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Abstract

Quantitative three-dirnensional distribution o: isotopes in patients is de-
termined by digital reconstruction of data {from many views taken by rotating
the subject at 10° intervals before the gamma camera. The superiority of
these techniques over conventional tomography is demonstrated by comparisons
between reconstruciion algerithms such as back-projection, simultaneous
iterative reconstruction, iterative least-squares, and back-projection of
filtered projection. The filtered back-projection technique (convolution
method) is superior in speed; however, for quantitative results that take
into account both noise and attenuation, the iterative least-squares method
gives the best approximation to the real source distributions. Resolution is
1.25 c¢m for detection of holes in 20-cm-diameter objects.

Mathematical basis and FORTRAN listings applicable o transmission and

emission imaging are given, as well as phantom and patient studies.
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1.0 INTRODUCTION

1.1 Scope and Previous Work

This study presents application of methods of ascertaining the three-
dimensional distribution of isotope conrcentration or density in nuclear medicine,
and differs from previous three-dimensional reconstruction efforts of astro-
physics, electron microscopy, and x-ray radiology in that statistically poor
measurements and photon attenuation are taken into account by the algorithm.
Truly quantitative nuclear medicine cannot be accomplished from single views
in most cases (Budinger, 1974); thus a means of estimating isotope concen-
tration from data taken from multiple views is needed. The methods discussed
here are applicable to ghoton or hieavy ion transmission radiography as well

as emission imaging.

The methods of three-dimensional reconstruction from multiple twe -

dimensional views can be dividied into thirteen categories:

1. Dire~t matrix techniques, generalized inverse and pseudo-
inverse (Sandler, 1972; Kashyap and Mittal, 1973).

2. Summation, linear superposition, back-projection, moiré, or
simple transverse-section scanning (Andrews, 1936; Edholm, 1960;
Kuhl and Edwards, 1963, 1966, 1968; Anger, 1967, 1974; R. G. Hart,
1968; Harper, 1968; Vainshtein, 1970; Reichmann, 1972; Gordon and
Herman, 1974).

3. Algebraic reconstruction técknique (Gordon et al., 1970; Schmidlin,
1972, 1973).

4, Algebraic reconstruction technique modified for noise (Herman
et al., in press; Johnson et al., 1973).

5. Simultaneous iterative reconstruction technique (Gilbert, 1972a).

6. Orthogonal tangent correction (Kuhl et al., 1973).

7. Iterative least-squares technique (Goitein, 1971).

8. Summation of compensated projections (Cho et al., in press;
Vainshtein, 1973).

9. Summation of filtered back-projections, convolution technique
(Bracewell and Riddle, 1967; Gilbert, 1972b: Ramachandran and Lak
shminarayanan, 1971; Smith et al., 1973; Peters, 1973; Chesler, 1972;
Shepp, in press; Lee et al., in press.

10. Geometric mean iterative technique (Schmidlin, in press).
11. Rho filtered back-projection (Bates and Peters, 1971).

12. Fourier reconstruction (DeRosier and Klug, 1968; Crowther et
al., 1970; Budinger, 1971; Lake, 1971; Peters et al,, 1973; Keyes and



Simon, 1973).

13. Summation of the projections after Hilbert transform of the
derivative of the projection (Radon, 1947; John, 1955; Berry and Gibbs,
197C; Cormack, 1973; Peters, 1973).

Some of these techniques have been compared for accuracy, computer time,
number of views required, and ability to handle noise (Frieder and Hermar,
1971; Herman, 1972; Herman and Rowland, 1972; Herman et al., 1974). An
alternative classification of methods into four categories: Summation (No. 1);
Use of Fourier Transforms (Nos. 9, 14, 12); Analytic Solution of Integral
Eguations (Nos. 9, 12, 13); and Series Expansion Approaches (Nos. 3, 4, 5, 6,
7) has been presented with a review of literature by Gordon and Herman

{1974).

The various methods in general are equivalent under certain corii-
tions of transformation in that the result of the reconstruction is related to
the true object by some integral transformatioa within the limitations of the
statistic of the measurement. The direct methods involving matrix inversion
are usually discarded because the matrices are too large or the system is
undetermined and the equations will be inconsistent. ‘'his is not necessurily
true if the generalized inverse is used; however, no iruplementation has been
made as yet.

Many of the algorithms are mechanisms of evaluating Radon's relaiion
between the value of each picture element in polar coordinates A(r,8) and the
projections for all angles P(x,0) where x denotes an element along the
projection corresponding to the line integral through the section to be recon-
structed. Thus Radon in 1917 and subsequently cttors (Berry and Gibbs, 1970
Cormack, 1973; «nd Peters, 1973) showed that

N TI'/{- 40 BP( e|) 1/

- x, .

Alr0) = — f ( Bx Tein(g-p —x Ox 46 ()
™ —11'/2 J..oo

In the practical situation there is only a finite number of views and
each measurement is subject to errors. Thus, over the last 15 years special-
ized techniques have been developed for solving the problem of estimating the
distribution of some property in three~-dimensional space from many views or

projections at various discrete angles.
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The text is divided into a discussion of the mathematical algorithms,
results with phantoms and patients, and methods of handling attenuation.
Aspects of computer implementation are given, along with FORTRAN listings,
as Appendices. Appendix A gives proofs of the Fourier projectivn theorem

and the relation between the back-projected image and the true image.
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2.0 MATHEMATICAL TECHNIQUES

2.1 Three-Dimensional Reconstruction by Stacked Two-Dimensional

Reconstructions

This section presents some of the algorithms implemented for three-
dimensional reconstruction of density of isotope distribution. For computa-
tional simplicity the object is divided into planes along the axis »f rotation.
Each plane is recvustructed from some mathematical operation on the corre-
sponding one-dimensional projections, and the planes are stacked to reconsti-
tute the three-dimensional object. Thus we consider the problem of recon-
structing planes or transverse sections from multiple projections (Fig. 1).
This simplification is not possible for cone beams or three~dimensional fan
beams. The fan beam is a diverging beam, which by source or detector
collimation samples a single transverse plane. Most of the algorithms given

below can be modified to handle either parallel or fan beam situations.

2.2 Relations Between Picture Elements and Projection Rays

The digital techniques of acquiring data and manipulating projections
in order to obtain a two-dimensional reconstruction by any of the above methods
are given in more detail. All the methous require an algorithm for determining
the ray k(8) for a particular projection 8 which passes through a given pic-
ture element (Fig. 2). In addition, we need an algorithm which gives all
pixels (i,j) which intersect the given ray k(6).

The appropriate recipe for relating the coordinate (x,y) of one array
rotated some angle @ from the reference array with coordinate (u, v) is usually
iiven as
ucosf - vsing u = xcosf + ysing

with the inverse (2)
using + vcost v =-x sinf + ycos@,

"
]

<
i



RECONSTRUCTED
CONVENTIONAL VIEWS CROSS SECTIONS

left lateral anterior right lateral posterior / —~>

Figure {. Reconstruction of transverse sections on a head phantom filled with

0.4 uCi/cc 99m Tc. Two tumors are simulated by filling spheres with 0.8 pCi/cc 997 Tc.
Full three-dimensional reconstruction is effected by doing multiple two-dimensional
section reconstruction and reconstituting the whole by stacking these sections.
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Line k

Ray k(8)
“~Line k-1

(1,-1)

Rk(@)1=Z #f; atin i)

Figure 2. Ray sums are formed by adding the activity from ecach picture clement that

falls within ray lines k-1 and k.
From Eq. (2) one can derive a digital algorithm for determining which pixels
of a rotated array correspond to the reference array; however, an alternate
approach was taken as detailed in Appendix B. The preferred approach is
based on the need to derive an algorithm which will give all picture eluments
lying within the boundaries of a specific projection ray as well as a recipe
which gives all rays that intersect a particular pixel as a function of 6.

The projection of rays passing through the plane remains fixed rela-
tive to the detectcr, while the coordinate system rotates within the field of
these fixed rays. This is done so that the formulation corresponds to the
actual experiments wherein an object or patient is rotated in front of a fixed
camera and thus differs from other formulations (e.g., see Gordon et al.,
1970). The practical results of these derivations are placed in convenient

terms for the digital computer as follows:
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Family of lines bounding the rays
For anglas 6=0° 90°, 180" and 270°, the family of lines is

y = k+1/2 k=0,1,2....N {3)

For all angles other than integral muitiples of »/2, the family of lines is

y = xtand + y, + k/|coss]| , k=0,4,2.....n, (4)
Where
yo=§.z+_’. TE?I—"-GT‘!;-‘ tang .,
L. -‘é"-nm‘ ?‘-i'l (Isinai+!couoi-1)+1/z] if [-]> INT[.]
) ¥+ m’r-‘-"—i—‘—(laineh|coael-n+1/z]_1 i#(.1=INT[.]
N + 2INT [ﬁ%-’- (|sing]| + [coso] - 1) + :/z] i (> INT[-)
2, =

N + 2INT [5-5-’- (|sing| + lcoss| - 1) + 1/2] -4 it [ }=INT[-]

Using these equations, the minimum and maximum values for y or the j
coordinates of the pixels that fall within a ray k (between lines k-1 and k)
are determined for each projection angle. Then between these bounds all the
i coordinates are determined by solving the respective equations for x. This
gives a set {(i,j)|(i,j) eray k(8)} where the coordinate pairs helong to the
kth ray of protection €. If a coordinate pair falls on the line k, then the
coordinate pair is placed in ray k+1.

For each given projection angle 8, we determine the ray k(8) that
passes through a particular coordinate pair (I,J) using the following formula
for the distance between the pixel represented by the coordinate pair (I, J)

and the line k=0:
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N+1 - 21) : 2J - N-1 . 0% @< 90°
L+ { 3 ,smol +(—————-z )Icosol if 180% § < 270°

D= (5)

(21-N-1 2J - N-1 .. 90% 9 < 180°
L+ ""T"'L |aing| + J—r—Llcosol if ,70% 6 < 360°

where L is given in Eq. B21 (Appendix B). The integer value of D+ 1 gives
the ray number. Thus a one-statement operation for each projection § will
yield the proper ray number for a given pixel. In the case of a simple back
projection on a 64X 64 array using Eq. (5) , the number of calculations is

4096 times the number of projections; alternatively, the back-projection
summation can be determined by assigning the value Pk(a) to each pixel
through which the ray passes, which means the number of calculations is the
product: number of projections times the 64 rays times number of pixels in
each ray. The latter method might be more costly in time, because each ray
must be bounded by a series of logical computer statements. This formulation
does not take into account the fractional area of the pixel through which a ray
passes. The {ractional contribution each ray sum might make to a picture
element varies between 0 and 1. For each pixel this weighting can be incor-
porated by calculating the {ractional area of the pixel intersected by each ray,
or the length of the ray through the pixel, or by a factor related to the distance
between the ray and the pixel center. Another approach is to modify the ray
width in accordance with the angle of projection relative to a square array.
Incorporation of these weighting factors is costly in computer time, and is

not essential if the number of rays and fineness of the array are appropriately
matched to the data (Frieder and Herman, 1971). The weighting matrix

discussed in the next section incorporates these weighting factors.
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3.0 DETAILS OF SOME RECONSTRUCTION METHCDS

3.1 Scope

Of the thirteen methods listed in the iatroduction, we concentrate
here on the implementation of the back projection, the simultaneous iterative
reconstruction technique, the iterative least-squares technique, and back-
projection of filtered or compensated projections. The direct matrix approach

is presented not only as an introduction to the iterative techniques, but also

to give the framework for possible future work.

3.2 Direct-Matrix and Linear-Equation Methods

In this section we examine the application of linear algebra to the
problem of determining the concentration or density in each element of a two-
dimensional section from a number of projections.

Consider the simple probiem of reconstructing the four values in a

2 X 2 array from two projections at 0° and 90°

A'i Az z=3
A3 A4 Z=7
Z=4 Z='6 .

The feasible solutions are given by the following set of equations:

A1+Az =P1=3
A+ A =P2=7

Ai +A3 =P3=4 (6)
AZ + A =P4=6

This system of equations has an infinite number of solutions because Egs. (6)
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are not independent (the rank of the coefficient matrix and the augmented
matrix is 3). The impossibility of a unique direct solution can be seen from
the following attempt to solve the system Eqgs.(6). Ia matrix notation the

systum is given as

F. A=P, (7]\
where
11 00 A1 P1
001 1 Az PZ
F=1101 0} , A= A3 , and P = P3 .
0101 A4 P4

The matrix F can be considered a weighting matrix based on the geometry.

Recall from matrix algebra the explicit solution of Eq. (7) is

a=rF1l.p (8)

where the elements of F"i are related to the matrix F as follows:

I
] ) 1 1
f10 f42 G443 Gy Ff‘u f21 f3q4 fy
] 1
fry fpp oo e e - flp fho e oo n
) M1 .,
F = f:,.1 ...... .| ; then F = Dol F 113
fa0 ..., f4a fg v 00ty

v
where fij is the cofactor of fij'

Note for the example above Det F' = 0; thus, there is no unique solution to Eqs.
(6). This is an example of four equations (inconsistent) and four unknowns with
no solution by Eq. (8). Itis possible to solve for a 2 X 2 square array with only

two projections by either an iterative scheme or by changing the projection
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angles; in this case, angles 0° and 45° will suffice. Consider the system of

equations for views at 0° and 45°

Ay +A, =

Az +A4 =

By
)

A - B )
Fs

The solution of this system is given by Eq. (8), where now the inverse matrix

can be evaluated

0 0 41 0

-4 0 1 1
Flsl1 0 -1 o
[t 1 -1 -1

The extension of this problem to real data and large arrays involves serious
complications; for example, suppose there are sufficient data that the values
in a section of say NX N picture elements can be determined by a linear
system of simultaneous equations. At first glance, it would seem for a 64 X 64
array that 4096 simultaneous equations must be solved. Most investigations
stop at this revelation and proceed to other methods discussed below; however,
it is important to investigate this problem in more detail before giving in to

the notion that such a large matrix inversion is intractable. Indeed, as will

be seen, the direct-matrix method involves a matrix size equal to approximately
(N X N) - (no.of projections) - (no. of elements per projection)

Consider one projection composed of the ray sum or line integrals { Pke 1,

k = 1.ne. At 0°, 90° or integral multiples of w/2, each ray of width unity
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intersects a row or column of the section (Fig. B1). Hwwever, for projections
at some other angles, the rays will not interszct each picture element entirely
that ie, part of the ray width will encompass a picture element. Thus some
weighting factor fij is nec.essary to describe the coniribution of a particular
pixel A(i,j) to the ray sum Pkﬂ’ The weighting factor fij can also be used to
account for attenuation. The system of linear equations for one projection at

0°is

Piﬂi = fii A(is 1) + fiZ A(1a2)+ e s T liN A(in) 2
p261 =5, AR,1) + £, A2, 2) + . . .t AZN)

(10)
P = fNi A(N: 1) +fN2 A(er)'l' ...t fNN A(NrN)

For projections at angles of integral multiples of w/2 for a square array where
the ray is equal to the width of a picture element, all weighting factors are 4;
however, for Pkez’ say at 3° from Pkai' the weighting factors will be less
than one, and the terms of Eq. (10) will vary in accordance with the elements
through which the rays pass, which is dependent on §. One can generalize to

all projections

P1 = f11 A(1,1)+f12.A(1,2)+ P +f1 w A(N,N) ,

P2 = f21 A(1,1) + iZZ A(1,2)+. . . + fz w A(N,N) ,
. (11)

P_ = £y ALY +E A2+, .+ ANLN) ,

where m is the total number of the rays for all projections, and w is equal to NZ.
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Written in matrix notation, the previous equation can be expressed as

.- - -
B, i'f“ P A [A(1,1)

B £, f22 fw A(1,2)

. . * (12)
me_ Lfm g fnp- e fmw‘ LA(N. NL .

