
Three Dimensional Receding Horizon

Control for UAVs

Yoshiaki Kuwata∗ and Jonathan How†

Massachusetts Institute of Technology

August, 2004

This paper presents a receding horizon controller (RHC) that can be used to design
trajectories for an aerial vehicle flying through a three dimensional terrain with obstacles
and no-fly zones. To avoid exposure to threats, the paths are chosen to stay as close to
the terrain as possible, but the vehicle can choose to pop-up over the obstacles if neces-
sary. The approach is similar to our previous two-dimensional algorithms that construct
a coarse cost map to provide approximate paths from a sparse set of nodes to the goal
and then use Mixed-integer Linear Programming (MILP) optimization to design a detailed
trajectory. The main contribution of this paper is to extend this approach to 3D, in par-
ticular providing a new algorithm for connecting the cost map and the detailed path in
the MILP. This connection is done by introducing a new cost-to-go function that includes
an altitude penalty and accounts for the vehicle dynamics. Initial guess for MILP RHC
is constructed from the previous solution and is shown to reduce the solution time. Sev-
eral simulation results are presented to show that the path planning algorithm yields good
overall performance and is computationally tractable in a complex environment.

Keywords Receding Horizon Control, Trajectory Optimization

I. Introduction

With the enhancing capability of Unmanned Aerial Vehicles (UAVs), their operation areas are being
expanded to very complicated environments (e.g. urban) that have complex terrain.1,2 In these en-

vironments the vehicles can go over or around the obstacles or no-fly zones, so path planning in three
dimensions (3D) is a key technology to achieve the mission goals. In the past, vehicle guidance algorithms
that avoid obstacles or other vehicles have been well studied in the areas of air traffic control, ground vehi-
cles, and even UAVs. However, they typically assume the vehicle remains in a horizontal plane so that the
path planning is two dimensional.3–5 This paper presents a new guidance method for vehicles flying in 3D
environments to reach the target in minimum time. This method builds on the extensive literature in the
fields of computational geometry and robotics on shortest path problems on 2D polygons, 3D surfaces, and
3D spaces.6–8 Similar to previous results in Ref.9,10 our approach combines these shortest path algorithms
with path planning techniques that use the vehicle dynamics to produce kinodynamically feasible trajectories
that guide the vehicle to the goal.

The detailed trajectory optimization is conducted using Mixed-integer Linear Programming (MILP),
which is well suited to trajectory planning because it can directly incorporate logical constraints such as
obstacle avoidance and waypoint selection and because it provides an optimization framework that can
account for basic dynamic constraints such as turn limitations and maximum rate of climb. The receding
horizon approach (RH-MILP) enables us to exploit the power of this MILP formulation in a computationally
tractable algorithm.9,10 It solves a MILP for a detailed trajectory that only extends part of the way towards
the goal. The remainder of the maneuver is represented by a cost-to-go function using path approximations.

∗ Research Assistant, MIT Dept. of Aeronautics and Astronautics, kuwata@mit.edu
† Associate Professor, MIT Dept. of Aeronautics and Astronautics, jhow@mit.edu.

Room 33-328, 77 Mass. Ave., Cambridge, MA 02139.

1 of 14

American Institute of Aeronautics and Astronautics

AIAA Guidance, Navigation, and Control Conference and Exhibit
16 - 19 August 2004, Providence, Rhode Island

AIAA 2004-5144

Copyright © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.



Trajectory over planning horizon
Connecting line of sight
Trajectory in the cost map

Start

Goal

Figure 1: Schematic showing the three different resolution levels used in the RH-MILP approach to trajectory
optimization.

Previous work on RH-MILP was limited to 2D environment, and presented heuristics that used straight line
paths to estimate the cost-to-go from the plan’s end point to the goal.9 With some modifications to the
formulation Ref.10,11 proved that this RH-MILP approach is stable and that the vehicles reach the goal in
finite time. These extensions compensated for the differences between the straight-line approximations in
the cost-to-go calculation and the dynamically feasible paths that would be followed by the aircraft. Further
extensions are required if the vehicles are to fly close to the surface of a 3D terrain in order to avoid threats
such as radars. In these cases, the vertical vehicle maneuvers (e.g., descend, climb up) have a significant
effect on the overall trajectory, and a new cost-to-go function is needed to better estimate the future vehicle
maneuvers.

