
Three-dimensional ray tracing on Delaunay-based

reconstructed surfaces

Sergio Ortiz,1,* Damian Siedlecki,1,2 Laura Remon,1 and Susana Marcos1

1Instituto de Óptica “Daza de Valdés”, Consejo Superior de Investigaciones Científicas,
C/Serrano 121, 28006 Madrid, Spain

2Institute of Physics, Wroclaw University of Technology,
Wybrzeze Wyspianskiego 27, 50370 Wroclaw, Poland

*Corresponding author: sortiz@io.cfmac.csic.es

Received 27 May 2009; accepted 13 June 2009;
posted 19 June 2009 (Doc. ID 112019); published 1 July 2009

A method of ray tracing for free-form optical surfaces has been developed. The ray tracing through
such surfaces is based on Delaunay triangulation of the discrete data of the surface and is related to
finite-element modeling. Some numerical examples of applications to analytical, noisy, and experimental
free-form surfaces (in particular, a corneal topography map) are presented. Ray-tracing results (i.e., spot
diagram root-mean-square error) with the new method are in agreement with those obtained using a
modal fitting of the surface, for sampling densities higher than 40 × 40 elements. The method
competes in flexibility, simplicity, and computing times with standard methods for surface fitting and
ray tracing. © 2009 Optical Society of America
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1. Introduction

A large variety of ray-tracing algorithms can be ob-
served in the literature. Many of them involve ray
tracing through nonhomogeneous or gradient index
media [1–4]. Some others describe the light propaga-
tion in birefrigent materials [5–8] or optical fibers
(waveguides) [9,10]. However, except for a few papers
[11–14], not many works in the literature explain a
precise and efficient way of finding the intersection
points of rays with optical surfaces. Although this
problem seems to be relatively trivial, our experience
in physiological optics shows that it is not, particu-
larly if “noisy” or free-form surfaces are of interest.
Interesting examples of such surfaces are surfaces of
biological origin, for example, the cornea of the eye.
The anterior corneal surface plays a very important
role in focusing light on the retina. Its topography
has a major influence on the optical performance

of the eye, including higher-order aberrations
[15–24].

This paper presents a three-dimensional (3D) tech-
nique of tracing rays through optical surfaces of any
type. The method is based on the Delaunay trian-
gulation [25,26], which is a well-known method in
finite-element modeling and graphical ray tracing
that is used for rendering photorealistic images
[27–29]. To the best of our knowledge, this method
has never been implemented in geometrical optics.
Typically, optical analysis software, such as ZEMAX
[30] uses a least-mean-square method together with
linear or spline interpolation of the discrete surface
points. The least-mean-square method is relatively
fast and its accuracy, even for analytical, surfaces is
acceptable. However, it depends strongly on the sam-
pling density of the surface. The Delaunay method
proposed in the current study can optimize computa-
tions of optical analysis of optical systems, regarding
particularly the intersection points of a ray with an
optical surface.

This finite-element technique is an approach that
was developed in our laboratory for the purposes of
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the optical distortion correction [31] of 3D optical co-
herence tomography (OCT) images [32,33], where
the real shape of the surface is not known a priori
and has to be estimated.

2. Delaunay Decomposition

Delaunay decomposition is a well-described [25,26]
mathematical method used in computational geome-
try. It uses the property of the convex hull (envelope)
of the discrete set of points fX ;Yg. By means of the
Delaunay triangulation method, one can approxi-
mate any surface with a set of flat triangles, as is
usually done in the finite-element method (FEM)
[34–38] (Fig. 1.). The number of obtained triangles
is related to the number of points in the grid and
the number of vertices on the convex hull. If m is
the number of points in the grid, and l is the number
of vertices, then the number of triangles t is defined
by the following equation:

t ¼ 2m − 2 − l: ð1Þ

Because all the triangles are flat, one can easily
calculate the vector normal to each of them and
use it further in the Snell’s law accomplishment. This
makes the Delaunay triangulation method very con-
venient and relatively easy to implement to optical
ray tracing.

A. Description of the Algorithm

In a first step, it is necessary to arrange adequately
the data of the surface. The surface should be de-
scribed by the set of points fX;Y ;Zg corresponding
to a discrete sample of the surface topography. If
the surface is analytical, the set fX;Y ;Zg can be gen-
erated as a mesh with regular sampling. The optical
surface can be the result of a topographical measure-
ment performed on an irregular or even random sam-
pling pattern. On a set of fX ;Yg, one can perform
two-dimensional Delaunay decomposition, where
each point from the discrete data set fX;Yg is one

of the vertices of at least two triangles. This results
in a 3D approximation of the surface Z ¼ f ðX ;YÞ.