In matrix notation P = F - A, and in the case where m = w = Nz

as before, we solve for [A(i,j)] by inverting the matrix F

* L ] L ]
A1,1) = By, +P, f,+. . .+ P £
L L ] %
A(1,2) = P £, + B, f,,+. . .+ P £,
. (13)

where the elements of the inverse matrix I"‘-1 are [f:j] .

If one can calculate the elements of the matrix F-1 , then the solution
will be a simple multiplication and addition of these ~lements with all the ray
sums for the projections. In the example above, this involves for each element,
(N x N)2 multiplicationg and (N X N)2 addition operations. In practice on a

computing machine with 1 psec per complete operation, this means

6

1 x10°° sec X [(64X64)% + (64X 64)%] = 33 sec
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The long computing time plus the need to store 1.678 x 10° values for -1

have prompted a search for alternate approaches. Further, the problem of
measurement errors and insufficient angular measurements to satisfy Eq. (13)
have resulted in the 13 algorithms cited above and detailed below or in other
ruviews (Frank, 1973; Gordon and Herman, 1974).

If there are potentially serious measurement errors, the problem
can be formulated by requiring that an estimate of the array A in a trans-

verse section be a minimum to a least-squares function

R(A) = Z (_PE‘)._EM (14)
8 k=1 Oke

where the picture element values Af(i,j) satisfy the relationship

; € Ao

R, = 2 fij Afi,j) {15)
(i,j) eray(k,6)

and (Jio is the variance of the measured projection P ..

If & of Eq. (14) is minimized after incorporating Eq. (15) we have . solution

for A in matrix form (cf. Appendix C for details)

A= F el rT olp, (16)
where fb_i is the inverse of the covariance matrix and F is an mX N2

matrix composed of the weighting factors such as the fraction of the

area of a particular picture element through which the ray passes as before;
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and m is the tot:l number of rays for all projections.
For the situation where we are limited in the number of views, the

T ¢ F) is likely to be singular, thus threatening the existence of

matrix (F
a solution to Eq. (16). This seemingly intractable problem might find for its

solution the generalized inverse FG of the matrix F, which in the formulism

of Boullion and Odell (1971) gives the solution (see Appendix C for example)
A= rehirfeh2e (17)

Once the generalized inverse has been determined, the estimate A can be
made by direct matrix multiplication as in Eq. (17). The generalized inverse
is a function of the geometry of the object (imaging) space, the spatial change
of the impulse respense, ray divergence, if any, and photon attenuation. Thus
in principle for a given imaging situation using projections at fixed but not
necessarily equal angles, the generalized inverse matrix can be derived and
used for digital or electronic hard-wired multiplication of the projection data.
The seemingly intractable problem of large matrix manipulations and
insufficient number of projections available to give a unique solution, have
led to iterative schemes for the approximation to 2 solution. To illustrate
techniques developed further in Sections 3.3, 3.4, and 3.5, we solve Eq. (9)
by an iterative approximation method whereby the value for each element Ai
is guessed, and then modified by comparing the estimated projection value to

the measured value. We start with the measured projections
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If we estimated each element had the mean value of 10/4, we would note that
Ai' + Az' = 5, which is 5/3 greater than the measured value, thus we make a
second estimate at the value for A, and A, of 3/5(10/4) = 6/4; this gives an

array with the first row modified as

A A
1 ¢/a 2 4/a =3

A A
340/a | *104| z =5

Clearly the values of A3 and A4 need to be increased, because their

sum deviates from the measured value by 5/7. After adjusting these values by

7/5(10/4) = 14/4, we have

6/4 6/4 =3
14/4 14/4 =7
Z=5 =5

The sums of the vertical rows need adjustment to coincide with the measured

values; thus after the first iteration, we have

6/5 9/5 =3
14/5 21/5 =7
Z=4 =6

which gives one solution. Even with the situation complicated by the noise of
measurement, an approximation to the original distribution giving rise to the

projections can be made by the iterative approach suggested above and other
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algorithms outlined in this section. Befoxc examining these schemes, let us

review the simplest method of reconstruction.

3.3 Linear superposition or back-projection

The simplest and most rapid method of reconstituting a two-dimensional
distribution from multiple one~dimensional projections is to merely project the

views back to a common object region as depicted in Fig. 3. This technique

8 7
SlEle

Figure 3. A transverse section is created by projecting the profiles from various views
back through an image array. The technique is also known as superposition, summa-
tion, or simple transverse section scanning.

is basically that of conventional tomography or laminography implemented by
analog methods of moving the imaging system relative to the object. This
technique has been explored extensively in nuclear medicine applications since
about 1956 under the name "transverse section scanning' (Kuhl and Edwards,
1964). Kuhl and co-workers used rectilinear scanners to obtain photopeak

events as a funciion of distance along the projected line Pke in Fig, 4.
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Section A(i,j)

Figure 4. Relation between the section ray sums and a projection.

The strings of data for the multiple views were superposed on film
by changing the angle of display relative to the film corresponding to the
change in angle of view from one scan to the next. The result is the super-
position of the projections. The first proposal for simple '"transverse section
scanning'' using the gamma camera employed an optical technique for superpe-
sitioning the multiple camera views (Anger, 1967). The digital implementation
of this technique was reported first by Kuhl (1966) for nuclear medicine, and
more recently by Hart (1968) and Vai. shtein (1970), the Russian crystalogra-
pher for electron microscopy. R. Hart's technique is similar to circular
tomography. Harper (1968) presented a feasible method of three-dimensional
image synthesis where any plane can be viewed by inserting an opague screen

in the field of back-projected three-dimensional images.
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Though this technique is very simple, it cannot give the true radio-
nuclide concentration even for an infinite number of projections. The resulting
reconstruction will not equal the true image because each point in an image
reconstructed using back-projection (Fig. 3) will be formed by the superposi-
tion of a set of straight lines corresponding to each projected ray from the
true object. The superposition of a continuous set of lines around the point
is equivalent to the rotation over a circumference of 2ar for the two-dimen-
sional case and around a sphere of 41rrz for the three~-dimensional case.

Thus the blurring function is 1/r or i/r2 respectively, and the relation

between the true object and the back-projected cbject is simply
Back-projection = True * 1/ [r| (18}

where * denotes a convolution. i
The operation of back-projection or linear superposition is described

mathematically for a continuous series of projections P(x,6)as

T
B(r,¢) = f Plrcos(¢-8), 8] do, (19)
[4]

t Footnote: Proof of Eq. (18)
The projection theorem (see Appendix A and Section 3.7) gives the relation
between the fourier transform A(R, 0) of the image and the projections

oo .
P, 9) = f A(R,g)e' 2R ¥ R,
. .3 .
Using Eq. (19) we have,
27 e 1~
B(r,$) = J J R A(R.6)exp [i2n r - Rcos ($-0)] RAR do
0 0

This can be rewritten
P PR R P R |
Bir,¢) = F {R AR,0)} = F {R }* A(r, $)

The inverse transtorm of R°> is r 1 as detailed in Appendix A.
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where B is the back-projected image (Fig. 5). In almost every practical

Blr,) = fp[rcos(qb 69146

Figure 5. The value of a picture element (r,p) after back-projection of rays from
projections at multiple angles.

situation, we are dealing with a finite number of projections and for conven-
ience of digital computation we use Cartesian coordinates. Thus, we describe

the back-projection as

ioay = 0
B'(i, j) f Pro) (20)
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where, for esach element (i,j), we sum the contribution of each ray k(e)T which
passes through the element. We let the total density or concentiration, for

the section or array being reconstructed, be estimated by

T =i Pyo (21)

for any single projection. After back-projecting, the total density T' for the

array is

n
z B'L,j) . (22)
j:

A normalization factor is derived for reducing the value of each picture element
so that the reconstructed array total density corresponds to the estimated

total given in Eq. {21). Thus the corrected back-projected image is
O | ..
B(i,j) = B'{i,j) - 5 for all i,j. (23)

A more exact background correction involves modifying the values by subtract=
ing from each pixel the mean density or concentration multiplied by the number
of views minus one (Vainshtein, 1971; Gilbert, 1972k). Thus,

T(no. of views - 1)
ne. of pixels

B(i,j) = B'(i,j) - (24)

TThe subscript k(6) denotes a particular ray that passes through the particular
pixel (i,j) that falls within the ray path. This unconventional notation is used
to signify we are dealing with specific ray sums.
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3.4 Algebraic_reconstruction technique (ART)

A simple method of approaching a solution for the undetermined system
of linear equations was outlined in Section 3.2. Gordon et al. (1970) applied
this method to the reconstruction of a 50 x 50 digitized image from computed
projections. The excellent results obtained with only a few views encouraged
them and others to pursue techniques of iterative solution of the projection
equations. The EMI scanner (Fischgold, 1973) employes a form of ART. The
simple algorithm consists of guessing at a value for all the picture elements

Afi,j), and then modifying each element along each ray by a factor that compen-

sates for the discrepancy between the measured ray sum Pk(e) and the calculated
ray sum Rk(a)‘
ntl, . ,n . Lk(6)
A (1tJ) = A (1vJ) i Rk(e) (25)

If the calculated ray sumis the same as the measured value, itimplies that the guessed
values are correct for a particular projection; however, for another projectionthere
might be a large discrepancy, thus the picture elements of the last view which lie
in the ray for the new view will be modified according to the discrepancy be-
tween the new ray sum and the measured value. Thus, each ray from each
projection is examined and values of Af(,]) falling within that ray are

changed iteratively for all the projections for 5 to 10 iterations. Equation (25)

is called multiplicative ART. Another method of correcting the discrepancy
between the measured projections consists of adding the difference between

the measured ray sum and the estimated ray sum. This is called the additive

form of ART.

n+d,. ., _ n,, .
AT, ) = max AL )+ (P gy <Ry (o) /N o, 03 (26)
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Here Nk(e) is the number of pixels lying along the particular ray k(g) which
passes through pixel (i, j).

There are two important modifications of ART. One consists of
setting to zero those values in the array that are clearly zero because they
correspond to a ray sum that was observed as zero. This effecively bounds
the data and is an important boundary condition for any of the iterative tech-
niques. A third version of this technique known as ART3 incorporates noise
and has been used effectively in transmission studies of phantoms and simula~

tions with added noise (Herman, 1973; Johnson, et al., 1973).

3.5 Simultaneous iterative reconstruction technique (SIRT)

The simultaneous iterative reconstruction technique was developed by
Gilbert (1972a) and differs from ART in that at each iteration the densities
An(i,j) are altered by using data from all of the projections simultaneously.
Thus
=z P = R
ntl k(6) o k(9)

.. c . B
AMNE,5) = max{ATG, ) + -
ztee) 2 M)

oy (27)

where (i,]) represents the pixel which is an element of ray k(9); Lk(e) is
the length of ray k(8); Pk(9) is the measured projected density of ray k(9);
Rk(e) is the projected density of ray k(Q) after iteration n, i.e.,
Rl = A1, 3%
KO) (1, 5) er&H k(o)
and Nk(e) is the number of points in ray k(@). This algorithm was used in
our comparative studies. Gilbert also gave a mulitiplicative algorithm which

is
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Zp Z N
A4, §) = max{-2_K6) ; k(B . A¢,j) . 0% . (28)
8

7 Lica) )

After each iteration the total array is normalized such that for all (i, ),

A5 = T A™G (29)
where n,
T = z Pki R
k=1
and
™ = 22 a™y
ij

and where AnH'(i,j) are the values before the normalization. This normali-
zation can be thought of as a type of damping as described in the next section
for the least-squares algorithm.

For our implementalion of SIRT, we choose the line length, Lk(a)’
to be the maximum lenpth of all lines that subtend the array between the lines
k-1 and k. The length of these line segmants is determined by consideration
of Fig. E-2 in Appendix E where the implementation of SIRT, along with a

Fortran listing, is given.