This paper extends this approach to 3D, in particular providing a new algorithm for connecting the
cost map and the detailed path in the MILP. This connection is achieved by introducing a new cost-to-
go function that includes an altitude penalty and accounts for the vehicle dynamics. Several simulation
results are presented to show that the path planning algorithm yields good overall performance in a complex
environment. Also, an algorithm to provide starting values with MILP is presented in Section V, and is
shown to reduce the solution time.

II. Algorithm Overview

Figure 1 shows the three resolution levels used in RH-MILP approach. In the near term, the MILP
optimization solves for a detailed trajectory that extends from the current position towards the goal, but
does not necessarily reach it. The line with bullets in Figure 1 shows this segment which is called planning
horizon. In the far term, approximate trajectories from vertices on the obstacles to the goal are solved by
a graph search and stored in the cost map. They are used to account for decisions beyond the planning
horizon by estimating the time to reach the goal from the plan’s end point. These two trajectories are then
connected through the cost-to-go function in the receding horizon controller (RHC). The detailed trajectory
is re-optimized on-line by the RHC while the vehicle executes the previous plan. The approximate trajectories
are also updated on-line as knowledge of the environment changes. Splitting the problem into these different
levels of resolution significantly reduces the computational effort to solve for the detailed vehicle trajectory
while ensuring that the future decisions are (at least approximately) taken into account.

The proposed algorithm consists of two phases: the cost map construction (Section III) and the detailed
trajectory optimization (Section IV). In the cost map construction phase, the environment is first mapped
to a visibility graph consisting of nodes and arcs (Subsection A). The nodes represent candidate trajectory

2 of 14

American Institute of Aeronautics and Astronautics



points that the vehicle will fly through, and each arc connecting two nodes represents an approximate
trajectory between them. The visibility between each pair of nodes needs to be ensured so that the arc
connecting them is collision free and flyable. Subsection A presents a Linear Program (LP) that can be
used to check the visibility. This new LP formulation is very flexible and can be used on-line for complex
environments. The next step is to compute the shortest paths from the coarse grid of nodes to the goal using
Dijkstra’s algorithm. The results are then stored as a cost map (Subsection C). The accuracy of the path
approximation depends on the node location. However, finding the exact shortest path in 3D environments is
shown to be computationally intractable,12 even without the vehicle dynamics, and Section III approximates
the shortest paths by introducing nodes on obstacle edges.

In the detailed trajectory optimization phase, MILP is used to formulate the overall problem. First,
Subsection A extends the vehicle dynamics to 3D. Subsection B presents a new cost-to-go function that
is required to connect the detailed trajectory provided by MILP and the cost map produced by the graph
search. Note that the limited set of nodes in the visibility graph allows the MILP to select an approximate
routes from a coarse set of choices, significantly reducing the computation load.

III. Coarse Cost Map

This section presents a cost map that can be used to find approximate paths from a set of nodes to
the goal. The formulation below assumes that each obstacle has a convex shape. Non-convex obstacles can
be easily formed by having multiple convex obstacles intersect with each other. In two-dimensional cases,
the corners of the obstacles together with the start and the goal points form a set of nodes in the visibility
graph. In the three-dimensional case, however, shortest paths rarely visit obstacle corners.6 This paper
approximates the candidate nodes of shortest paths with obstacle corners on the ground (z = 0) and a
middle point of each edge above ground-level. More vertices can be introduced on each obstacle edge, but
the computation load both in the cost map construction phase and in the detailed trajectory design phase
grows rapidly with small improvements in the accuracy.6

A. Visibility Graph

This section presents the visibility graph construction in an LP form. Our previous approaches assumed
that the obstacles are 2D rectangles,9,11 but this is not scalable to 3D environments. The new formula-
tion presented in this section is much simpler and it can handle any convex obstacles. It also allows fast
computation using commercially available software such as CPLEX.