The next step is to find one particular triangle,
which is hit by a ray denoted by its initial position,
R0, and an optical vector at this point, K0:

R0 ¼

0

@

x0
y0
z0

1

A; K0 ¼

2

4

kx0
ky0
kz0

3

5; ð2Þ

where kx0, ky0, and kz0 represent directional cosines.
One can test each triangle separately, although

this implies a relatively large computational effort,
especially if the surface is large and the grid fX;Yg
is dense. Alternatively, a much more efficient way to
do it is to assess the region of interest a priori by find-
ing the minimum Euclidean distance between the
straight line given by the optical vector

R ¼ R0 þ tK0; ð3Þ

(with t as the length of vector K0 and a real number)
and each of the points from the set fX ;Y ;Zg. This
distance is given by the following formula:

di ¼ jwi − ðwi · K0ÞK0j; ð4Þ

where wi is a vector obtained by subtracting the co-
ordinates of the point R0 from the coordinates of the
ith point from the set fX ;Y ;Zg (fX i;Y i;Zig ∈

fX;Y ;Zg). If dm ¼ minðdiÞ is found, this means that
the ray hits one of the triangles surrounding the ver-
tex Pm ¼ ðXm;Ym;ZmÞ. Following this procedure,
instead of testing thousands or even millions of tri-
angles [Eq. (1)], one can limit the area of interest
to (on average) six triangles (Fig. 2). In the case of
a random sampling pattern, the number of triangles
depends on the configuration of neighbors. The aver-
age number of triangles surrounding each vertex is
characteristic of the Delaunay triangulation [25,26].
With the number of possible triangles significantly
reduced, one can easily find the common point to

Fig. 1. Function zðx; yÞ ¼ x2 � y2 represented as a set of triangles
to illustrate the Delaunay triangulation. The discrete data of the
function are situated in vertices of triangles. The axes are given in
arbitrary units.

Fig. 2. Graphical illustration of a point Pm that is a common ver-
tex of six neighboring triangles and of the barycentric technique.
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the ray given by Eq. (3), and each of the triangles of
interest. This allows obtaining (on average) six
different points on six different planes defined by
six different triangles.
Additional calculations are required to obtain the

exact triangle that is intersected by a ray. The proper
facet can be found by means of the barycentric tech-
nique [39], which is very commonly used together
with Delaunay triangulation. Let us consider a trian-
gle given by points Pm, B, and C, with Pm as a refer-
ence point (Fig. 2). Each point of the plane containing
the triangle PmBC can be described as a linear
combination of two vectors defining the plane:

P ¼ Pm þ u · PmBþ v · PmC; ð5Þ

where fu; vg ∈ ℝ. If we have the coordinates of the
point P, after some simple mathematical operations
one can get the following formulas for u and v:

u¼
ðPmB·PmBÞðPmP ·PmCÞ−ðPmB ·PmCÞðPmP ·PmBÞ

ðPmC·PmCÞðPmB ·PmBÞ−ðPmC ·PmBÞðPmB ·PmCÞ
;

v¼
ðPmC·PmCÞðPmP ·PmBÞ−ðPmC ·PmBÞðPmP ·PmCÞ

ðPmC·PmCÞðPmB ·PmBÞ−ðPmC ·PmBÞðPmB ·PmCÞ
;

ð6Þ

From the values of u and v one can assess if a par-
ticular point P belongs to the triangle or not. If u or v
is <0, u or v > 1, and uþ v > 1, the point P is out of
the triangle. Alternatively, if conditions 0 ≤ uþ v ≤ 1,
0 ≤ u ≤ 1, and 0 ≤ v ≤ 1 are met, this means that the
point P belongs to the particular triangle [40].
Once the triangles of the surface where rays inter-

sect the surface have been determined, the z value
can be found by means of linear interpolation, as the
intersection of three planes, or alternatively, using
more complex methods of interpolation, such as the
values of the neighbors (B-splines) or radial base
functions [41]. The use of radial base functions does
not require the use of a regular grid of sampling and
potentially could allow reducing the density of the
sampling (and computational time) without compro-
mising accuracy. In this study, we have implemented
several of these functions: cubic, multiquadric [42],
and thin plate spline [43], besides the simplest linear
interpolation. The algorithm [44] consists of fitting a
number of coefficients using the values of x, y, and z
of control points called nodes. The control points in
our case are the points belonging to the triangle with-
in the ray impacts. Once the coefficients are ob-
tained, the value of the z coordinate can be easily
obtained simply by substitution of the value of the
x and y coordinates into the following equation:

f ðx; yÞ ¼ c0 þ c1xþ c2yþ
X

n

i¼1

ciþ2φðdiÞ; ð7Þ

where c denotes the coefficients of the interpolation,
φ is a radial base function (cubic, multiquadric, thin

plate, etc.), di is the distance between the ith node
and the point to be interpolated, and n is the number
of nodes. Further details can be found in the litera-
ture [44].