3.6 Least-squares iterative technique

A least-squares iterative technique orginally proposed for determina-
tion of density distribution using proton or heavy-ion or conventional x-ray
transmission ecanning (Goitein, 1971; Boyd et al., 1974) has particularly

appropriate attributes for emission studies. We emphasize this technique in
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nuclear medicine because it accommodates noisy data, errors in data accumu-~
lation, and can be modified to handle attenuation errors due to emission studies.
The derivation of this algorithm is based on minimizing the error between the
measured projections and the estimated projections at the nth iteration in a

least-squares fashion. First, note that

fe n+1(1n)_]o)

n -
1a5e Ri(g) - f Al ) 6=1,...,M

(1.3) er5¥ ki)™
not (i, jo)

where ffj is a weighting factor for geometry and attenuation. The requirement

we impose is that

‘R( R ) z [Pkgej - erige)]z (30)

%2(9)

D)

be a minimum. Therefore, we are improving the densities given in the previous
iteration in a least-squares sense. The notation k(@) is to indicate that k is
chosen such that (i., jo) is an element of ray k(4). Equation (30) can be

rewritten as

2
(R( nﬂ(lu,J.,)) [ (i 3o - 4 (hJ)] /o2
; k(6) ~ "J° (1,J)Erazy k(9)1} k(8)
not (1.“]5) (31)

Differentiating this with respect to An+1(i,,j. ) and setting equal to zero, we have

48 _ =N 260, |p ., -0, a™ (50 - 9. A"i,')] JoZ, = 0.
™ 0,5 2 103.,[149) i ) (1,j)er;rk(6) 3 A (3] /O(g)

not (i,,]ja)
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Solving for AnH(i,,j,), we have the following sequence of equations:

n+1 ] 2
(iasjo) f; :g .A (14) /o
{ % 10]0[ k(e) (i, J)E ay k(8) k(B) /z o]u k(e)
not (lo’.]o)
_ 8 n 0 .n,. .Jd.2 6 72
'{ %fioja [P k() ™ Rx(o)* fiy, A (1"'J°)]/°k(9)}/ z[fiojo/ck(e)_l
]
n,. . 9
A o) *{ 0. i+ [Pror ~ Ria) ) k(e):/ D[, Ao

Latai) = {% b5 [Paor - o))/ °k(e)}/ 2 [0, )" - 32)

3.6.1 Damping Factor
If we now us« Eq. (32) to correct the densities for each iteration we
will fird that the densities do not converge, but oscillate, because Eq. {32)

corrects the previous density An(io,jn) based on the previous ray sum R;(G).

A simple example of this can be illustrated by the following 4X4 array

irlip B
Pplir| P ,
P P

where }P is the estimated pixel density for some iteration n and P is the
measured projection. Now, if we assume fiej =1 forall 4,i,j and 0§G=Pk9,

ther AnA(i,j) can be evaluated

A, ) = [z(Pk(g)- Rk(g)) / ke)] [%’/Pk(e)]
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[(P-1/2P)/P+ (P -1/2P) / P] /[1/P + 1/P]

= P/2
This then gives a new density An-H(i,j) = 3P/4 and An'HA(i,j):

[(P-3/2P) /P+(P-3/2P) /P] /[1/P + 1/P]

= .P/2

&AL )

Therefore, we have An+2(i,j) = P/4. If we continue this we would have the

alternating sequence for each pixel density:

P/4, 3P/4, P/, ....
2t+2

PR +1 .. . bs P
A% ), A A, AT A,
So a damping factor is required which will be a fur.<tic.a ot all changes for

each pixel. Therefore, once AnA(i,j) has been evaluated for all i,j, then

a damping factor § must be determined such that

"

i3 = A% + 6 & Alluid (33)

where
n, .. - _ 8 n 2 ] 2
& At de) = [Zfiojo(P k(e)‘Rk(e))/"k;e)]/ Z(fi,jo/"km)) - 09
If we require that
n+1)2

o) = Zz (Pyp - Rke

"ko

(35)
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be a2 minimum, then we are also choosing a damping factor in 2 least-squares

gense., We can rewrite Eq. (35) as

- T3

Differentiating @ with respect to § and setting the derivative equal to zero,

2
(i,j)eray (k,0) IJ[A o A(I,J)]} /Oke

we hawve the following equation:

daw)_zzz 2 0 [, 5) + 528 6 s
= ,§) + 84 A(iLj) f2.A% A, J)/o
b 6 k 0 1,5 exrs1k,0) ”[ ](1,J)€razy(k g) 1

This implies that

;Z[Pke- z £ (i;j)] z A Alij) /oy,

(i,j)erdy(k,0) (i.,j)eray(k,0) 1

-5Z = Z £ & awp|? /et = o
0 k|(i,j)ersy(c,0) ¥ 4

Therefore,

P, -RD & A A(i,j)]/oz
ZZ( 0 k‘iﬂh.ner;(k 6) ¥ k6 (36)
zz g & AnA(1,J)} /%,
7T (i,j)eray(k,0)

Now, if one were to apply the damping factor to the previous example, the

5 =

sequcuce of densities would be

P 3P 7P
4,—--S,R-', ......
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3.6.2 Statistical noise

For our work, we have chosen the standard deviation oke to be the
square root of the counts for each projected ray. Using the previous notation

we can express this as Okez = Pke , and then Eqs (32) and (36) reduce to

2
AnA(io’jo) = [;fieojo (1 -R}n((e)/Pk(B))]/ Z(fia;jo/Pk(e)) ’

and

1-RE, /P ) [ 8 AnA(‘,')]
5 - ZZ( k6" X8 (i,j)erazv(k,e) §_

_ ] 37)
6 An ... .\12
5z & A% A )i/
0 kEi,j)en;(k,e) i ”] Pre)

3.7 Filtered back-projection or convolution techniques

Recall the relationship between the true image and the image obtained

from the linear superposition or back-projection of an infinite number of

views Eq. (18):

A(x'-Y') -1
B(x,y) =/f dx'dy' = A*r (38)
{e-x) + (y-y )2

We seek a technique whereby -:7 can be deconvoluted from B(x,y) = B(r, ¢)

From the convolution theorem

FB(=, o) = Far.o) + FY (39)

.ff{rA} = Znﬁ-i Jo (2 Rr) r dr (40)

-1

where

= R
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where R is the reciprocal space radius or the measure in frequency space.

Thus, the true image is related to the back-projection image as
ard) F YTl o= TR Fpe o) (a1)

A similar result is obtained by Bates and Peters (1971) using a perhaps more
rigorous derivation that we circumvented by use of the identity Eq. (40). This
shortcut does not recognize the real situation in which there are finite bounds

on the domain of integration where Eq. (40) does not hold.‘ We will return to

this problen. later. For the present assume we have an infinite number of
projections and the data are not band-limited. The operations of Eq. (41) involve
the following steps:

(1) Obtain a series of projections.

(2) Derive the back-projected image by simple linear superposition

(Appendix D).

(3) Fourier transform the two-dimensional image.

(4) Multiply the Fourier coefficients by the spatial frequency ra-dius.

(5) Fourier transform (invert) the result of (4) to obtain the true image.
This procedure can be done optically (Peters, 1973) or digitally. Two-dimen-
sional Fourier transforms can be accomplished in less than one minute for
64X 64 arrays on small 16-bit computers (Budinger and Harpootlian, 1973),
but for 128 X128 arrays, much more time is involved. The fast Fourier trans-
form algorithm limits the array size to integer powers of 2, thus we cannot do
80X 80 or 100X100 arrays by this method unless zeroes are added to expand
the array to 128X428. This is not a serious limitation for nuclear medicine,
but becomes important for transverse-section radiography using transmission
where the resolution is four or more times better than for emission studies.

Thus we seek a method which is computationally more convenient. Methods of
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modifying the projection vectors before back-projecting are both convenient in
terms of computer space, and very fast.

The true value of each pixel is related to the Fourier coefficients as

2w o

f f A(R,0) exp[iZﬂRr cos(q)-e)] R dR 49 . (42)
o Jo

it

A(r, 4)

Note that E(R,G) = A(-R,B + m, ghus Eq. (41) can be written as

400 o ~
A(r, 6) =f f IR| A (R, 8) exp [iZ‘n'Rr cos(¢-9)] dR 46 . (43)
-0 0 ‘
If we define
FUIR| AR, 0} = B(r,0) , (44)

then the true pixel values become

™
A(r,é) =f B (rcoste-0), 3) ap . (45)
0)
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But, recall the back-projection operation Eq. (19), which indicates the operation
of Eq. (45) is linear superposition of projections P. What are the physical
interpretations of‘f’, P, and I\? I\(R, 6) 1is the Fourier component at the
reciprocal space position (R,8). The projection theorem! equates the inverse
Fourier transform of A with respect to the real space values of the projection
normal to the line, @ = constant. Thus, it is easy to see that P is the pro-

jection value associated with I\, and 1'5, therefore, is the result of modifying

the projection by a ramp filter since

FUr| F®) = B . (46)

With these considerations, the relation between the projections and the true
image can be deduced. Namely, the true image can be reconstructed by back-
projecting the projections after they have been modified in accordance with

Eq. (46).

i Fourier transform of the projection gives the components along the section

in Fourier space normal to the projection:
A(x,y,2) is a three-~-dimensional distribution, and the two-dimensional pro-

jection is defined as
P(x,y) = f Alx,y,z)dz .
The three-dimensional Fourier transform is
A(X,Y,2) =fff Alx,y,z) exp[-i2n(x - X+y:.Y+2-Z)]dxdy dz ;
for Z = 0 we have

AX,Y,2Z) = ff{ fA(x, y, z)dz} exp [~i2n(x- X + v - V)] dx dy

Eff P(x,y) exp[-i2n(x-X + y-Y)] dx dy .
Q.E.D.

See Appendix A for the two-dimensional projection theorem.
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There are two ways of implementing Egs. (44) and (45). One is known
as the convolution technique and the other as the filter technique. Both are
equivalent as can be seen by the following:

The Fourier transform of the function IRI is not defined unless one
imposes an upper bound R . which is the maximum meaningful frequency which

can be reconstructed:

an
g(r) =[ |R| exp(izn Rr) dR . (47)
0

Integration by parts gives

= Rm sin (2r R_r) ~ 1
Tr m 2(n7)

> [1 -cos(2w Rmr)] (48)

The function g(r) convoluted with the projection gives the modified projection.
If the projection function is band limited to Rm, then Eq. (48) becomes identical

to that derived by Bracewell and Riddle (1967):

[6(r) - R__sinc® (R_x)] . (49)

If the data are sampled at equal intervals, which are integer multiples of ZI:m s
where 1/(2Rm) = a is the sampling interval chosen small enough to avoid
aliasing. The sampling theorem requires -Ei— = 2a . Ramachandran and

m

Lakshminarayanam (1971) arrive at a somewhat similar expression deduced
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from evaluation of the integral Eq. (47) between some large values -R.m to

+Rp, (see footnote I)

1/42% n=0
g(na) -1/(aa)? nodd . (50)
0 n even

These techniques are equivalent to the direct application of a ramp
filter to the Fourier components of the projection values, which can be seen

by recalling the convolution theorem, since

¥ The Fourier series of the function IR' between -R_ and R, is

Ir| = 2:0: Cp explinm R/R_ ),

where
1 R .
Ca = 3R f m |R| exp (-mi Rn/R _)dR .
m
~R
m
For n=0,
Y 1+ R®> |[Rm R
Cn = Rdr=g— 55— 2
m 0 0
otherwise
. R m
Cp = 55 (exp(-mn) + exp (11'1n)) -5 .
2w n T on
Thus,
Ryp/2 if n=0
Cp = { -2Rp/n?n? if n is odd
0 it n is even

Note from the sampling theorem g(na) = g{n/2Ry,) = 2R Ch. This gives Eq. (50).
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F(B) = Flo) - F®) .
B = [rl- Fp) ,
B = FUIFEN-F Rl - FE) . (51)
Note the image reconstruction is completed by back-projection of the projec-

tions modified according to Eq. (51).
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3.8 Studies with phantoms and patients
3.8.1 Scope

The methods outlined in the preceding sections and implemented in the

appendix are

Back-projection Appendix D
SIRT Appendix E
Least-squares iterative technique Appendix F
Filtered back-projection Appendix G

The results of both phantom and patient studies using these four techniques
are presented in this section. Attenuation is discussed in Sec. 3.9 and
Appendix H.
3.8.2 Methods of data acquisition
3.8.2.1 Scintillation camera procedures
Studies were done by rotating the subject in front of the Anger scintillation

camera (Anger, 1967). The 16-inch scintiilation camera was used with a
technetium low-energy parallel-hole collimator and a special extended colli-
mator constructed a. Donner Laboratory. The extended collimator consists
of a rectangular array of aluminum tubes of 0.15 mm wall thickness and

12.7 cm long. These tubes are stacked in the natural hexagonal close-packed
fashion.

The camera-collimator arrangement is positioned vertically to accommo-~
date the rotation of the patient or phantom around a vertical axis in front of the
camera. The subject is positioned as close to the collimator as possible, be-
cause the resolution deteriorates with distance from the collimator. In some
trials the patient was fixed relative to the rotation axis by a head holder con-
nected to a chair, which is rotated on a stage and stopped-at intervals of 10°.
This was found to be cumbersome. A more satisfactory procedure was head
fixation by a mouthpiece bite arrangement showr in Fig. 6. At present there
is no convenient method for rotating the patient around a fixed axis. The ideal

method involves rotation of the camera around the patient, as suggested in

Fig. 3.



Figure 6. The technique of rotating a patient before the scintillation camera: The
patient is rotated manually with head support provided by a bite mouth piece which
is mounted on the rotation stool.

3.8.2.2 Digital data management

At eachangle, 50,000 to 100,000 events are collected on the Hewlett-Packard
digital system HP-5407 (Budinger, 1973). These events are digitizedin 64X64 ar-
rays, and stored as a histogram for later processing. The viewing time is usual-
ly 15 or 30 seconds, and each frame is stored sequentially around 360° at 10°
increments. The 36 frames are held on a disc frame file, which has a total
capacity of 160, 64X 64 frames. We use a slight zoom or gain on the analog~
to-digital converter (ADC) so as to concentrate the digitizing process on that
part of the crystal, which sees the head. Thus the space between raster points
represents 5.5 mm. For the reconstruction, three rows (3.X5.5 = 16.5 mm)
are selected from each of the 36 frames, and these become the projections for
reconstruction of slices or transverse sections. Normally eight sections are
taken at 16.5-mm intervals from the head vertex to about the nasion-meatal
level {8X16.5 mm = 13.2 cm).