In 3D environments, each convex obstacle is a polygon, as shown in Figure 1. Let πk denote the kth

polygon, then,
πk : Akr + bk ≤ 0 (1)

where r = [x, y, z]T , and the row vectors of the matrix [Ak | bk] are linearly independent of each other.
Polygon πk blocks the visibility of two nodes xi and xj if there exists a point r that satisfies Eq. (1) and the
conditions:

r = xi + l (xj − xi) (2)
0 ≤ l ≤ 1 (3)

As shown in Figure 2, Eqs. (2) and (3) ensure that the point r is on the line connecting the two nodes xi

and xj , and Eq. (1) ensures r is inside the polygon πk. Given this definition, the visibility between all the
nodes for all the obstacles can be determined by solving the following LP.

min
rijk ,cijk

⎛
⎝ ∑

i,j,k (i<j)

cijk

⎞
⎠ (4)

subject to
Akrijk + bk ≤ cijk 1 (5)

cijk ≥ 0 (6)
rijk = xi + lijk (xj − xi) (7)

0 ≤ lijk ≤ 1 (8)

3 of 14

American Institute of Aeronautics and Astronautics



xj

k

xi

r

Figure 2: Thick line shows the arc connecting a pair of nodes xi and xj. The visibility between this pair is
blocked by the obstacle πk. The intersection point r is inside the polygon.

rijk = [xijk, yijk, zijk]T

∀ i, j, k (i < j)

where the subscripts i and j represent the nodes in the visibility graph, and the subscript k represents the
obstacles. If the visibility between a node pair (i, j) is obstructed by the kth obstacle, there exists a point
rijk such that Akrijk + bk ≤ 0. Then, cijk is not constrained by Eq. (5), and Eqs. (4) and (6) make cijk = 0.
If the visibility is not obstructed, then Eq. (5) forces cijk to be positive.

Based on this discussion, the solution of the LP, cijk, can be used to determine the visibility between
each pair of nodes (i, j). The nodes (i, j) are mutually visible if

cijk > 0, ∀ k (9)

If Eq. (9) is not satisfied, then at least one obstacle obstructs the visibility, as shown in Figure 2. Note that
the LP solution includes the visibility information on all pairs of nodes for all the obstacles which allows for
a fast incremental update of the visibility graph when the environment changes.13,14

B. Arc Lengths

Given the visibility between the two nodes xi and xj, the next step is to calculate the arc cost Dij between
the two nodes, which represents the length and the threat exposure of the path connecting them. To avoid
threats and radar detection, it is assumed that the vehicle would like to stay as low as possible. This
objective is captured by penalizing the altitude of the path with a weight α. Thus, Dij includes the straight
line (Euclidean) distance between the nodes and the path integral of the altitude along the straight line
connecting the nodes.

Dij = ‖xi − xj‖2

(
1 + α

zi + zj

2

)
(10)

This section examines candidate trajectories for a far future. Thus, the straight line trajectories are used
simply to obtain the distance and identify the approximate threat level associated with it.

4 of 14

American Institute of Aeronautics and Astronautics



(a) Small α

(b) Large α

Figure 3: Shortest path from each node (•) to the goal in the left.

C. Cost Map

Once the visibility graph is constructed, Dijkstra’s algorithm is used to find the shortest path from each node
to the goal in the visibility graph.9 Note that the “shortest” path here is determined based on the arc cost
and not necessarily the Euclidean distance. Figure 3 illustrates the effect of the altitude penalty α on the
shortest path. The dashed lines show the visibility graph, and the thick lines show the shortest path from
each node to the goal. With a small penalty on the altitude (Figure (a)), direct connections from the goal
to nodes are always shortest paths. However, with a large penalty on the altitude (Figure (b)), the shortest
paths tend to consist of arcs along ground level.

The output of the Dijkstra’s algorithm contains the cost Ci from each node i to the goal and successors of
each node on the way to the goal. This output is stored as a cost map, and gives an approximate cost-to-go
at each node in the MILP optimization, as discussed in the next section.

IV. Detailed Plan

A. Vehicle Model

The vehicle model presented in this section captures the key characteristics of the aircraft dynamics in the
MILP framework.15,16 This is done by imposing constraints on the maximum and minimum speed, maximum
turn rate, the maximum rate of climb, and the maximum rate of descent. The linearized vehicle dynamics
in a discretized form can be written as[

x

v

]
k+1

= A

[
x

v

]
k

+ B ak (11)

5 of 14

American Institute of Aeronautics and Astronautics



x =

⎡
⎢⎣ x

y

z

⎤
⎥⎦ , v =

⎡
⎢⎣ vx

vy

vz

⎤
⎥⎦ , a =

⎡
⎢⎣ ax

ay

az

⎤
⎥⎦

A =

[
I3 ∆t · I3

O3 I3

]
, B =

⎡
⎣ (∆t)2

2
I3

I3

⎤
⎦

where the subscript k represents the discrete time-step, I3 represents an identity matrix of size 3×3, and O3

is a zero matrix of size 3 × 3. Vectors x, v, and a respectively represent position, velocity, and acceleration
input in the inertia frame. The following constraints limit the magnitude of the acceleration and velocity
vectors, which in turn limits the maximum turning rate and the maximum pitching rate, provided that the
optimization favors minimum time solutions.16