For the linearly interpolated method, the normal
to the surface at point P is associated to the charac-
teristic vector of the facet to which this point belongs,
with the following equations:

N̂ ¼
PmB × PmC

jPmB×PmCj
or N̂ ¼

PmC × PmB

jPmC×PmBj
; ð8Þ

for a convex or concave initial surface.
In the case of a more complex method of interpola-

tion, the normals can be assessed using the partial
derivatives with respect to x and y and, finally,
performing the cross product.

Once we have a point P that belongs to the surface
and a normal of the surface at this point, N̂, any of
the 3D implementations of the Snell’s law can be ap-
plied, i.e., the formula described by Sharma et al. [2]:

n0 K1 ¼ nK0 þwN̂; ð9Þ

where K1 is the optical vector after refraction, n and
n0 are refractive indices before and after the surface,
respectively, and w is calculated as follows [45]:

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
− n02 þ υ2

p

− υ; ð10Þ

where υ ¼ K0 · N̂.
In Section 3 we present some numerical examples

of application of the developedmethod to various sur-
faces that can be encountered in optical design and
physiological optics. The three types of surfaces that
we describe are analytical surface, noisy surface, and
free-form surface, in particular, a corneal topography
from a normal subject obtained from a Placido disc
corneal videokeratopographer (Atlas, Zeiss). For
this example, a semianalytical algorithm of a ray-
tracing algorithm through a surface approximated
by a set of Zernike polynomials was developed and
programmed in MATLAB for the purposes of com-
parison. The free-form surface data under considera-
tion was approximated by 36 Zernike polynomials
[46,47] with a 3mm normalization radius, using a
standard least-mean-square method. The intersec-
tion points of ray paths with the approximated sur-
face were found by means of a least-mean-square
method (because of the relative complexity of the
expansion formula), while the normals to the surface
at these points were calculated analytically by the
partial derivatives. We refer to this algorithm as
“semianalytical.”

3. Numerical Examples

To demonstrate the possibilities and accuracy of the
algorithm described in Section 2, we will present
examples of 3D ray tracing using the described
methods on several types of surfaces (noise-free
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and noisy analytical surface, and free-form experi-
mental surface).

A. Analytical Surface With a Regular and Random Grid

A conic surface has been considered for comparative
purposes of ray tracing on the analytical and Delau-
nay decomposed surface. In particular, the first sur-
face of an achromatic lens (AC508-100-B) from the
Thorlabs optical elements catalog has been studied.
The radius of the anterior surface of this lens is
65:77mm, and the conic constant k ¼ 1 (according to
Malacara’s notation [48]). The refractive index of the
glass (LAKN22) is 1.64134164, for the operating
wavelength of 855nm. In order to test the accuracy
of the method proposed, two different outcomes were
evaluated (distance between the intersection points
and refracted angle difference) from the ray tracing
on the analytical (using Zemax, a commercial optical
design and analysis software) and Delaunay decom-
posed surface with use of linear interpolation and
with various sampling densities (programmed in
MATLAB, Mathworks, Nantick, Massachusetts) for
200 rays entering the lens aperture at different
heights. Our simulations showed that the average
difference in distance estimated from the two
methods ranged from 0.005 to 0:150 μm and the aver-
age difference in angles ranged from 0.005 to
1:79 arc min. For sufficiently high density sampling
grids, these values are slightly larger than the
Raleigh criterion (0:07 arc min, for the dimensions
of the tested lens).
The same accuracy test has been performed for an

analytical surface but defined on a random grid
(Fig. 3). The difference in distances between the two
methods varied from 0.004 to 0:155 μm, and in angles
from 0.17 to 1:94 arc min.

B. Noisy Surface With a Regular Grid

The next step is to explore the possibilities of the
technique on noisy surfaces, for which random noise
of Gaussian spectrum has been added to the analy-
tical topography of the surface. The rms of the height

deviations has been kept below λ=8, and generated
using the algorithm provided by Tsang [49], with cor-
relation lengths of 1 and 1000 μm (which meet the
Beckmann [50] criterion for rough surfaces). The one-
dimensional Tsang method has been extended to the
two-dimensional surfaces assuming circular symme-
try (Fig. 4), and repeated ten times for six different
sampling densities ranging from 100 to 2500 points
per square millimeter. The simulated surface would
be consistent to that produced by a lathe or optical
driller.