3.8.3 Reconstruction procedures

The procedures for back-projection (Appendix D), SIRT (Appendix E),
and filtered (compensated) back-projection {Appendix G) involve forming 18 pro-

jections, which are the square roots of the product of the conjugate views,
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(geometric mean), © radians apart. This procedure in part compensates for
attenuation and the change in impulse response with distance from the collima-

tor. Note that the true activity of a point source in the attenuation midline of

L IJ-T/Z
{Pk(e) : Pk(GHr)} ‘e : (52)

" where p is the attenuation coefficient; and the true activity of a distributed

thickness T is

source is given by

3 _MT/2
(P (o) Pip +m)!°® fT

Z sinh(R1T/2) s (53)

where 6 is the effective fraction of the thickness occupied by the source. This para-
meter can vary from 0.1t00.9 without seriously affecting the result (Serenson, 1971),
Eighteen views derived as simple conjugate means or modified by correc-
tion for attenuation are used as the input to the reconstruction program. The
correction of Eqs. (52) or (53) is not adequate, because it requires a priori
knowiedge of the thickness and an assumption about the attenuation coefficient.
A refined technique for the attenuation correction has been inccrporated in the
least-squares technique (Appendix H).
The complete procedure for the attenuation correction iterative least-
squares technique involves use of the 18 conjugate means for 3 to 5 iterations,
after which the algorithm for ascertaining an outline of the object is applied.
Using this outline, the distance I?j between each pixel and the object edge

along a ray is calculated, and this gives the parameter f?]. defined as

fi.=e 3 (54)

where g is the linear attenuation coefficient. The values of féi)j are then
incorporated into £q. (32) and a few more iterations are completed using all
36 views to give the solution as discussed again in the section on attenuation.
3.8.4 Hot-spc: “=tection

A comparison of the ability of these techniques to reconstruct hot spots in

an 18-cm diameter lucite disc having a hot annulus around the periphery is
shown in Fig. 7. Clearly the least-squares and filtered back-projection

techniques are superior to the back-projection and SIRT techniques. Ten to
20 iterations fqr both SIRT and the iterative least squares were made. The
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BACK PROJECTION S.LR.T. LEAST SQUARES

ORIGINAL

Figure 7. Comparison of four techniques for three-dimensional reconstruction—back-
projection, simultaneous iterative reconstruction, least-squares, and back-projection
of filtered projections (BPFP)--using a lucite phantom and 99m Tc.
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ability of these techniques to reconstruct the original density is made by evalu-
ating the root mean square of the normalized difference between the true

distribution and the reconstructed distributica after each iteration as

1/2
?—;[A' i, j) - A%, )12

e . (55)
2 A5 - A% )
1,)

Discrepancy =

where A'(i,j) is the true value, A%(i,j) is the value for the initial solution,
and A.n(i.j) is the value after the nth iteration. The results are shown in
Fig. 8 for two objects.
3.8.5 Cold-spot detection
One of the problems of conventional tomography is detection of ccld spots

deep within hot tissue, for an example, detection of a tumor within the liver.
The ability to reconstruct holes with the sarne resolution as hot spots is dem-
onstrated in Fig. 9, where a simulated liver slic: was reconstructed. The
hole 1.25 c¢cm in diameter can be seen above noise in the reconstructions using
the techniques of iterative least squares and the filtered back-projection.
3.8.6 Patient studies

Four patient studies have been made including one adult with parietal-
occipital abnormal accumulation (Fig. 10), and one probable-normal i4-year-
old child who could have a craniopharyngioma (Fig. 11). The abnormal accumu-
lation in Fig. 9 could be from hemorrhage, tumor, or granulomatous disease.
In the child with suspected craniopharyngioma, the hot activity is in the region
of the cavernous sinus and might be a normal finding. Quantitative brain
scanning by this technique relies heavily on the ability to correct for attenua-

tion, as alluded to earlier and explored in detail in the next section.

3.9 Attenuation

In emission studies the contribution of each volume element to the pro-
jection ray sum is not a simple additive factor, as in the case in transmission
studies. Each element contributes a photon emission concentration, y/sec-cm3,
which is attenuated by the path length between each point and the edge of the ob-
jeci along a projection ray. Thus the activity measured along one projection
view will be significantly different from the activity measured in the conjugate
view 180° from the first view if the distribution of activity is asymmetric. For

transmission studies the projected ray sum is
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Figure 8. Con:parison of the accuracy of reconstruction by back-projection, SIRT,

least-squares, and filtered back-projection (BPFP) techniques for the phantoms as
shown.



17 cm

30°

ORIGINAL BACK PROJECTION S.IRT. LEAST SQUARES

Figure 9. Comparison of the ability of the (our techniques for three-dimensional
reconstruction to detect small holes in a liver phantom slice filled with %9 Tc
(shaded region).
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Figure 10. Patient study showin,, the transverse sections and on the left, the
corresponding rows of dara flagsed from views taken at 10° increments. An abnorimal
accumulation of technetium is shown in the parietal-occipital area of this patient with
an as yet undiagnosed pathology.
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Pérroué v Sphenoid [

Figure 11. Patient study revealing possible abnormal accumulation of technetium in
midbrain or cavernous sinus region.



P

-log 8L (56)
PO

k(6)

where .!i. is the length of the element with attenuation coefficient |J.ij- However,

2. s
i,jerayk(p) T

for emission studies

Pro) © Al J) expl -2 plas Bt )] (5T)
i, jeTayk(p) ) i -

Thus the nuclear medicine reconstruction problem is more difficult than the
transmission problem. The influence of the term exp[-Z p{e,B)] depends on
the attenuation coefficient p, which unfortunately is so large for all energieé
used in nuclear medicine that the reconstructed images are seriously affected.

The effects of attenuation can be seen from Fig. 12; where the effects of

#=0Mm © =015

Figure 12. Comparison of the reconstructed transverse section for various photon
energies (attenuation coefficients) if no attenuation compensation is made.
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gamma rays of a few MeV (i = 0.05) are compared to the effects of gamma rays
6f 541 keéV (p = 0,11) and 140 keV {p = 0.15). The images in the lower row show
the serious artifact that will result for the usual isotopes used in nuclear medi-
cine if attenuation is not taken into account. The source is a disc of 23-cm
diameter similar in size to a section through the head. Another way of evalu-
ating the seriousness of this problem is shown in Fig. 13 where the profiles
through the reconstructed disc are given. The deviation of the reconstructed
image from the true image is shown (Fig. 14) in terms of the fraction of the
total number of pixels that depart by multiples of the standard deviation from
the true value. Here the standard deviation is taken to be the square root of
the true pixel value. _

The quantitative three-dimensional reconstruction of gamma-emitter
distribution in the head and other parts of the body requires compensation for
attenuation. The chest presents the extreme case, and unfortunately cradles
the heart, which is a most important regior. for application of these techniques.
We envision six methods for solving this problem.

1) The simplest technique involves application of a correction matrix to the
results of the reconstruction. The correction matrix consists of correction
factors determined from phantom studies and assumes a fixed geometry for
all studies and a constant or an assumed distribution of atten.ation coefficients.

2) We would like to be free of constraints on geometry, and have adapted
the second method, which entails assumption of constant attenuation coefficient
and calculation of the attenuatio. path length [ 1ij of Eq. (54)] between each
pixel and the edge of the object along each ray. The shape of the object is
estimater after a few iterations by employing the subroutine SEARCH of
Appendix H. This procedure gives good results for objects with a constant
linear attenuation coefficient such as the brain. A comparison of the least-
squares procedure with and without attenuation is shown in Fig. 15. Without
this or some other techniques discussed below, the results of the reconstruc-
tion will be nonquantitative and lead to artifacts such as the ring distribution

derived from the disc section, as shown in Fig. 12.
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Figure 14. Fraction of pixels that deviate by 1, 2, and 3 standard deviations from the
true values in a reconstruction if attenuation is not taken into account.
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Figure 15. A comparison of transverse sections with and without attenuation com-

pensation using the least-squares technique.
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3) Another method of attenuation correction that can be applied to the last
iteration of the iterative techniques or to the results of the filtered back-pro-
jection involves recalculating the projected data that would have occurred if
there were no attenuation. The cutline of the region of interest is automatically
determined by a simiple computer search routine (Appendix H). The correc-
tion is made for each ray by multiplying the geometric mean of conjugate views
by a factor,

T . (tuT/2)/sinn(enT/2),
where p is the linear attenuation coefficient, T is the thickness of the body
section along the conjugate view ray, and f is some factor that varies be-
tween 0.2 and 0.8, depending upon the fractional distribution of isotope. A
large change in this estimated parameter does not affect the solution signif-
icantly.

4) A fourth technique involves iteration betwecn the algorithm for de-
termination of the value of each pixel and the algorithm for determining fi"
which is the correction factor for attenuation. For example, ART could be
used to determine the estimate of the concentration in a section for a few
iterations, then the concentration fixed for a few iterations where f?j values
are determined. We have not yet pursued this interesting approach, which

was suggested by Dr. Richard Gordon.

5) The true distribution of attenuation coefficients can be determined by
transmission measurements, as suggested by Eq. (56). The usual technique
involves measuring the ratio of transmitted-to-incident photons. Thus, to
estimate the distribution of bone and soft tissue in the chest, a transmission
study would be done before the emission study with the Anger camera. The
source could be 57Co or 99mTc and, with proper tuning, 241Am.

€) The last technique involves use of multiple isotopes where advantage
is taken of the known different absorption coefficients of various tissues for
241\ (60 keV)

and 99rnTc (140 keV) were used, we can determine the distribution of tissue

different photon energies. For example, if Zwa (40 keV),

such as lung, bone, and soft tissue by noting
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210
I (777Pb) _ ' 3
"log T = Wl H ettty = Py
241
1 (*Ma
log U A < wpey + it w ity = Py (58)
99m
- I Te) & i Lt ] = Pt
tog T =wi'ly gt gty = Py

and where L and Py refer to known attenuation coefficients for lung, soft
tissue, and bone respectively; and the primes denote the coefficient appropriate
to the various energies. The system of equations, Eq. 58, can be applied to
each ray sum and from this the distribution of lung, soft tissue, and bone can

be determined using the algcrithms of Secs. 3.3 to 3.7.
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4.0 NUMBER OF VIEWS REQUIRED

If a reconstructed image is to be uniformly resolved to a resolution d of
a completely unsymmetrical object, the number of discrete views must be at
least

n=n D/d, (59)

where D is the dimension of the object (Crowther et al., 1970; Klug and
Crowther, 1972). Thus for a resolution of 1.5 ¢m in imaging a head 20 cm
in diameter, we need 42 views. In practice, only 20 views are necessary for
the class of objects of importance to nuclear medicine. An explanation for
this discrepancy is that 42 projections would be required for an object that has
no symmetry and thus no regional correlation. This is not true for any image,
as there is great departure from complete randomness just by the fact that a
recognizable image exists. Thus it is not surprising to find that the number
of views required for reconstructing a two-dimensional distribution with a
resolution distance of 1.5 cm are far fewer than theoretically prescribed for
images of no symmetry. Another way of understanding the reason for the
discrepancy is that in the class of objects of concern, many different objects
are essentially identical. The resolution and, to a great extent, appearance
of artifacts are related to how close the axis of rotation is to a center of
symmetry. For example, multiple views of a right cylinder taken around an
axis that is displaced from the center of retation will give a recenstruction that
is distorted and contains " clutter'' outside the object region (Peters, 1973).
Only a single view of the same right cylinder is necessary if the cylinder
is in the assumed center of rotation for the reconstruction. However, no a

priori assumption can be made regarding the topology of a cross section.
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5.0 DISPLAY OF RESULTS

The distribution of intensity that represents isotope concentration can be
displayed readily on the HP-5407 (Budinger and Harpootlian, 1973) using
either eight levels of gray on a CRT with resolution of 64X 64 or even
256X256. Concentration relationships can also be shown by the isometric or
""projection'" view as shown in Fig. 16.

For hard copy from the computer printer, we have worked out an over-
printing routine for the CDC machines that gives levels of gray and has been
very useful in our detailed program development. The subroutine that gives

images, as shown in Fig. 16(c), is explained and listed in Appendix I.
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6.0 SUMMARY AND FUTURE DIRECTIONS

Methods of three-dimensional isotope distribution reconstruction from
multiple two-dimensional views are similar to those employed in astrophysics,
electron microscopy, and radiology; however, photon attenuation must be
taken into account. Successful quantitation of the three-dimensional distribution
of isotopes has been achieved using the iterative least-saquares technique, but
not the Fourier technique. The iterative least-squares technique is superior
to other techniques because it handles noise and has been successfully modified
to incorporate attenuation. The method has been implemented on the CDC
6600/7600 and on the small computer HP-2100A in Fortran. In our first imple~
mentation, approximately 20 min of processing per section are required by the
small machine. The ART techniques do not account for noise, but can re-
construct a section in approximately 1 min without attenuation cerrection.
Fourier transform techniques are approximately 80 times faster than the
least-squares method, but do not handle no.se or attenuation.

Patient studies for isotope distribution in the head, heart, and liver can
be accomplished by rotating the patient before a scintillation camera in 10°
increments. The study time is approximately 30 min, and the doses are no
greater than routine studies of 100 to 400 mrad. )

Application of these techniques to the heart and other organs involves gating
the camera or the computer to overcome motion, as has been done in preliminary
studies (Fig. 17). Generalized techniques of motion extraction (Schmidlin
et al., 1973; Budinger and Harpootlian, 1973) are also applicable to this
tractable problem. In order to implement these techniques to heart work, a
parallel-holed collimator that can handle the high energies of Sin (446-511 keV)
should be used, and one of the suggested techniques for attenuation correction
should be employed.

Transmission scanning for the direct determination of attenuation co-efficients
such as is done on the EMI scanner (Fischgold, 1973 Cho et al., 1973; Robb, et al.,
1973) cannot be done using the gamma camera in counting mode because about
107 counts per picture element or ray sum are needed to determine a change in
tissue density of 0.5% to 1% . The camera cannot operate over about 7X10
counts/sec overall or 20 counts/sec/pixel. However, it is possible to combine
transmission imagery with emission to give a comparison of density distribution
to isotope concentration, if the requiremeiits are not greater than distinguishing

betweenbone, muscle, fat, water, air, (lung = 0.2-0.6 sq. gr.).
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Figure 17. Regions of the EKG that are used to select data for demonstrating images

of end-systole and end-diastole.
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The concept of a fan beam is under development, and it is possible to
reconstitute fan-beam data, either transmission or emission, to the parallel
beam for implementation of the algorithm used in this report.

