

which reflect from the surface. The vertical 

group velocity is approximately 5km day-1 in 
the stratosphere, in agreement with observations 

of the vertical propagation of planetary waves 

by Hirota and Sato (1969). The vertical group 

velocity and phase tilt of the rays in the strato-

sphere are not affected by the latitude of the 

source. 

  For sources at low latitudes, no rays have 

significant vertical propagation without reflection 

from the surface first. If such reflection is as-

sociated with significant damping, this would 

suggest that low latitude sources are less likely 

to give a large response in the stratosphere com-

pared to high latitude sources. The relevance of 
this model to meridional wave propagation in 

the troposphere will be discussed later. 

  The extent of the vertical and meridional 

propagation is reduced by increasing the zonal 
wavenumber. As shown in Fig. 7, wavenumber 

two has maximum vertical propagation to z 

*5. Wavenumber three is trapped in the tropo-

sphere. This reduction of the vertical propagation 

is in agreement with observations and other 

theoretical studies of planetary waves. The 

reduction of the meridional propagation is in 

agreement with the barotropic ray solutions of 

HK. For zonal wavenumber two in the strato-

sphere, the vertical group velocity is about 7km 

day-1 and the vertical phase tilt about 12*km-1, 

both larger than for wavenumber one. 

 The variation of the streamfunction amplitude 

may be calculated using (20). The horizontal 

section of the ray tube is determined by calcu-

lating two rays for initial positions with small 

meridional separation and the same initial direc-

tion i.e. the same ratio l/m for both rays. The 

meridional separation *y between the rays is used 

in (20). This equation has singularities at ray 

turning points in the meridional and vertical 

directions where *y*0 and wg*0 respectively. 

The phase-integral solution is not valid close to

Fig. 7 Rays and propagation times for zonal wave-

   number two in the winter basic state from a 

   source at 45* and z=0.4. It should be recalled 

   that this wave cannot occur in the region in 

   Fig. 5 where Ks<2.

these singularities but it has not been possible 

to find a higher order approximate solution to 

correct the large amplitudes given by (20) close 

to these singularities. The amplitude is also not 

a single-valued function of y and z since neither 

the wavenumber (l, m) or cg are single-valued 

functions. Thus it is not possible to produce a 

graphical representation of the streamfunction 
amplitude variation as a function of y and z. 

It is possible to calculate the amplitude along 

each ray and this shows a general increase with 

latitude and a large increase with height. 

  Ray solutions have also been obtained for a 

zonal flow with the same shape as in Fig. 5(a) 

but with stronger westerly winds, having a tropo-

spheric jet maximum of 36ms-1 and a polar 

night jet maximum of 94 ms-1. For this stronger 

flow, there is a reduction in the number of rays 

propagating from the troposphere into the strato-
sphere. The vertical group velocity in the strato-

sphere is greatly increased and the vertical phase 

tilt is reduced so that their values agree better 

with observations. The magnitude of the group 

velocity is such that wave activity can propagate 

from the tropopause to the stratopause in less 

than 4 days. 

b. Northern hemisphere summer 

 A basic state representative of Northern Hemi-
sphere summer conditions has been generated. 

Vertical propagation is prevented by the critical 

line below 10 mb at all latitudes. The zonal flow
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has a westerly jet maximum of 14ms-1 at 45*, 

z=1.5 with easterly winds in the stratosphere 

and in equatorial regions. The vorticity gradient 

is negative near the surface between 30* and 

70* and at polar latitudes above z=1. Thus Ks 

is real only in a region around the tropospheric 

jet and stationary waves are possible in this 
region only. 

  The rays for zonal wavenumber one from a 

source in the middle troposphere propagate out-

ward and terminate at the critical lines or close 

to regions of negative *M, where the numerical 

procedure breaks down. The restriction of large 
amplitude stationary planetary waves to the 

troposphere in the summer and the lack of 

vertical propagation is in good agreement with 

observations (van Loon et al., 1973). The east-

ward phase tilt with height for wavenumber one 

in the Northern Hemisphere summer found by 

van Loon is consistent with downward wave 

propagation from a source in the upper tropo-
sphere. 

c. Northern hemisphere autumn 

 A basic state representative of the Northern 

Hemisphere autumnal equinox has been gen-

erated. The zonal flow, shown in Fig. 8(a), is 

much weaker than in the winter but it is stronger 

than in the summer and westerly winds extend 

into the middle latitude stratosphere. There is 

a tropospheric jet maximum of 17ms-1 and a 

stratospheric jet maximum of 31ms-1. Unlike 

the winter case, the vorticity gradient does not 

have a maximum at the stratospheric jet because 

of the reduced amplitude and curvature of the 

jet. The stationary wavenumber is shown in Fig. 
8(b) and it has a more uniform decrease with 

latitude and height than in winter. There is no 

local maximum in Ks at the tropopause and thus 

no vertical waveguide from the troposphere to 

the stratosphere. 