Table 1 shows the results from these simulations
for linearly interpolated data points. Difference va-
lues range from 0.021 to 0:204 μm and angles from
0.23 to 3:67 arc min.

C. Free-Form Surface (Corneal Topography)

Free-form surfaces present a real challenge for opti-
cal design and analysis, as their surfaces cannot be
easily described analytically. Examples of such sur-
faces include those of progressive addition lenses
(PALs) designed to produce a power gradient across
the lens to compensate for the accommodative loss in
presbyopia [51,52]. Another example of a free-form
optical surface can be the topography of the human
cornea. Currently it is possible to measure the

Fig. 3. Example of a random grid on a plane. The dashed lines
form triangles surrounding point Pm.

Fig. 4. Noise generated for simulations of realistic noisy surfaces:
(a) rms ¼ 855=8nm and correlation length equal to 1 μm and
(b) rms ¼ 855=8nm and correlation length equal to 1000 μm.
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anterior surface elevations of the human cornea with
satisfactory accuracy, although an analytical repre-
sentation is challenging [18,53,54].
Let us consider the raw data from a corneal

topography measurement [Fig. 5(a) and 5(b)]. The
surface is subject to noise due to experimental errors
(camera, tear film, motion) and defined on an irreg-
ular grid. Although a common description of the cor-
neal topography is a Zernike polynomial expansion
[46,47,55,56], the optimal number of terms that best
describes the surface has been debated [57]. The al-
gorithm presented gives the opportunity to trace
rays through an optical surface given by raw eleva-
tion data points from corneal videokeratopography
without any additional approximation. Figure 5(c)
shows a ray tracing on a corneal elevation map from
a Placido rings corneal videokeratopographer recon-
structed using the Delaunay decomposition. If the
data are not subject to artefacts (i.e., because of eye
lashes) the device is able to provide the elevation
data sampled uniformly every 2° on each of the 24
Placido rings.
For purposes of comparison, the corneal topogra-

phy from Fig. 5(a) was fitted by a seventh-order
polynomial expansion (with 36 terms). The corre-

sponding Zernike coefficients and the accuracy of
the approximation are presented in Fig. 6. The
Zernike expansion was uniformly sampled over the
area of interest and then the finite-element ray-
tracing algorithm was applied.

Figure 7(a) compares the results of a ray tracing
(200 randomly distributed rays) for various represen-
tations of the corneal surface and the ray-tracing al-
gorithms. The values of the rms of the spot diagrams
were taken at a distance of 27:72mm, which is
approximately the focal distance of this particular
surface, and were used as a metric to compare the
outcomes from different fittings (Zernike and
Delaunay with different interpolation methods).
The first data (labeled as “RawData”) correspond
to a ray tracing performed directly on a reconstruc-
tion of the surface raw elevation data (without prior
smoothing) with a Delaunay representation (with
the different methods of interpolation, shown with
different symbols). The horizontal line corresponds
to the Zernike fitting and semianalytical method
for ray tracing. The rest of the data represent results
from a ray tracing of the same surface fit by a
seventh-order Zernike polynomial expansion, fol-
lowed by Delaunay reconstruction with different

Fig. 5. Example of a free-form surface: (a) raw (discrete) data from a corneal topography obtained from Placido ring corneal videoker-
atography, (b) the elevation of the anterior corneal surface, and (c) ray-tracing visualization through the anterior surface of the cornea.

Table 1. Accuracy of the Algorithm for Different Sampling Grid Densities (Noisy Surface)
a

Coherence Length 1 μm Coherence Length 1000 μm

Distance Difference (μm) Angle Difference (arc min) Distance Difference (μm) Angle Difference (arc min)

Sampling grid
density (1=mm2) Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation Mean

Standard
deviation

100 0.156 0.016 0.749 0.109 0.204 0.154 3.673 0.305
400 0.045 0.023 0.233 0.132 0.192 0.140 1.942 0.287
900 0.020 0.018 0.598 0.344 0.135 0.094 0.153 0.135