Proton radiography (Steward and Koehler, 41974) or radiography with
heavier ions (Benton, et al., 1973) such as 4He, 160, or 4ONe has the potential
of resolving density differences of 0.5 to 1 part in 1000; thus with these tech-
niques the small differences in density between normal and cancerous or

infected tissues can give a new dimension to clinical diagnostic medicine.

ACKNOWLEDGMENTS
This work was supported by the United States Atomic Energy Commission.
We appreciate the encouragment from Drs. Hal Anger, Hans Bichsel, James

Born, Robert Glaeser, John Lawrence, James McRae, and Cornelius Tobias.



-63-
Appendii A - Theorems for Fourier techniques

The back-projected image for a continuum of projections is equal to the
true image convoluted with 1/r.
B(r,¢} = A(r,¢) * 1/r.

Proof: The back-projected image has the following relationship (see Fig. 5}:

31
B(r, ¢) =/ P(rcos(¢-9), e)de. (A1)
o
By the projection theorem we know that
0
P(x, 6) = / A(R, 0) e2™RE gR , (A2)
-0
giving
]
B(r, ¢) = // A(R, 6) expl2wirR cos(¢-6)] dR ds. (A3)
0 J_ow

Now we can rewrite Eq. (A3) as
2T

B(r, ¢) =/ / R AR, e)exp! 2mirR cos{é-6)] R dR de. (Ad)
1] -0

Equation (A4) is the inverse Fourier transform of R'1 R(R, 6), which we can

write as

-1
Bir,4) =F# R i(r,0)}
(2)

(A5)

-1
=F R =Alr,e)

(2)
Now the inverse Fourier transform of Rt is

=

-1
(2)

o 2T
{R_'i} = [/ R™? exp[2mirR cos (¢-6)] Rde dR (A6)
0

0 2m
=// exp[2mirR cos(¢-6)] dedR (AT)
[ 0
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Expanding the integrand as a power series, we have

-1 2m o
‘97'*11 [mfﬂz (-z—"—l-r—R-)——-cos(‘be)ﬂedR

(2)
0 oo . k 27
= / = (__'___‘_Zml:'R) / cosX(¢-0) do dr
() k=0 ‘ 0

27 m i{$-8) _~i(¢-8)\k
/ cosX(¢-0) dg = ‘/2 {e ?;e ki) R
1) 1)

i(¢-6) _

Now

and expanding the term (s

2
[ cosk(¢-9) de
[1]

n=0 an! (k-n)!
k K

= B —k——-—-
n=0 2"n!(k-n)! [

{0 if 2n #k

27 .
where f lk-2nlio de
[ 2r if 2n=k

Therefore,

-1
T

L(2n-K)ie 2w (k-2n)i6

-
e

Zfrf b2 (2k)! (2mirR)

o k=0 2y on Ty T (2KR)

LI <]
2“] 5 (2mirR)? .
0

k=0 2°Kki)2
2k

. 2"[ T (-)E (anR) dR
o k=0 2k ie1)?

3 {(2mrR) dR

n
o
E]

® 8

-i(¢d- . .
e (¢ 6))3.5 a power series, we can write

f o k K n(¢-0) i(n-K)($-0) 4,
0

de,

dR

(A8)
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Next let's investigate Eq. (A8).

n/2

If we use the identity (Watson, 1966)

7, (0= A cit 8inf g4 (A9)
‘n/2
we can express Jo(Z'lTrR) as
/2
3 (2veR) = 2 (127rR sind gy (A10)
‘n/2

Letw =1 sinf and dw = r cosfdg8 = '\/rz - wz de, then

1 r eiZ'an
JO(ZTI'I'R) = - I\/r;z—:‘—w-? dw . (Aii)
Equation (A410) implies that

%JO(ZWrR)} = f{w)

whexre
1
‘v'\/rz-wz if {w <r
f(w) = .
o] elsewhere

[-=]
. _ T -
Now we know that 2 [ J (2rrR) dR —/{Jo (Zn'rR)}w:o =£(0),

which implies that

00
_am 1_ 1
Zﬂ[ JO (z'ﬂ'I‘R) dR =% - TFTo T
Therefore, we can express Eq. (A5) as

B(r,¢) = = * Alr,)
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The pruof of the projection theorem for two-dimensional space is
given in Peters (1973) and is repeated here using our notation.
Projection Theorem for Rz: The Fourier transform of the projection gives

the componenis along the section [Fig. A-1(a)] in Fourier space normal to

the projection, i.e.,

+00
P(x', 0) =[ A(R, 0) exp(2mix'R) dr
=00

(a) (b)

Y y
x’ y’\\ j x
Fourier space Real space

Figure A-1. Relation between components ir Fourier space and projections in

real space.
1

Proof: First, note in Fig. A-1(b) that the projections P(x',0) can be

expressed as

P(x', ) =f A(x, y) dy!

-0

where the coordinate system (x',y') is rotated at an angle 9. Now expressing

A(x,y) in terms of its Fourier transform, we have

-] <« -]
P(x', 6) =[ f f A (X, Y) ean(Xx!- Yy) dX dY dy!
- -00 -0
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Using the equations for rotation given in Eq. (2) of the text, we have

0 00 .00
P(x', 0) =f f fK(X,Y)exp{Zwi [X(x'cose - y'sing) + Y(x'sinf+ y'cose)]fdx dY dy'
=D oS 00 00

Rearranging., we have

P(x',0) = ’ jf A(X,Y) exp {Z'rri[(X cosf+ Ysing)x'+ (-Xsin6 + Ycose)y']}dx dy dy!
‘0 -0 -

o0 00 o0
P(x', 0) =f f f K(X,Y) exp [Znix' (Xcosg+ YsinB)] exp [Zviy‘ (Xsing - YcosO)] dy'dXqy
..} =00 00

(A-12)

Then integrating with respect to y', we have

0 00
P(x', 0) =f f A(X,Y) exp[2wix' (Xcosf+ Ysing)] 6(Xsinf - Yeosg) dXdY .
-0 -00

Next, let U= Ycos@, which implies dU= cosfdY or dY=secf#dU. Substi-

tuting these relations in Eq. (A12), we have
<« 0 ~
P(x', 0) =f f A(X, Usec) exp[2nix' (Xcosg+ Utang)] 5(Xsing - U) secd dU dX
-0 D
o0
=f Z\'(X, Xtan8) exp[znix' (Xcos0+ Xsind tanB)] sech dX
-00
=f K(X,Xtane) exp(27ix' Xsecf) sech dX
'-00
if we let R= Xsecd, then dR=secfHdX giving us

P(x', 0) =f A(R cosg, R sing) exp(2nix'R) dR

P(x', 6) =f A(R,0) exp(2mix'R) dR . Q.E.D.
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Appendix B. The Relationship Between the Array Pirzls
and the Projection Rays

Figure B-1illustrates the relationship between the N X N array of pixels
and the family of lines which bound the projection rays. ®ote that the pro-
jection rays remain fixed corresponding tc a fixed camera, and the coordinate
system rotates relative to these fixed rays. The deveiopment of the equations
relating the array pixels and projection rays is separated into four categories
corresponding to the rotated angle 8. Subsection V generalizes these equations
for all angles.

L g=0

For 8 = 0° the family of lines which define the projection rays is

y=k+1/2 k=0,1,2.-++, N, (Bi)

I 0 <6<9¢
A. The fainily of lines
For 0 < 6 < 90" the family of lines which define the projection rays are
y = (tanf)x + y, + k/cos0, k=0,1,2,.-. ' (B2)

where tan€@ is the slope of the family of lines, Yo is the y intercept for the line
k = 0, 1/cos8 is the increase in the y intercept for each succeeding line and

ng is the total number of rays necessary to cover the NXN array, This varies
from N to N2 N if the width of each ray is identical to the distance between
pixels.

Before developing the equation for Yo and ng. first compare Fig. B-1(a)
for 8 = 0°to Fig.B-1(b)for 0°< 6 < 90" and notice that additional lines are
added so that the ¥ XN array is bound a“ove and below by lines. The necessity
for adding additicnal lines is that the distance between the points (N, 1) and
(1,N) and the line *. has increased as the coordinate system is rotated. The
distance between x_ and (N, 1) is developed in the following sequence of

equations:
Diglance between x_ and {N,1) = N sin{f+45")
Z2L:aRCe voiween X, and
T
- N'l 2 » )
= —= ({(sinfcos 45" + cosf 3ind5")
NZ
- N-1 (B3)

5= (3inf + cosf).
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Figure B-1. Relationship between the picture clements and coordinate system for the
derivation of the family of lines, which delineate the parallel rays.
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Due to symmetry, Cq. (B3) holds for the point (1,N) as well as (N,1). When
= 45° this distance will be at a maximum,
From Eq. (B3) we can develop an expression for the distance between
the point (N,1) at & = 0° and the point (N, 1) at 0° < #< 90°,
Distance between (N, 1)| 5 . g0 2nd (N.1)] o g ¢ gge

=(Distance between X and (N, 1) |0‘,< e< 90° ) - (Distance betweenxcégr_l (N, 1) |0=0.)

= "‘"‘Nii (sinf + cos@) - (Eé—i) = 'N—?' (sinb + cos@-1). (B4)

Now at 8 = 0° the first line corresponding to k = 0 is at y = 1/2 and the dis-
tance between it and the point (N,1) is 1/2. Therefore the distance expressed
in Eq. (B4) can increase by 1/2 before more lines are necessary. To deter-
mine the distance between the line k = 0 at 8 = 0° and the line k = 0 at

0° < 8 < 90°, one needs to add 1/2 to Eq. (B4) and take the largest integer
less than this since the family of lines are separated by integral widths.

Therefore,

Distance between line k =0 [, g ggo andlinek =0, _ .

= INT (552 (sin6 + cos6 - 1) + 1/2] . (BS)

For the special casea when [s ] = INT [ ¢ ] in Eq. (B5), we adopt the rule
that if a point lies on one of the family of lines, let's say the line corresponding
to k, then the point (pixel) belongs to the ray k + 4. Therefore when
[ ] =INT[ ¢« ] a ray will be added for the point {1, N} but not for the point
(N,1). Therefore, from Eq. (B5), we see that the total number of additional

rays necessary to cover an array for 0°< @ < 90° is given in the following

equation:
2 INT[H5? (sin0+cos-1)+1/2] it [+ ]> INT{* |
Additional rays = (Bé)

2 INT(N5! (sin0+ cos0-1)+1/2) -1 [+ ] = INT[ » ]

Adding Eq. (B6) to N which is the numnber of rays for 6 = 0° we get the total
number of rays ng, for the angle 0°< 6 < 90°;



-T2=-

N + 2 INT[E5! (616 + cos6-1) + 1/2] e[ 1> INT[» ]

n, = : (B7)

N+ 2 INT[E5? (sin6+ co20-1) + 1/2] -1 i [+ J= INT[« ]

For 6 = 0° the distance from x_ to the line k = 0 is N/2. Therszfore, the
distance to the line k = 0 for 0°< 6 < 90° is N/2 plus the increased integral
ray widths such that the point (N, 1) is bounded below by a line. Using

Eq. (B5) with provision for the placement of a point if it lies on a line, we have

Distance between line k = 0 [0°< 6 < 90° and X, equals

NNt (35! (sine + cos-1) +1/2]  it[+] INT[- ]

L= (BS8)
7 +mT[§—5—‘(5ine+coae-1)+1/z]-1 if[e] =INT[+ ]

Now with Eq. (B8) -we can use triangles II and III (Fig. B-1(b)} to develop

an expression for the y intercept, Yo' for the line k = 0. The line segments
on the y axis corresponding to triangles II and I have values L /cos6 and

-%u-tane, respectively. Thus the y intercept, ¥y for the line k = 0, has the
equation
_N# L N+1
Yo =72 cosf -z tanf. (B9)

B. The set of rays {k(€)} corresponding to a given pixel (I, J).
For each pixel in the NXN array with coordinates (I, J), an expression

can be developed which immediately determines the ray for which it is an
element. First, notice in the following figure that we already have an ex-
pression for the distance between thc point (N, 1) and the line X and the dis-
tance between the line k = 0 and the line x_ as given in Eq. (B3) and (B8) re-
spectively.
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Figure B-2. Distance between the first line, of the family of lines delineating the rays,
and a line through the center of the array for projection angles between ¢° and 90°.

For the point corresponding to the coordinates (I, J), the leg adjacent to
0 for triangle A will have the value J-41, which implies that the hypotenuse
has the value (J-1)/cos@ and the leg opposite # has the value (J-1)tan®. There-
fore, the hypotenuse of triangle B has the value N-I - (J-4)tan€, which implies
that the leg cpposite 6 has the value [N-I - (J-1)tan6] sin8. Hence,

Distance between (I, J) and X,

= |55 (sin6 + cos) - (3-1)/cosd + [ (N-1) - (J-1)tan0] sind|.
Combining terms we have
[ RS2 ing 4 21N ogp, (810)

Using Eq. (B10) the distance D between (I, J) and the line k = 0 is

D=L+ Eﬂz:?'—l sing + 2LN-1 oo, (B11)
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From Eq. {B11) we can calculate the particular ray for a projection @ that goes

through the voint (I, J) as

k(9) = INT{D} + 1. (B12)
L. 6 = 90°
For 6 = 90° the family of lines that define the projection rays is
x=k+1/2 k=0,1,2, +», Nu (B13)

IV, 90° < 6< 180°
A. The family of lines

For 90° < € < 180°, the family of lines which defines the projection rays is
Yy = (tan6)x +yj+ k/| cosé| k=0,1,2,++ 1, (B14)

where tanf is the slope of the family of lines, yb is the y intercept for the line
k=0, 1/' cosel is the increase in the y intercept for each succeeding line,
and n, is the total number of rays.