L2(a) ≤ amax (12)
L2(v) ≤ vmax (13)

where L2(r) approximates the upper bound of the 2-norm of a vector r. This approximation uses n unit
vectors that are distributed in the 3D space

L2(r) ≥ r · im, m = 1, . . . , n (14)
r = [rx, ry, rz]T

im =
[

sin φm cos θm , sin φm sin θm, cosφm

]T

Non-convex constraints on the minimum speed

vx cos θm + vy sin θm ≥ vmin − 2vmaxbspeed,m m = 1, . . . , nv (15)
nv∑

m=1

bspeed,m ≥ 1 (16)

prevent the vehicle from stalling. Constraints on the maximum rate of climb and descent are written as

vz,min ≤ vz ≤ vz,max (17)

Finally, a list of waypoint commands is sent to the vehicle which is augmented with a waypoint tracking
controller. Other vehicle models are currently under investigation that better capture more detailed vehicle
dynamics.17

B. Cost-To-Go Function

The RHC represents the plan beyond the planning horizon by evaluating a cost-to-go function at the terminal
state. The cost-to-go function in the previous work used straight lines from the terminal state to the selected
cost point because it gave a good approximation of the optimal trajectory.9 However, this is not the case
in 3D environments, and the terminal penalty needs to be revised to account for the change in the altitude.
In the cost map construction phase, Eq. (10) takes the line integral of the altitude along the straight line
to approximate the altitude penalty in the future trajectory. In the detailed trajectory phase, the detailed
altitude profile of the vehicle is obtained over the short horizon. The new cost-to-go function presented
here allows us to connect these two trajectories while accounting for the altitude penalty and the vehicle
dynamics.

In order to simplify the presentation, the analysis in this subsection only examines the motion in the
x-z plane. The final result in Subsection C accounts for the full 3D motion. Let xvis = [xvis, zvis] denote a
“visible” point that the vehicle is aiming for. Then, cost-to-go function used in this paper can be written as

F (x, z) =
√

(x − xvis)2 + (z − zvis)2 + αz − β(xvis − x) (18)
α > 0, β > 0

where the first term represents the Euclidean distance between the point [x, z] and the visible point xvis,
the second and the third term separately penalize vertical and horizontal motion. In order to illustrate the

6 of 14

American Institute of Aeronautics and Astronautics



−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
−30

−25

−20

−15

−10

−5

0

5

10

z 
[m

]

x [m]

Q

PB
A

D

C

(a) p = 0.25

−100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
−30

−25

−20

−15

−10

−5

0

5

10

z 
[m

]

x [m]

Q

PB
A

D

C

(b) p = 0.75

Figure 4: Contour maps of the cost-to-go function in x-z plane. Solid line represents the contour around
the visible point P. Dashed lines show the steepest descent lines from four points (A, B, C, D) to the visible
point. In this example, xvis = [0, 0]T .

effect of this cost-to-go function, Figure 4 shows a contour map of the cost-to-go function around the visible
point P, which is marked with �. The dashed lines in Figure 4 show the steepest descent lines from four
arbitrary points (A, B, C, D) to the visible point. By minimizing the cost-to-go function, the vehicle lowers
its altitude to reduce the altitude penalty when the vehicle is far from the visible point and its altitude is
high. As it moves closer to the visible point, the trajectory converges to the limiting line PQ.

The second and the third term αz −β(xvis −x) in Eq. (18) determine the angle of this line PQ. It can be
shown geometrically that the major axis of the ellipse in Eq. (18) forms an angle γmax with x axis, where

tan γmax =
α

β
(19)

This angle γmax represents the maximum path angle of the vehicle, and once the vehicle crosses the line PQ,
it cannot avoid colliding with the gray obstacle on the right. However, the plots of the steepest descent lines
show that by minimizing the cost-to-go function in Eq. (18), the vehicle trajectory will not cross the line PQ.

In order for the cost-to-go function to navigate the vehicle to the visible point P, it is required that

p ≡ α2 + β2 < 1 (20)

Finally, the coefficients α and β in Eq. (18) can be obtained from the following equations, given the maximum
path angle γmax and a parameter p.