1600 0.032 0.020 0.672 0.423 0.149 0.088 0.996 0.266
2500 0.021 0.014 1.013 0.521 0.194 0.142 0.213 0.118

aResults for 200 rays along a 25mm pupil diameter.
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sampling densities (ranging from 7 × 7 up to 100 ×
100 per mm−2, in the horizontal axis) and different
interpolation methods (represented by different sym-
bols). It is remarkable that the values of rms for
finite-element ray tracing for raw data with the
use of different interpolation methods is significantly
higher than rms for the surface approximated by
Zernike polynomials. The Zernike representation
smooths the data from the topographical measure-
ment, while the FEM directly uses the raw data
and performs the interpolation. The rms values for
FEMs on the data approximated by Zernike polyno-
mials converge to the value of 13:6 μm achieved by
means of the semianalytical method ray tracing with
use of Zernike approximation. For cubic and thin

plate interpolation methods, the rms values are very
similar to the Zernike semianalytical ray tracing
even for relatively low sampling densities (7 × 7),
while the linear and multiquadric interpolation
methods require denser samplings. Figure 7(b) pre-
sents the computational time as a function of sam-
pling density, for 200 rays randomly distributed in
the aperture. The finite-element algorithms are com-
petitive in terms of execution time of the ray-tracing
procedure for low but sufficient sampling densities.
Computational time increases exponentially with
sampling density for the Delaunay methods, as ex-
pected given the increase of the number of facets.

Figure 8 presents a comparison of the computa-
tional time as a function of the number of rays to

Fig. 7. (a) RMS of the spot diagram taken at the distance 27:72mm behind the cornea and (b) computational time, as a function of
sampling density for different methods of interpolation in the finite-element ray-tracing algorithm. The position “RawData” in the hor-
izontal axis denotes results from the ray tracing on a direct Delaunay reconstruction from the raw elevation data (with no sampling or
Zernike smoothing). For all other cases, the raw data were first approximated by a seventh-order Zernike polynomial and then sampled
with different densities. The results for semianalytical ray tracing on the Zernike surface are shown for comparison, as they do not depend
on the sampling density (number of facets).

Fig. 6. (Color online) Results of the seventh-order Zernike polynomial expansion of the corneal elevation map of Fig. 5. (a) Zernike coeffi-
cients for a 3mm normalization radius. The inset in (a) shows the values of the zeroth and fourth Zernike terms as they are beyond the
original scale. (b) Difference between raw data (interpolated with cubic splines) and Zernike polynomial fit. The rms of the difference is
1:4 μm. The surfaces were set to have the same Z value in the center.
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be traced for the different interpolation methods
used in the finite-element algorithm (sampling 20 ×
20 per mm−2) and for the Zernike semianalytical
method. In general, finite-element algorithms are
competitive for the number of rays up to 300, above
the typical number of rays used in visual optics ap-
plications [58]. For a linear interpolation, the time
consumption is significantly lower due to relatively
small effort in finding the normals to the surface
at each ray intersection with the surface.

4. Conclusions

The algorithm presented, based on a Delaunay-
reconstructed surface, allows performing easily a
ray tracing on a regular or random grid of points from
either analytical, noisy, or free-form surfaces. We
have shown that the ray tracing through analytical
surfaces is accurate even for reasonably low density
samplings (when compared to analytical results pro-
vided by optical analysis software). However, as in
many other finite-element methods, denser sampling
improves accuracy further when compared to the re-
sults obtained with the use of analytical methods.
The algorithm is able to determine the points of

intersection and normals on noisy surfaces. The
accuracy depends on the surface roughness, and de-
creases with increasing height rms and decreasing
correlation length.
In principle, the Delaunay decomposition method

is very flexible, allowing us to trace rays through any
optical surface given by discrete data points. Unlike
with modal surface fitting (such as in Zernike poly-
nomials), surfaces are not necessarily smoothed.
Together with well-described algorithms for tracing
rays through gradient index structures [1–4], it can
serve as a powerful tool for optical computations. The
only limitation is the memory usage of the processing
unit and the computational time, which might be
very large for tracing many rays through densely
sampled surfaces. We have shown that all methods

tend to converge for densities above 40 × 40 samples.
When the Delaunay decomposition is combined with
a thin plate or cubic interpolation, the results from
ray tracing are similar to those when a Zernike fit-
ting and semianalytical ray tracing of the surface
is used, for densities as low as 7 × 7 samples. The ad-
vantages of the Delaunay decomposition are its rela-
tive simplicity, higher speed, and increased efficiency
in estimating the surface normals.

The presented method can be used to test the in-
fluence of the quality of topographical surface recon-
struction on the optical performance, as well as the
influence of the noise or high-frequency irregulari-
ties of the realistic surface on the performance of the
optical elements; or the reversed question (i.e., what
is the influence of the smoothing of the raw topogra-
phy data of the real surfaces on their optical perfor-
mance). Applications of this algorithm include the
estimation of the aberrations produced by realistic
surfaces and the application of the optical distortion
correcting algorithms.
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