The development of the expression for yb and ng is similar for that given
for 0°< 8 < 90°. Notice in Fig. B-3 that the family of lines increases down
the plane, whereas for 0° < @ < 90°the family of lines increases up the plane.
Also another thing must be kept in mind; as illustrated in Fig, B-3,

= 4180° -6, therefore cosy=| cosG] .
Due to symmetry, the distance, L', between x ., and the line k = 0 for

90° < @ ~ 180° will have the same expression as given for L in Eq. {E .},

-2-+1NT[ ! (sin0 + | cose | -1) + 1/2] if [+ 1> INT[ - ]
L' = (B15)

e No[E (oine + | cos | -1) +1/2] -4 ig [+ ] =INT[ . ]

and the number of rays will also have a similir expression,

N+ 2 iNT[ 25t (s1n9 + |cos@ |-1) +4/2]  if[-]> INT[. ]
- {B16)

N + 2 INT[ X5} (aind + | cosd | 1) +1/2] -1 i+ ] =INT[ + ]
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y=(ton 8) x+ys+k/cos 8 k=0,1,2...,ng

(II) k=C

XBL74I-2178

Figure B-3. Relationsiu:p between the picture elements and the family of lines for
projection angle between 90 and 180°.
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Now using triangles I and II indicated in Fig. B-3, we an develop an ex-
pression for y'o. For triangle I the side adjacent to y has the value {N+1)/2,
which implies that the side opposite y is [ (N+1)/2)] tany. Also, knowing the
value for L', we have L' /cosy as the value for the hypotenuse of triangle III.
Therefore, utilizing these line segments on the y axis, we have

N+1 L' N+1
Y;Z‘ == - ——+—-—-2 tany

(B17)
N+1 L' N+1

=73z —]cosel- 2 tang.

B. The set of rays {k(€)} corresponding to a given pixel (I, J).

As was done for 0° < 8< 90° in Section IIB, we can develop an expression
that gives the ray for a particular projection that goes through a pixel (I, J).
The distance between the point {1,1) and the line X, and the distance between
the line k = 0 and the line X is given in Eq. (B3) and (B15) respectively.

Figure R-4. Distance between the first line, of the family of lines delineating the rays,
and z line through the center of the array for projection angles between 90° and 180°.

In Fig.B-4 the side adjacent to triangle D has the value J-1 which implies
that the hypotenuse has the value (J-1)/cosy and the side opposite y has the
value (J-1)tany. Now the hypotenuse of triangle C is I-1-(J-1)tany; therefore
the side opposite y has the value [I-4-(J-1)tany] siny. This gives
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Distance between (I, J) and X,

= |[I-1—(J’—1)ta.ny] siny + (J-1)/cosy- N—;_i (siny + cosy) l

= ! ZI'ZN'i siny + ZJ-]z\I-i cosy |, (B18)

which implies that the distance D' between (I,J) and line k = 0 is

D' =1 +Q'£-—-.,I\I—_1) sin6 + ZJ_ZN_i 'cosﬂl {B19)

From Eq. (B19) we can determine the ray corresponding to the pixel (I, J) for

a given angle 6,
k(f) = INT{D'} +1, (B20)

V. 6= 180°

Figure B-5 illustrates the corresponding relationships for angles greater
than 180°. Therefore, from the equations given in sections II and IV we can
summarize the equations for the family of lines determining rays for all angles

other than projectives for integral multiples of /2,

y =(tanf)xty, + k/| cosb |, k=0,1,2,-++,ny (B21)
where
_NH L N+, oo
Yo =72 cos@| ~ 2 Rt
and
B+ Nt (B (sing| + | cose [-1) +1/2] [+ 1> INT[+ ]
L=
N+ Nt 152 (|sin6 [+ [cos8|-1)+1/2] -1 i [+ ] =INT[ - ]
- N-1 . .
N + 2INT[ =5~ ( [sind [+ |cos® |-1) +1/2] it [+ 1> INT[. ]
ne =

N + 2INT [B-2 (|sin6 |+ |cos [-1) +4/2] -1 if [+ ] =INT[- ] .
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y
/ y= {ton @x +y, +1/fcos 61
VAR - 7Nkt
0°<8<90° . .._' ...‘ S .
u.'.:.- k=1 -:-..--
: K0 - —
kEn,
X
y={tan8)x + Yotk sleos 81 k=0,,2;, ng
y=(tan 8)x + y, +k/|coxs al
k=0,l,2,---,n9\ k=0 k=ng /x
T N k= | . . .
o 180°<6<270° RIRIL
L L.t « 0] 210°<8<360°

Te, k=1
P ~_G- k=0
y=(tan 8) x+y + k/@(

k= 0'|,2,-..'n0

X8L741-2021

Figure B-5. Relationship between the equations for the family of lines delineating rays.
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Whereas the angles @ = 0°, 180° the family of lines is

y=k+1/2 k=0,1,2,..+,N, (BZZ)
and for angles 6 = 90°, Z70* the family of lines is

x=k+1/2 k=0,1,2,+-¢,N. (B23)

Equations (B11) and (B12) give the ray corresponding to a pixel (I, J) for
0°< 6 < 90° and 180°< 6 <270° whereas Egs. (B19) and (B20) give ths ray
corresponding to a pixel (I, J) for 90°< 6 < 180°* and 270°< 6 < 360°. This can

be summarized as
k(6) = INT {D},

where
IrL+ N+1'2'ZI I 9|+ wlcoae l if 0°<9 <90
180°< 8 < 270"
D= (B24}

L L+ CENA) [ ging| ¢ ZLNA) Jeose]is 90°< 0 < 180°
270°< 8 < 360°

.

A Subroutine Determining the Projection Values for Each Ray
Equations (B21) - (B24) give the family of lines which defines the rays for

each angle. Using these equations the follewing subroutine generates the pro-

jection values R;:o by

CALL SUM(B,XR)
where B is 2a NXN array. The array XR contains the projections of B, which
is returned upon execution of the above subroutine. These projections are de-
noted by XR (M, KK) where M is the index for the angle and KK is the index
for the ray. It is assumed that ithe projection Rke has the functional relation-

ship Rke = = Ai,j). See Appendix H for the case where

(i,j)Erayk(B)

Rke = t Al j) and IGJ is some factor other than 1.

(i, j)erayk(8) ij
Note that the listing for SUM cails the following two subroutines:

CALL YMIN(KK, M, 1Y1,1Y2)
CALL XMIN(KK, M, JY, IX1, IX2)
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where KK is the index for the ray and M is the index for the angle. The re-
turned values I¥1 and I¥Y2 are respectively the minimum and maximum y
coordinates for pixels in the ray KK at the angle M. The returned values

IX1 and IX2 are respectively the minimum snd maximum x coordinates for
pixels in ray XK at the angle M and having a y coordinate of JY. An example
of the varisbles I¥Y, IY2, DXt and IX2 for an 8 X8 array are shown in Fig. B-6.

/-. .. o‘.'.' .'.. '.!Y2=5
IVis2 2 T2 T e Ray k(6)

et forJv=4,IX1= 4 ond IX2:6

Figure B-6. Parameters caleulated by a subroutine CALL XMIN.

The above subroutines require a COMMON block which coatains the cosine,
sine, and tangent of each projection angle and other constants which remain

fixed for each iteration. These trigonometric functions can be evaluated and
stored in the block COMMON by

CALL CONST
where the block COMMON has the {ollowing values

S{I) = ABS{ SIN(G‘I)I

ci= ABs[cos(e))]

T(I) = TAN(e,)

IR{I)=The number of rays for the angle BI’ See Eq. {B21).
XL(I)=The variable L given in Eq. {B21).

1a(l)= The angle 81 in degrees
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XN = FLOAT (N)
XN1i= FLCAT (N-1)
XN2= FLOAT (N{)
N = The NXN array size being reconstructed.
Nt = N+t

M1i = The number of projections

The variable IAA in SUBROUTINE CONST is the angle in degrees in which the
subject is rotated for each succeeding projection.

51
52

1]

5%

67
.33

53

2]
63
18

SUBROCUTINE SUM (8, XR)
DIMENSION B({46.401 s XR{36,64)
COMMON S03061,CL3061aTH36 o IR130) o XLEI6) 2 IAL36) ¢ XNoXNLpXN2 9Ny N1, M)
DD 18 #=],.91

Me=iH(M)
TF{IAIMELERQLUGDIN L TATMY}LEQ.LBD)D2, 51
TF{TALIM) dEQa 77 DR TA(N) FQ,2TUN54,53
M 1) K=i,MK

XRIF,K)=0,

D & [=14N

Kb IF ) aXREFMAIQL] oK)

CONT INUF

CONTINUF

Gy T 1D

! 61 K=),MP

Xf{M,K)=0.,

DU T Jd=14N

XAIM o KI=XR{M4K) ¢R{Ks J)

CUNT INUF

CONT INUF

iy TN 16

DU &3 1=l ¥R

XK {Myii)=0a

CALL YMINIK M, 1YL, 1Y2)

B0 68 J=lvlllY2

CALL XMIN{KoMyJolX1,IX2)

07 68 I=1Xl,1X2

KR (M K)=XR{IMpK} ¢BII,4)
CONTINUE

CONT INUE

CONTINUF

KE TURN

END
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SUBROUTINFE YMIN(KK,My1YLl,1Y¥2)

COMMON S{36)sC{36)4T(36) ¢ IR(36) +XL(36) rLA(36) s XNsXNLsXN2,NeNL,M)
XK=FLOAT{KK)

XK1=FLOAT (KK-1)

00 7 I=1:N

X1=FLOAT (1)

Xz {XI=XNZ¥* . 5*{ Lo=T(M)J#(XLI{M)=XKL}/7CIMI N/ TN}
IF{LA{MILE9D.ORI AIM) 6T L 180 AND e sA(M)LTL27008,9
(F(X=1e}7410410

TE{X=XN)LOy 10,7

-~ 0@

10
12
11

15
16
14
17
13

CONTINUE
1vl=(

IFCIR(MI-KL) 1L 512,11

1Y2=N

60 70 13
Mi=1+]

00 14 J=NI,NI1
XJ=FLOAT(J)

X=(XJ=XN2¥5%(Le~TIMII+IXLIMI=-XK)/C(M)IZT M)
IFCIA(MIeLE D ORLIA(M) aGT o 180 AND TA(MP.LTL270)15416

TF{X-XN)L14417+17
IF(X=1s217y1T7014%
CONTINUE

1Y2=2-1

CuieT INVE

RETURN

END

SUBROQUTINE XMIN(KK,MyJdY, IX1.iX2}
COMMON SU36)4C(36)yTU30) e IR{30) 2AL136) 2 LA(36) s XNy XNLIXN2yNyNLyM]

XK=FLOAT(KK)
XK1=FLOAT (kK~-1)
XJ=FLOAT (JY)

X1=IXI-XN2% 5% (Loa~TIM) )+ (XL (MI-XKL)I/CIM)D/T (M)
X2=(XJ=XN22 5% (Lo=TIMII+(XLIMI-XKI/C(M) )/ T (M)
IFITA{M)aLEIQCRTAIM)IGTL 18D AND TAIMILLTL270319,20

19
31

32
35
34

20
22

21
25
26

27
30

[FI{X1-XN)31, 32,32
IX2=INT (X1}

G0 TQ 33

IXxX2=N
IF(X2-1e134435435
IX1=INT(X2)+1

GO 70 30

IXl=1

GO TO 30
[FIX1-1.)21422422
IX1=INT(XL)+1

GO0 10 2%

IXi=1
IF(X2-XN)26+26+27
[X2=INT (X2}

GO 710 390

1X2=N

RETURN

END
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6
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SUBROUTINE CONST

CQOrMIN 5(36"f(36’17(36|'IR(36)QXL(36’llA(Sé’.XN'XNI'XNZ.NVNIQHL
RFAD FMTleN

READ FmY2,1}
PFED FUT3,10A

Nl=N+1

XN=FLOAT(N]

XNL=FLOAT (N~-1}

AN2=FLNAT (N1)

3 1 I=1,M])

TA(L)=01~-1)*LAA
AA=FLOAT(TAL1))#*3,14156827/18C.
SIT)I=ABS{SIN(AA))
C{T)=ABSICOS{AAD)
T{I)=TANLAA)
ARC=,5%«XN1*(S(L)#C(T)~-1l}te5
1Z=INT{ARG)

2=FLOAT(I2)
IF{ARG-2)21¢22,21
XLUT)=XN®,5¢72
GO TO 2

XLEY)=XN&* ,5+/-1,

FFETACTID) eEQaOURCIA(IDEQeYCUORLIA(IDS EQ.IBG-UR-IQ(!'-EQ-Z70'6 8
TIR(L)=N
60 7O 1

TFULARG-L)11412,11
[R(TI=N#2%[ 2
6O 10 1

IR(I)=N#2%]7~-1
CONT INUE
RCTURN
END
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A Subroutine for Determining the Rays Corresponding to Each Pixel

Yquation (B24) gives a relationship for determining the rays corresponding
to each pixel with coordinates (I,J). This relationship is achieved on the
digital computer by

CALL RAY (I, J,M,K)
where (I,J) are the coordinates for the pixel, M is the index for the angle,
and K is the index for the ray which is ~eturned after the above subroutine is

executed.

SUBROUTINE RAY({14JeMyK) -
COMMON S(36),C(36)9TU36) 3 IR(36) 4 XL{36)s1A(36) s XN2XNLoXN2ZyNyN14M1
IF(IA(M) e EQeO IR LAIM) sFQa180)22,23
23 TFLTAIM) EQe90.0RTA(M) . EQe2T0)25,35
35 TF{TA(M) QLT oF040RGTA(M)«GTo180.AND . JAIM)LLTL 270124426
22 K=J
GO TO 29
24 XX=FLOAT(N-2%[¢l}
YY=FLOAT(2%J=N~1]
GC 10 27
25 K=1
GO 10 29
26 XX=FLOAT(2#i-N-1}
YY=FLOAT(2%J~N-1)
27 K=INTOXXES(M)+YYRC (M) I, 54XLIM) I+
29 RETURN
END
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Appendix G, Using Generalized Inverse for
Three -Dimensional Reconstruction
Techniques of solving for the unknown values at each picture element
{1, j) from both an adequate and inadequate number of views using direct
matrix methods are detailed in this appendix.
The criterion for the reconstruction of an image from multiple projections

P, , is that the best estimate, [A(i-j)] sbe a minimum to the least-squares

ké
function
2
n, (P,,-R,,)
®a) = 2 k8 __ k8 (C1)
6 k=1

ke
where the densities A(i,j) satisfy the functional relationship

Rgy= 2 f‘i’jA(i,j), 8=1,--+,M; k=1,...,n4 (c2)
i, j)e ray (k,8)
and %8 is the standard deviation in the measured projection Pke' The factor
f?. represents the fraction of density that we assume is being measured by the
ray R, 5. This factor can inccrporate the expected results due to attenuation
and spread of an emitting source as measured by a gamma camera. Note
that the factors fgj are also a function of the angle 0.
Generalized Inverse

Equation (C1) can be expressed in matrix notation as

®(A) = (P -FA)Te™ ! (P - Fa). (C3)
The row matrix,

)= S - SN - S P

I (1Xm),
ny iM™ 2M nMM

T _
P = [p“p21
is (PK 6), a matrix of measured projections where K designates the particular

ray and 6 the projection. The row matrix AT is

AT = (A0 1) AR ) AN A oo AL N) AR N) -4 AN, M) (1X0),
where A(i,j) are the values for the elements of the section to be reconstructed.
The matrix @-1 is the inverse of the covariance matrix for theerrorsinthe measured

projections P, where we assume that the measured projections are independent:
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2
ey,
/0,4

-1 .

b -
The matrix F is an m X Nz matrix where the row (k, 0) is composed of 0's and
f?j' depending on whether the point (i, j) is an element of ray (k,08). The
variable m is the sum total of rays for all projections such that

M

m= Z n,.
6=1 8
An example of the matrix F is illustrated by the following 4X4 array with

projections for 0° and 90°.