α =
γmax

√
p√

γmax
2 + 1

(21)

β =
√

p√
γmax

2 + 1
(22)

7 of 14

American Institute of Aeronautics and Astronautics



xcp,i

xcp, j

x0

Figure 5: Dashed lines show path approximation by the cost-to-go function in 3D. Each plane is formed with
two axes of the contour ellipsoid.

Choosing a larger p produces a flatter ellipse, and hence tighter trajectories. Figures 4(a) and (b) compare
two contours with the same γmax but different p. The dashed lines in the Figure 4(b) have tighter descent
trajectories. Note that although the cost-to-go function includes the ascending vehicle dynamics only, the
combination of the vehicle dynamics in Subsection A and the cost-to-go function in this subsection pro-
duces a dynamically feasible trajectory over the planning horizon and kinodynamically feasible rate-of-climb
commands towards the visible point.

C. MILP RHC

In the detailed trajectory optimization phase, MILP uses a binary variable bvis to select one visible point
xvis from a list of cost points from which the cost-to-go is known. Let xcp,i denote the ith cost point and
i = 1, . . . , ncp where ncp is a number of cost points. Then,

xvis =
ncp∑
i=1

bvis, i xcp,i (23)

1 =
ncp∑
i=1

bvis, i (24)

In order to connect the detailed 3D trajectory to the selected cost point, Eq. (18) is extended here to 3D

Fi(x, y, z) =
√

(x − xcp,i)
2 + (y − ycp,i)

2 + (z − zcp,i)
2

+ αz − β

∥∥∥∥∥
[

xcp,i − x

ycp,i − y

]∥∥∥∥∥
2

(i = 1, . . . , ncp) (25)

RHC optimizes the vehicle trajectory over a short planning horizon of np steps, executes only the first ne

steps of the control input, and starts the next optimization from the state that the vehicle will reach. Each
optimization produces a detailed, but short, trajectory, which allows us to assume that the trajectory point
x lies close to a vertical plane passing through a cost point xcp,i and the initial position x0. In this case, we
can approximate ∥∥∥∥∥

[
xcp,i − x

ycp,i − y

]∥∥∥∥∥
2

�
∥∥∥∥∥
[

xcp,i − x0

ycp,i − y0

]∥∥∥∥∥
2

−
∥∥∥∥∥
[

x − x0

y − y0

]∥∥∥∥∥
2

(26)

8 of 14

American Institute of Aeronautics and Astronautics



If x lies on the vertical plane passing through xcp,i and x0,∥∥∥∥∥
[

x − x0

y − y0

]∥∥∥∥∥
2

= (x − x0) cos θi + (y − y0) sin θi (27)

tan θi =
ycp,i − y0

xcp,i − x0
(28)

where θi represents the direction of a vector from the initial position to the ith cost point, projected onto
the x-y plane. Note that this θi’s are calculated prior to MILP, and are given as parameters to MILP. Let
di denote the Euclidean distance between x0 and xcp,i. Then,

Fi(x, y, z) �
√

(x − xcp,i)
2 + (y − ycp,i)

2 + (z − zcp,i)
2

+ αz + β

{∥∥∥∥∥
[

x − x0

y − y0

]∥∥∥∥∥
2

−
∥∥∥∥∥
[

xcp,i − x0

ycp,i − y0

]∥∥∥∥∥
2

}

�
√

(x − xcp,i)
2 + (y − ycp,i)

2 + (z − zcp,i)
2

+ αz + β
{

(x − x0) cos θi + (y − y0) sin θi − di

}
(29)

The third term β{·} in Eq. (29) is equivalent to the third term in Eq. (18); it evaluates the horizontal distance
from the point x to the selected cost point. For each cost point, the contour of Eq. (29) is ellipsoid, and its
major axis makes an angle γmax with the ground surface z = 0, as shown in Figure 5. Note that this axis is
equivalent to the line PQ in Figure 4.