  The rays from a source at 60*, z=1, shown 

in Fig. 8(c), have smaller vertical propagation 

than for the winter case, reaching a maximum 

height below z=6 or about 40km. The vertical 

group velocity is considerably reduced and the 
vertical phase tilt is slightly increased. The 

reduced vertical propagation during the autumn 

is in agreement with observations but it is in 

contrast to the suggestion from the model of 

Charney and Drazin (1961) that stationary plane-

tary waves have increased vertical propagation 

in weak westerly winds. This is also in contrast 

to the suggestion of Dickinson (1969) that

Fig. 8 NH autumn basic state. Shown are: (a) 

   zonal wind (intervals 5ms-1), (b) Ks (contours 

   for 5 <Ks <0 at interval 1) and (c) rays for 

   zonal wavenumber one from a source at 60* 

   and z=1.
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dissipation in the atmosphere leads to small 

amplitudes for stationary wavenumbers one and 

two in the stratosphere during the autumn. Dis-

sipation is likely to be more important in the 

autumn than in winter because of the smaller 

group velocities but the reduced vertical propa-

gation occurs without dissipation being con-
sidered. 

5. Discussion 

  In this paper it has been shown how kinematic 

wave theory can be applied to the propagation 

of planetary waves in a zonally-symmetric atmos-

phere. As a special case of a general result, it 
has been shown that almost all the necessary 

information on the propagation of a wave of 

particular frequency is contained in a map of 
the total wavenumber K*. This shows the direc-

tion of the refraction of rays and the regions 

into which they can propagate. We have con-

centrated on waves with zero frequency for 

which the crucial parameter is the stationary 

wavenumber Ks. 

  It has been shown that the tendency for 

planetary waves to propagate towards the equator 
is a property of the spherical domain and not 

necessarily due to the presence of critical lines. 

  The magnitude and curvature of the zonal 

flow is crucial in causing significant variations 

of Ks. A region of local maximum of Ks causes 

focussing of rays and acts as a waveguide. It 

has been shown that such waveguides can be 

associated with strong stratospheric jets allowing 

propagation to great heights. In the Northern 
Hemisphere winter basic state, a vertical wave-

guide exists at high latitudes between the tropo-
sphere and stratosphere. As a check on this, 

Ks has been determined from the data of Oort 

and Rasmussen (1971). Again there is a local 

maximum near the tropopause at 65*N, near the 

latitude where the largest amplitude for stationary 

wavenumbers one and two is observed at this 

height. 

  Using the concept of stationary wavenumber, 

it is possible to understand what flow conditions 

lead to the possibility of waveguides and con-

sequent enhanced propagation of stationary 

planetary waves. 
  The validity of the phase-integral solution for 

realistic basic states is open to question as varia-

1 It is of interest that the data also indicates a region 

 of negative potential vorticity gradient close to the 

 surface poleward of 45*N. Ks is undefined in this 

 region.

tions of the basic state are not small. Charney 

and Drazin (1961) have suggested that the WKB 

technique is not suitable for investigating the 

vertical propagation of stationary planetary waves. 

However, the excellent agreement of the results 

obtained using this technique with those from 

observational and modelling studies suggests the 

validity of this method. In general, the criteria 

for the validity of the solution are satisfied 

throughout much of the flow region. These 

criteria are related to *K*K*-1, which also 

determines the radius of curvature of a wave 

ray. The greatest ray refraction occurs where 

*K*-1

, is large. Thus there is a tendency 

for rays to be refracted away from regions where 

the validity of the phase-integral solution is 

doubtful. Although this may be fortuitous, it 

encourages the use of the phase-integral tech-

nique for realistic flows where the validity criteria 

are not satisfied everywhere. 

  The results of this model suggest that a low 

latitude source in the troposphere has a weak 

response at high latitudes whereas the study of 

horizontal propagation in HK showed that low 

latitude sources give a large response at high 

latitudes. However, the baroclinic ray tracing 

described here is not valid near z=0 and so it 

may not be as useful for considering horizontal 

wave propagation from low latitude sources in 

the troposphere. 
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プ ラ ネ タ リ ー 波 の3次 元 的 伝 播

                 David J. Karoly* and Brian J. Hoskins 

Department of Meteorology and Atmospheric Modelling Group, University o f Reading

 幾 何 光 学 お よび ゆ っ く り変 化 す る媒 質 中 の波 動 伝 播 論 に お け る光 路 追 跡(ray tracing)の 考 え 方 を 大 気 中 の プ

ラ ネ タ リー波 伝 播 の研 究に 応 用 した 。 線 形 化 した 球 面 上 の 準 地 衡 風 ポテ ン シ ャル渦 度 方 程 式 の解 法 に 波 動 の運 動

学 理 論 を 適 用 す る。 子 午 断 面 内 の プ ラネ タ リー波 の 伝播 を 支 配 す る 指 数 を 定 義 し,波 動 活 性 量(wave activity:

エ ネル ギ ーに 類 似 し,平 均 流 変 化 の あ る場 合 に も保 存 す る 量)が,こ の 指 数 の大 き くな る 方 に 向 け て屈 折 され る

こ とを 示 す 。

*現 所 属:Australian Numerical Meteorology Research Centre . P.O. Box 5089AA, Melbourne, Victoria,

 3001 Australia.