= =
Py
P3,
A(1,2) | A@2,2) | o o oo P,,
ALY | AR | AG1) | A1) P,,
= Py P21 P3y Py

If we assume that f?‘. = 1 for all i, j, 0 then for this particular example the

matrix F is
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1 ¢ o0 o0 1 o0 o0 0 14 0 o0 0 1 0 o0 o
o 1 o o 2 14 66 o0 0 4+ 0 0 ©0 1 o0 O
o o0 ¢+ o 0 0 4 9 0 0 1 0 0 0 1 0
F=|lo o0 ¢ 4+ o0 O ©0 4 o0 0 o0 414 ¢ o0 o0 1§ (C4
1 414 4 4 0 0 0 0 0 0 O0 o0 0 o0 o0 o0
o o o o 1 4 4+ 4 o0 O 0 O O 0 0 o0
o 0 o o o o0 o0 o0 1+ 4 1 4 o0 0 0 o0
6 o 0 o O 6 o0 o0 o0 o0 o0 o0 1 1 1 1
~nad

S

The best estimate A which minimizes Eq. (C3) must satisfy the equation

vA(R A= 0, (C5)

where v, 1s a matrix differentiz: operator (See Deutsch, 1965). By ex-

panding (C3) we can write (C5) as

A(P s 'p-pTo lra-aATrTa a4+ ATFT 57 1Fa) A=0

and simplifying we have
2rla tpizrT e ira = 0.
Solving for A we obtain
A=FTelp)lrlaslp, (C6)

if the inverse matrix (FT ‘I>'1 F)-i exists. Goitein (1971) claims this is true

if (m-NZ-M+i)> 0. However, if the matrix Fla lp 4 singular, we can

express A in terms of the generalized inverse, FC', of the matrix F,

A= (e HY2F G a1/ 2p, (C7)

If we assume that (19'1 =Iand F is the matrix given in the previous ex~
ample, (C4), then A can be solved by multiplying the generalized inverse FC'

by the measured values P:
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the densities A(, j).
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The appealing

thing about the generalized inverse is that once the generalized inverse has

been determined, then the estimate A can be determined by direct matrix

multiplication.

Also the computer storage spacs: necessary for the matrix

FG can be reduced by noticing that the factor multiplying each projection

Pke is only a function of the number of elements in the ray (K, 8). However,

usually the generalized inverse for a large array is not easy to determine.

XP
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Appendix D. Subroutine for Back-Projection Algorithm
The reconstructed back-projection image can be obtained by
CALL BCKPROQJ (B, P)

where B is the reconstructed array, and the array P contains the sampled
projection data. Each projection value is denoted by P(M, K) where M 1is the
index of the angle and K is the index of the ray. The ray corresponding to
a particular back-projection pixel is found by the subroutine
CALL RAY(1, J, M, K),
which is listed in Appendix B.
The flow chart for the back-projection algorithm is presented in Fig. -1,

SUBRAUTINE BCKPRCJ(B,P}
DIMENSTON B(464946),P(364,64)
COMMON S(36),C{36),T(36), IR(36)XL{36) 9 1A(36) s XNyXNLyXN2yNyNL1,M1
XT=C.
MR=IR({1}
Ny 1 1=1,MR
XT=XT+P(L,1)
I CUNTINUE
DO 20 1I=1,N
00 29 J=1,N
XP2=0.
DU 30 M= ,M]
CALL RAY(I,JsMyK)e—————cf Appendix B
XP2=XP2+P (M.K)
30 CUNTINUE
B{IsJ)=XP2
20 CONTINUE
XTT=0.
NQ 80 I=1,N
DY 80 J=1,N
XTT=XTT+8(1,J)
80 CONTINUE
DN 83 I=1,N
DG 83 J=1,N
STy J)I=XT*BLT4J)/XTT
83 CONTINUF
RETURN
END



CALL BCKPROJ(B,P)

Figure D-1.
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Input projection
values P(M,K)

l CaLL CONST '*]

Evaluate XT
IR(1)
XT=3 P31K)

K=1

1

For all 1, evaluate
M1

B(L)) = 3 B(MK"
M=1

Evaluate XTT

N N
XTT =3 3 BLD)
IF1J=1

For all 1] evaluate
B(L]) = XT«B(1,J)/XTT

STOP

Comment:

For each M, K’ is determined
by CALL RAY(LJ M ,K?)

Flow chart for back-projection algorithim.
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Appendix E. Subroutine for SIRT Algorithm
The simultaneous iterative reconstruction technique (SIRT) is discussed
in Section (3.5). The flow chart is presented in Fig.E-1. The image B is
reconstructed by the SIRT algorithm by

CALL SIRT (B, P, ITER)
where B is the reconstructed array, P is the sampled projection data, and
ITER is the number of iterations desired. Each projection value is denoted
by P{M, K) where M is the index for the angle and K is the index for the ray.
The number of pixels for each ray is stored in NN(M, K) and the length of eachk
ray is stored in XLENGTH(M, K). Ray lengths are evaluated by

CALL XLENGH(M, K, X)
where M is the index for the angle, K is the index for the ray, and X is the
ray length which is returned.

Figure E-2 gives the equations for the length of the line segments which
intersect the NXN array. The variable x is the vertical distance as measured
from the point (N,1). The graphs given in the figure are for angles less than
90*, but these same results hold for angles greater than 90°® and one is directed
to the listing of SUBROUTINE XLENGH(M, R, X) for the implementation
thereof. We have taken the length of the ray K to be the maximum length of
all lines which subtend the array between the lines K-1 and K.



CALL SIRT (B,P,ITER)

—

«92.

Input projection
values P(M,K)

| CALL CONST 1

For every MK cvaluate
XLENGTH (M,K) and NN (M,K)

i

Let initial solution for B be

B(L)) = XT/NZ
IR(1)

where TT =2 P(1,K)
K=1

For every MK evaluate XR(M,K)

XRM.K) = 3B(L))
(1.))e ray (K M)

by CALL SUM(B,XR)

B(L)) = max {B(L)) + P\M ’\/§XLLNGTH(M K) ZXR(M K)/ZI\IYN(M,K), 0

For all L], evaluate B(i,])
where

oo

Yes

l

Evaluate XIT where

N N
XIT=2 X B

=1 j=1

b

For all 1,] evaluate new values
of B(1,]) = TT*B(L,J)/XIT

No. of iterations < ITER

\:ommcnt: In the sums
for each M, the
values for K are
determined by
CALLRAY (I,J MK).

Figure E-1. Flow chart for the SIRT algorithm.
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FOR 0 <8< 45°

L k(o)ﬂ )
cos @
X
sinf@cos 8 / (N—1)(sin 8 + cos §) —x
sin@cos @

/

6istance from point (N,1) ;
4 4

1 1
| |
| |
i 1
! !
I i
l l

x = (N—1)sin® x = (N—1)cos8

FOR 45° <8< 90°

Loy}
(N=1)
sin @

X
sinfcos @ \ {N—1)(sin 8 + cos ) —x

\ sinf cos #
s

Distanc'e fr6m point (N,1) X
A

x = (N—7)cost x = (N—1)sin @

. DBL 741-4629
Figure E-2. The length of ray segments.
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SUBROUTINE SIKT(B,P,ITER)
DIMENSIUN B(46,46) s XLENGTH( 36:6%) ¢sNN( 36,564} XR1364064),P(364+64%)
COMMON S(26),Ci36),T(35)3IR(36))XL(36),1A(36)e XNy XNLsXN2¢NsN1sM1
D0 11 M=igM]
MR=TR(M)
DO 11 K=1,MR
CALL XLENGH(M; K XLENGTHIM,K))
CUNTINUE
DC 1 T=14N
DO L J=14N
B{Iy,d)=1.
CONTINUE
CALL SuM(ByXR)
Do 2 M=1l,ML
MR=[R{M)
DO 2 K=1,MR
NN(MyR)I=INT(XR(M,K))
CONT INUF
TT=0,
MR=TIR(1)
00 5 I=1,MR
TT=TT+P(1,1)
CONTINUE
DO 7 I=14N
NC 7 J=1,N
BllyJd)=TT/FLOAT (N%k%2)
CONTINUE
Kl=1
CALL SUM(ByXR}
DU 20 [1=1+N
DU 20 Jl=1.N
1P2=0
XL=0.
R=0.
N2=0
DG 30 M=]1,M]
CALL RAY(IL,Jl+MsKi
XP2=XP2+P (M,K)
XL=XL+XLENGTH(M,K)
N2=N2+NN(MyK)
R=R+XR(M,K)
CONTINUF
B{IlsJdL)=B(11,J01)#XP2/XL-R/FLOAT(NZ)
IF(B{Il,J1))43,20,2C
B(I1sJ1)=0.
CONTINUE
XIT=0,
DO 80 T=1,N
DO B0 J=1,N
XIT=XIT+B(1,J)
CONTINUE
DO 83 I=14N
DO 83 J=14N
BlIsJ)=TTRB(I,J)/XIT
CONTINUE
Ki=Kil+1
IF(KL-ITER)79, 79,81
RE TURN
END
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SUSRDUTINE XLENGHIMyKyX)

COAMON S(36),C(36) 3 TI36)pIK(36) oXLI36)9TA(36) 9 XNyXMI 9XN2Z¢NsNLyML
[FUTAIM) cFQeQORVTAMIGEQeD0eNK o [AIM) aEQe1B0URSTAIMILECa27TU)15,17
X=FLOAT(N1}

3 T 99

[F(K.EQel )bty 45

KKK=0,

G0 TO 47

XKK=FLOAT(K~1)-XL{M)#XNL" o S¥ (S(MI4CIM))
XK=FLOAT(K)-XL{M)+XNY2 %, 5%(S(M}+C(M))

IFLITAIM) 1T o45) eOR (TA(MY oGT o135, ANDoTAIM) LT o1 8MN) eOR{IA(M)GTS]
C30ANDe TAIM) oLT2225)aDR{TAIM) e GTo315AND L IA(M) oL TL360)) 1,2
XK1=XN1%S (M)

XK2=XNL%C (M)

IFIXKAELXKY) 2,4

IF(XKKeGT o XK2 )16 46

X=XK/S(M)/C(M}

G TO 99

X=AN1/C(M)

G0 10 99

X=UXNI=[S{M)+C(M)}-XKK}/S{M)/C(M)

G0 TN 99

XKL1=XNL%=C (M)

XK2=XN1*S{M)

TF{XKJLE XKL )2,20

IFIXKK.GToXK2) 16,427

X=xXN1/5S(M)

RETURN

END
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Appendix F. Subroutine for Iterative Least-Squares Algorithm

Section (3.6) of the discussion gives the development and theory for the
iterative least-squares algorithm; Fig. F -1 gives the flow chart. The computer
listing given in this section assumes that each of the factors, feij' is equal to
1. Therefore, for any emission study where the projection data is taken to be
the conjugate mean of opposing views, the reconstructed image will not repre-
sent quantitatively the true image because of attenuation. However, for trans-
mission studies where the projection data is taken to be the log of the ratio of
the incident beam over the measured beam, the reconstructed image will be a
true measure of the density distribution. See Appendix H for the description of
the least-squares algorithm used for emission studies.

The image B is reconstructed by

CALL LESQ (B, P,ITER),
where B is the reconstructed array, P is the sampled projection data, and
ITER is the number of iterations desired. Each projection value is denoted
by P(M,K) where M is the index for the angle and K is the index for the ray.
DEL(I, J) is the delta change for the pixel (I, J) as given by Eq. (32). The
array XDEL contains the projections of the array DEL. It is assumed that the

variance for each sampled projection is the value of that projection.



CALL LESQ (B,P,ITER)
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Input the projection
values P(M,K)

1

CALL CONST

—

( Let the initial solution for B be
B(L}) = XT/N2

IR(D

where XT = 3 P(1K)
o
-

For every MK evaluate XR(M,K)

XR(MK) = 3 B(LY),
(L)€ ray (K,M)

by CALL SUM(B,XR)

f

For all IJ evaluate DEL(L,})
M1

DEIL(L,]) = [M1- 2 XR(MK)/P(M K)] Z LRMK)

M_.
For every MK, evaluate XDEL{M,K)

XDEL(M K) = Y DEI(L))
(I])E ray (K.M)

by CALL SUM(DEL,XDEL)

i

Comment: Inthe sums
for each M, the
values for K are

determined by
CALL RAY (L] MK).