This cost-to-go function Fi must also be expressed in a MILP form. The first term in Eq. (29) represents
the two-norm of a vector, which can be approximated using a set of distributed unit vectors, as shown in
Eq. (14). The third term β{·} can be obtained by minimizing βJh, where

Jh(x, y) =
ncp∑
i=1

li −
ncp∑
i=1

bvis,i di (30)

with

li ≥ (x − x0) cos θi + (y − y0) sin θi − npv∆t (1 − bvis,i) (31)
li ≥ 0 (32)

(i = 1, . . . , ncp)

If the ith cost point is not selected, bvis,i = 0, and Eq. (31) is relaxed because the sum of the first two
terms expresses the distance travelled in the direction of the ith cost point, which is always smaller than the
planning horizon length npv∆t. Minimizing Jh forces all the li’s to equal zero except for the one associated
with the cost point that is selected (bvis, i = 1). In particular, if the ith cost point is selected, then

minJh = β
{

(x − x0) cos θi + (y − y0) sin θi − di

}
as required.

The cost-to-go function connecting the final state xnp to each cost point has the global minimum at
the cost point. This can be interpreted as a potential function surrounding each cost point. The decision
variable bvis of the RHC allows the in-flight selection of the potential field. Path planning techniques using
a potential function usually have difficulty handling local minima, but the dynamic mode switching by bvis

avoids this issue.
Kinematic constraints including obstacle avoidance and the ground plane can be expressed in MILP using

a binary variable bobst.5 The constraints are applied to each trajectory point over the planning horizon. To
ensure that the selected cost point xvis is “visible” from the terminal point xnp , several sample points are
placed on the line connecting these two points, and kinematic constraints are applied also to them. For each
point x = [x, y, z]T and each rectangular column shaped obstacle defined by two corners [xlow, ylow, zlow]T

9 of 14

American Institute of Aeronautics and Astronautics



and [xhigh, yhigh, zhigh]T , the avoidance constraints can be expressed as

x ≤ xlow + M bobst,1

y ≤ ylow + M bobst,2

z ≤ zlow + M bobst,3

x ≥ xhigh − M bobst,4

y ≥ yhigh − M bobst,5

z ≥ zhigh − M bobst,6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(33)

z ≥ 0 (34)
6∑

i=1

bobst,i ≤ 5 (35)

where M is a large number to relax the constraints in Eq. (33). The logical constraint Eq. (35) requires at
least one constraint in Eq. (33) be active.

The RHC minimizes the sum of the state penalty over the planning horizon and the terminal penalty
evaluated at the final state xnp . The overall objective function J is then the sum of four terms

minJ = min

{
np∑

k=1

(‖xvis − xk‖2 + αzk + βJh(xk, yk)) +
ncp∑
i=1

bvis, i Ci

}
(36)

The first term penalize the altitude over the planning horizon. The second term measures the distance from
the terminal point to the selected cost point. The third term, together with the second term, generate a
cost-to-go function from the terminal state to the selected cost point, as discussed in Subsection B. The last
term represents the cost-to-go from the selected cost point to the goal, and this value is given by the cost
map, as discussed in Section III.

The formulation presented in this paper used several approximations to significantly reduce the problem
size of the complex trajectory optimization. The simulation results in Section VI demonstrate the validity
of the approximations and show the overall MILP RHC has a good performance.

V. Initial Guess for MILP

In order to shorten the solution time of the MILP, an initial feasible solution can be provided with
the solver. The integer feasible solution gives an upper bound on the optimal cost, which allows to prune
some search trees in the branch-and-bound algorithm, shortening the search.11 This paper examines 3D
environments where only vertical obstacles exist. In such environments, one feasible solution is simply to fly
up with its maximum acceleration.

RHC executes only the first ne steps of the np step plan, and reoptimize from the state that will be
reached. When constructing an initial guess, the decisions (e.g. visible point selection, obstacle avoidance)
made in the previous solution could be used. An algorithm that construct an initial guess from the previous
solution is summarized below.

• Cost point selection
Choose the same visible point as the one in the previous solution.

• Input command
For the first (np − ne) steps, reuse the last (np − ne) steps of the previous solution. For the rest,

append a = [0, 0, az]T where az is the maximum acceleration command that satisfies the constraints
on the vehicle dynamics Eqs. (11) to (17).

This produces the vehicle states over the planning horizon and the glue that connects the detailed plan to
the cost map. Based on this, finding binary variables for obstacle avoidance, target arrival, and minimum
speed constraints is a deterministic operation and follows easily. The impact of the initial guess on the
computation time is presented in the next section.

10 of 14

American Institute of Aeronautics and Astronautics



0

5

10

15

−20−15−10−505

0

2

4

x
y

z start
goal

Figure 6: Trajectory generated by the RHC in a three dimensional environment. The vehicle starts at ◦,
and the goal is marked with ∗.

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

plan number

co
m

pu
ta

tio
n 

tim
e 

in
 [s

ec
]

Figure 7: Computation time.

VI. Results

First, a simple problem has been solved using commercially available software CPLEX 9.0.18 Figure 6
shows the resulting trajectory. The following parameters are used in the simulation.

• np = 4, ne = 1
• γmax = 30deg, p = 0.6
• Number of nodes per obstacle = 12

The start point on the right is marked with the ◦, and the goal is on the left. To minimize the altitude,
the vehicle descends from the start point, until it reaches ground level. Then as it approaches the obstacle,
it starts a climb-up maneuver which is triggered by the cost-to-go function (see Figure 4). Note that the
planning horizon is 4 steps in this example, and the RHC made different decisions (e.g., descend, ascend)
while approaching the obstacle. Figure 7 shows the computation time for each MILP optimization on a PC
(2GHz Pentium 4 CPU, with 1GB RAM).

Figure 8 shows trajectories in a more complicated environment. Each figure corresponds to a different
penalty on the altitude. If there is only a small penalty (Figure (a)), the vehicle flies over all of the obstacles,
even including the tall ones. If projected onto the ground, the resultant trajectory is effectively a straight line
connecting the start and the goal. With a larger altitude penalty (see Figure (b)) a very different trajectory

11 of 14

American Institute of Aeronautics and Astronautics



(a) Small penalty on the altitude.

(b) Medium penalty on the altitude.

(c) Large penalty on the altitude.

Figure 8: Trajectories generated by the RHC in a complex three dimensional environment. The vehicle
starts at ◦, and the goal is marked with �×.

12 of 14

American Institute of Aeronautics and Astronautics



Table 1: Comparison of computation time (seconds)

W/O Initial Guess With Optimal Solution With Initial Guess
peak ave. peak ave. peak ave.

Figure (a) 1.50 0.74 1.08 0.57 1.13 0.62
Figure (b) 2.55 0.82 1.34 0.59 1.30 0.67
Figure (c) 1.83 0.88 1.64 0.70 1.59 0.76

Table 2: Reduction of the computation time (%)

With Optimal Solution With Initial Guess
peak ave. peak ave.

Figure (a) 28.1 23.4 25.0 16.3
Figure (b) 47.2 28.3 49.1 18.7
Figure (c) 10.3 20.3 12.9 14.3

is obtained. In this case the vehicle flies around most of the obstacles at a very low altitude. However, the
two-story obstacle near the start of the trajectory (lower right of the figure) is directly in the way. The
vehicle decides to fly over the first-story, skirting the outside of the second story. As the altitude penalty
is increased further, Figure (c) shows that the vehicle goes around all the obstacles. The difference between
Figure (b) and (c) is emphasized with arrows in the figures.

The true optimal solution is computationally intractable to obtain, but in the solutions presented here,
the vehicle mostly keeps the maximum speed with the smooth trajectories, which indicates they are close
to the optimal trajectory. Note that for this example the average computation time increases to ∼1 second
because there are many choices to make in this complex and constrained environment.

Table 1 shows the CPLEX computation time in seconds for the scenarios presented in Figure 8. The
first two columns respectively show the peak and average computation times without initial guess. The next
two columns show the computation times when CPLEX is given the optimal solution as the MILP starting
values. The last two columns show the computation times when the initial guess described in Section V is
used. Table 2 shows the reduction of the computation time in percentage when initial guess values are used.

There is an overall reduction of 20–28% on average if the optimal solution is provided as the MILP starting
values. The initial guess in Section V produced a slightly less improvement in the average computation time,
but can still significantly reduce the worst case computation time.

VII. Conclusions

This paper presented a trajectory planning algorithm for the vehicle flying in 3D environments with
obstacles and no-fly zones. The vehicle is required to fly close to the 3D surface to avoid exposure to threats
while minimizing the time of arrival at the target. The proposed algorithm has two phases: the cost map
construction and the detailed trajectory optimization. In the construction of a coarse cost map, linear
programming has been applied to find the visibility graph, and the Dijkstra’s algorithm is used to find the
approximate shortest paths from each node to the goal. RHC designs a short but detailed trajectory using
MILP while approximating the future maneuver by connecting the detailed trajectory to the coarse cost map.
This is done by a new cost-to-go function which accounts for the vehicle dynamics and the altitude penalty
beyond the planning horizon. Initial guess for the MILP RHC is constructed from the previous solution
which further reduces the computation load. The simulation results showed that the overall approach is
computationally tractable in complex 3D environments.

Acknowledgments

Research funded by AFOSR Grant # F49620-01-1-0453.

13 of 14

American Institute of Aeronautics and Astronautics



References

1Office of the Secretary of Defense, “Unmanned Aerial Vehicles Roadmap,” Tech. rep., December 2002.
2Bay, J., “Heterogeneous Urban RSTA Team (HURT),” Tech. rep., DARPA/IXO, December 2003,

www.darpa.mil/baa/baa04-05.htm.
3Bicchi, A. and Pallottino, L., “On Optimal Cooperative Conflict Resolution for Air Traffic Management Systems,” IEEE

Trans. on Intelligent Transportation Systems , Vol. 1-4, Dec 2000, pp. 221–231.
4Mao, Z. H., Feron, E., and Bilimoria, K., “Stability and Performance of Intersecting Aircraft Flows Under Decentralized

Conflict Avoidance Rules,” IEEE Transactions on Intelligent Transportation Systems , Vol. 2, No. 2, 2001, pp. 101–109.
5Richards, A., Schouwenaars, T., How, J., and Feron, E., “Spacecraft Trajectory Planning With Collision and Plume

Avoidance Using Mixed-Integer Linear Programming,” Journal of Guidance, Control and Dynamics , Vol. 25, No. 4, Aug 2002,
pp. 755–764.

6Gewali, L. P., Ntafos, S., and Tollis, I. G., “Path Planning in the Presence of Vertical Obstacles,” IEEE Transactions on
Robotics and Automation, Vol. 6, No. 3, June 1990, pp. 331–341.

7Aleksandrov, L., Lanthier, M., Maheshwari, A., and Sack, J.-R., “An epsilon Approximation Algorithm for Weighted
Shortest Paths on Polyhedral Surfaces,” Proceedings of the 6th Scandinavian Workshop on Algorithm Theory. Lecture Notes
in Computer Science, Vol. 1432, 1998, pp. 11–22.

8Kanai, T. and Suzuki, H., “Approximate Shortest Path on Polyhedral Surface Based on Selective Refinement of the
Discrete Graph and Its Applications ,” Geometric Modeling and Processing, April 2000.

9Bellingham, J., Richards, A., and How, J., “Receding Horizon Control of Autonomous Aerial Vehicles,” Proceedings of
the IEEE American Control Conference, Anchorage, AK, May 2002, pp. 3741–3746.

10Kuwata, Y. and How, J., “Stable Trajectory Design for Highly Constrained Environments using Receding Horizon
Control,” Proceedings of the IEEE American Control Conference, Boston, MA, 2004.

11Bellingham, J., Kuwata, Y., and How, J., “Stable Receding Horizon Trajectory Control for Complex Environments,”
Proceedings of the AIAA Guidance, Navigation, and Control Conference, Austin, TX, Aug 2003.

12Canny, J. and Reif, J., “New Lower Bound Techniques for Robot Mmotion Planning Problems,” 28th Annual Symposium
on IEEE Symposium on Foundations of Computer Science, October 1987, pp. 49–60.

13Narvaez, P., Siu, K.-Y., and Tzeng, H.-Y., “New Dynamic Algorithms for Shortest Path Tree Computation,” IEEE/ACM
Transactions on Networking, Vol. 8, No. 6, December 2000, pp. 734–746.

14Koenig, S. and Likhachev, M., “Improved Fast Replanning for Robot Navigation in Unknown Terrain,” Proceedings of
the IEEE International Conference on Robotics and Automation, 2002.

15Schouwenaars, T., Moor, B. D., Feron, E., and How, J., “Mixed Integer Programming for Multi-Vehicle Path Planning,”
Proceedings of the European Control Conference, Porto, Portugal, September 2001.

16Richards, A. and How, J. P., “Aircraft Trajectory Planning With Collision Avoidance Using Mixed Integer Linear
Programming,” Proceedings of the IEEE American Control Conference, Anchorage, AK, May 2002, pp. 1936–1941.

17Schouwenaars, T., Feron, E., and How, J., “Hybrid Model for Receding Horizon Guidance of Agile Maneuvering Au-
tonomous Rotorcraft,” submitted to 16th IFAC Symposium on Automatic Control in Aerospace.

18ILOG, ILOG CPLEX User’s guide, 1999.

14 of 14

American Institute of Aeronautics and Astronautics