Evaluate DAMP where

M1 IR(M M1 IR(M)
DAMP={3}" 3" | M K) - XRIMK)] - XDEL(M,K)/P(M, h) Y. 2 XDELMK)2/P(MK)
M=iK=1 M=1"K=1
t

For all 1,], evaluate the new values for B(I,])
where  B(1]) = max {B(L,]) + DAMP + DEL (1,),0}

Yes

o. of iterations < ITER

Figure F-1. Flow chart for the iterative least-squares algorithm.
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SUBROUTINE LESQ(B,P,ITER)

DIMENSION B(4€546) s DEL{4624€)sP(30464) 9y XR{36,64) 4 XDEL(36,64)
COMMDN S{35),01386) 2 TU36) » IRE6) pXLT36) 5 TA{36) ) XNg XNLyAN2y Ny N1 oML

XMLI=FLOAT (M)

Ti=0,

MR=1R(1}

DO S I=1sMR

TTI=TT+P (1,1}

CONT IN'E

DO 7 T=1,N

DU 7 J=14N
BllyJ)=TT/FLCAT(N®%2)
CONTINUE

Kl=1

CALL SUM(B,XR)

DO 20 1=1,N

DO 20 J=1l.N

Xip2=0.

R=0.

DY 3D M=1,.ML

CAIL RAY(1yJeMeK1}
XX=P{MyK)#1l.
XIP2=XIP2+] ./ XX
R=R+XR (My K} /XX
CONTINUF
DELLI,J)=(XML-R}/XIP2
CONTINUF

CALL SUM(DEL,XDEL)
XNUM=0.

DEM=0.

DO 80 M=1.M]

MR=TR(M)

D 80 K=1,MR
XX=P(MsK) 1,
XNUM=XNUM+XDEL (MoK) ${1e-XR{NM,K)/XX)
CEM=DEM+XDEL My K) X% 2/XX
CONTINUE
DAMP=XNUM/DEM

DO 83 [=1,N

DO 83 J=1,N
BU1+J)=8(1,J)+DAMPXDEL (1,4J)
IF{B8(1,9))10,83,83
B(Isd)=0.

CONTINUE

Kl=K1l+1
IF{KLI-1TER)}79479,81
RFTURN

END
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Appendix G. Subrouftine for Filtered Back-Projection Algorithm

The image B is reconstructed by the filtered back-projection algorithm
(Fig. G-1) by
CALL FILTER(B, P)
where B is the reconstructed NXN array, and the array P contains the
sampled projection data. Each projection value is denoted by P(M, K) where
M is the index of the angle and K is the index of the ray.
In the listing of SUBROUTINE FILTER, one will notice that the projection

data for each angle is first transferred to array A which has a fixed dimension.

Therefore, for a particular projection P(M,K),K =1, ...,IR(M), the array A
has the following values
A1) real 0
Al2) imaginary 0
A(3) real 0
A{4) imaginary 0
*
L]
L
L]
A(I) real 8 P(M, 1)
A(l+1) imaginary 0
+2 :
A(I+2) real 10 P(M, 2)
A(I+3) imaginary 0
L]
L]
L]
L]
*
A(I+2*IR(M)-1
( (M}-1) real 20 P[M, IR (M)]
A(I+2*IR (M)) imaginary
A(I42 ¥R (M)+1) real
A(I+2%IR (M)+2) imaginary 0
L]
*
L J
A(127) real

A(128) imaginary
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The array A is filled in so that the projection values of P are centered
around a fixed center point of A. The array A is large enocugh to incorporate
the values of the projection P(M, ¢ ) with the largest number of rays. Then
the Fourier transform of A is taken by

CALL CFFT(MM, A,INV,SS,1,ITER) .
The returned matrix A will now have the real and imaginary components of the
Fourier transform. These components are then multiplied by the appropriate

measure in Fourier space (the reciprocal space radius) and stored again in A. ¥

A1) ——— A1)
A(2) A(2)
A(3) A(3)
A(4) A(4)
2¥ A(5) A(5)
Z*A.(6) A(6)
31% A(63) Al63)
31% A(64) A(64)
32% A(65) A(65)
32% A(66) A(66)
31% A(67) A(67)
31*A.(68) A(.68)
2% A(125) Al125)
2% A(126) A(126)
A(127) A(127)
A{128) A(128)

* At present this routine does not include a2 truncation at the maximum reason-
able frequency though in our application the maximum frequency is close to the
highest frequency component in the discrete Fourier transform. This trunca-
tion with a roll-off is being investigated at the time of this writing. The quaatita-
tive and noise amplification aspects of this algorithm reside in proper selection

of the filter shape.
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Then the inverse Fourier transform of A is obtained by

CALL CFFT(MM, A, INV, SS, -1, IFER),
where now the components of the inverse transform are stored in A. Then the
components of A are mapped into the projection array P(K, M) by converting

the real and imaginary parts of each term to the modulus:

A1) real
A(2) imaginary = 0

*

L ]
A(I) real

PM, 1) = N AM? + A@+1)°

A{l+1) imaginary

L ]

L]

.
A(I+2¥IR(M)-1) real

P(M, IR(M)) = Modulus

A(I+2¥IR (M}) imaginary
A(I+2*IR (M)+1) real
A(I+2 *IR (M)42) imaginary

©

*

L ]
A(127) real
A(128) imaginary

After this has been done for all angles, the new projection values are then

back-projected by

CALL BCKPROJ(B,P) .
Remark: This technique gives good qualitative results, but is 1ot quantitative
and will seriously amplify noise because statistically weak Fourier coefficients

are amplified and the ramp filter is not truncated at the maximum allowable

frequency.
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Input projection
values P(M,K)

[ caLLconst |
M=1

For angle IA(M) map projection

values P(M,K) into array A(I)
)
Take Fourier transform of A(I) by
CALL CFFT(MM, A INV,SS,1,IFER)

Multiply array A by appropriate
measure in Fourier space
Take Fourier inverse transform of A(I) by

CALL CFFT(MM,A INV,SS,-1,IFER) >
Map corresponding values of A
back into the projection P(M,-)

M =M+1 Yes Is

No

Obrain the reconstructed image by
CALL BCKPRO] (B,P) J

Figure G-1. Flow chart for the fiicered back-projection algorithm.

(d'd) YALTId TIVD
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SUBRUUT INE FILTFR(34P)
DIMENSION B(46,46)3P(36564) yMM{3),A(128)4INV(128),55(128)
COMMON S{36)sC (361, T{36) 4 IR(36) XL 136) 2 1A(36) s XNeXNLyXN2sNyN1yML
MM{Ll)=5
MM{21)=0
MM(3)=0
IN=10
PRINT 200
Lo 6 M=]1,M]1
DD 5 1=1,128
AlT)=",
5 CONTINUE
ME=IR(M)
TF(TA{M))2104316,31C
310 TH{(TA(M}=90)215,314,315
315 IZ=INT(.5%XNL*(S(M)+C(M]}~1e)+a5)
u=10-12-1
GO 1C 315
314 IU=1IN-1
305 [=2%1uU+l
00 7 K=lyMR
A{T)=P(MyK)
I=1+2
7 COUNTINUEL
CALL CFFT(MM4A,INV,SSy1l,IFER)
NMN=128
K=1
DO 8 I=3,63,2
ALL1)=A(T)*FLOAT (K]}
ALT+L)=A(I+1)*FLCAT (K)
A(RNN+3=-1)=A(NN+3~1) *FLOAT(K)
A(NN=T+2)}=A(NN-T+2)}*FLCAT{K)
K=K+l
6 CONTINUE
A(65)=A(65)%32.
Al(66)=A(66)%32.
CALL CFFT(MMsAyINVySSy=~1,y TFER)
[=2%1U+]
NG 9 K=ly MKk
[IFIA(I))}55,+564%06
55 A([)=C.
A(l+1)=0.
56 P(MyK)=SURT(AIT )*X2+A(1+]1)%%2)
I=1+42
9 CONTINUE
6 CONTINUE
CALL BCKPRUJ(B,P)
RETURN
END
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SUBRQUTINE CFHT{MsA,INV,SeIFSET, [FERR)

DIMFNSION ACL) s TNVEL) 9SCL) oNU2) oMU3)aNPU3) oW (2),W2{2) 4 W3(2)
EQUIVALENCE (NIoN(11})y (N2/N{2})4(N3,N(3))

IF{ TABS(IFSET) —- 1) GCC+50C, 12

MTT=MAXO(M(L)yM(2),M(3)) -2

IF{MTT.LT.1) GO TO L3

MSUM=M(L)+M(2}+M(3) From IBM program HARM
[F{MSUM.GTL15) GO TC 13 Budi 1
ROUT2 = SQRT(2.] cf. Budinger (1971).

IF (MTT-MT ) 14,14.,13
IFERR=1

RETURN

IFERR=0

ML=M(1)

M2=M(2)

M3=M(3)

NLI=2%%M]

N2=2%%M2

N3=2%%M3
IFLIFSET)20,18,418
NX= NL®N2%N3

FN = NX

DO 19 I = L4NX
A(2%I-1) = A(2%[-1)/FN
A{2%1) = -A(2«1)/FN
NP{L1)=N1%2

NP{2)= NP{1l)*N2
NP(3)=NP{2)%*N3

DO 250 10=1,3

It = NP{3)-NP(ID)
ILL = [L+1

MI = M(ID)

IF (MI)250,250,3C
IDIF=NP{ID)
KBIT=NP(ID)

MEV = 2%(M[/2)

IF (MI — MEV )60,60,40
KBIT=KRIT/2
KL=KBIT-2

DO 50 I=1,1L1,IDIF
KLAST=KL+1

DO 50 K=1,KLAST,2
KD=K+KBIT

T=A(KD)
A(KD)=A(K)-T
A(K)=A(K)+T
T=A(KD+1)
A(KD+1)=AlK+L1-T
A(K+1)=A(K+1)+T

IF (M - 1)250,250452
LFIRST =3

JLAST=1

GO TO 70



60

70

80

82

-107-

LFIKST = 2
JLAST=0

DO 240 L=LFIRST,MI,2
JIDIF=KBIT
KBIT=K3IT/4
KL=KkBIT~2

DC 80 I=1,ILL,INIF
KLAST=[#KL

DO 8O0 K=I,KLAST,2
KL=K+KBIT
K2=K1+KBIT
K3=K2+KBIT
T=A(K2)
A(K2)=A(K)-T
A{K)I=A(K)+T
T=A(K2+1)
A(R2¢L)=A(K+1)-T
A(K+L)=A{K+]1)+T
T=A1K3)
A{K3)}=A(KL)-T
A(KL)=A(KL)+T
T=A(K3+1)
A{K3+1)=A(KL+1)~-T
A(KLE#L)=A(KL+1)+T
T=A{KLl)
A(KL)=A{K)-T
A(K)=A(K) +T
T=A{KLl+1)
A{KL+1)=A(K+1)=-T
A(K+L)=A(K+L)}+T
R==A(K3+1)

T = A{K3)
A(K3)=A{K2)-R
A(KZ2Z)=A(K2)+R
A(K3+1)=4L(K2+1)~T
A(KZ2+1)=A{(K2+1)+T
IF (JLAST) 235,235,82
JJ=JJDIF +1
TLAST= IL +JJ

DO 85 | = JJsILAST,LIDIF
KLAST = KL+

DO 85 K=I,KLAST,2

Kl = K+K8IT

K2 = KL+KBIT
K3 = K2+KBIT

R =-A{K2+1)

T = A(K2)
A(K2) = A(K)-R

A(K) = A(KI+R
A(K2+1 }=A(K+]1)-T
A(K+LY=A(K#1)+T
AWR=A(KL}-A{KL+1)
AWl = A(KL+1l)+A(Kl)



85
S0

96
98

100

120

130

1490

150

160

170

R=—A(K3)-A(K3+]1)
T=A(K3)-A{K3+1)
A(K3)=(AWR-R)/R0O0T2
A(K3+1)={AW]I-T}/RU0T2
A(K1)=(AWR+R}/RCCT2
A(KL+1)=(AW[+T } /ROUT2
= AlK]1)
AKL)I=ALK)}-T
A(K)=A(K) +T
T=A{(KL1+1}
A(KL¥L)I=A(K+1)-T
A(K+L)=A(K+1)}+T
R==A{K3+1)

T=A(K3)
AlK3)=A{K2)-R

ALK2)=AlK2)+R

AlK3+41)=A(K2+1)~T

ALK2+1)=A(K2+L)4T
IF{JLAST=-1) 235,235,9C
Jd= JJ + JJIDIF

DD 230 J=2,JLAST
I=INVIJS#1)

IC=NT~-1

Wily=stic)

Wi2)=S(1)

12=2%]

12C=NT~-12
fF{I2C)12Cs11G,1CC

W2(1)=S{12C)

W202)=5112)

GO TQ 130

w2{l1)=0.

W2(2)=1.

G0 TO 130

[2C0C = I2C+NT
[2¢=-12C

W2(1)==-5(12C)

W212)=S(12CC)
13=1+12

13C=NT-13
IF{I3C)L63,150,140

W3(1)=8¢13C)

W3(2)=5(13)

GO 10 200

Wi(l)=0.

W3t2)=1.

G0 TO 200
13CC=13C+NT
IFLI3CC)IL90,18%4170
I13C=-13C
W3(1)=~S{I3C)
W3(2)=S(13CC)

GO TOo 200
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W3(l)=-1.

W3(2)=0.

Gu TQ 230

13CCC=NT+I3CC

13¢C = ~-I3CC
W3(1)¥=-S{13CCC)
W3(2)==-S{I3CC)

TLAST=11L+JJ

DO 22C 1=JJ»ILAST,LIDIF
KLAST=KL+I

DO 22C K=1,KLAST,2
Kl=K+KBIT

K2=K1+KBIT

K3=K2+KBIT
R=A(K2)¥W2(1)-AiK2+1)*W2(2)
T=AIKZ21*W2{2)+A{K2+1)XW2 (1)
A(K2)}=A{K}=-R

A{K)=A(K)I+R
A(KZ2+1}=A(K+1)-T
A(K+L)=A(K+LI+T
R=A(K3)#W3(1)-A(K3+1)2W3{2]})
T=A{K3I)SWI(2I+A(KI+ 1 IEW3( 1Y
AWR=A(KL)*w (1) -A(KL+1)%W(2)
A T=A(KL)*A(2)+A(KL#L) #W (1)
A(K3I)=AWR-R

A{K3+L)=AWT~-T

A(KL)=AWR+R

A(KL+Y)=AWIsT

T=A{Kl)

A{KL)=A{K)~T

A(K)I=A(K)+T

T=A(KLl+1)

A(KL+1)=A(K+1}-T
ACK+L)=A(K+L)+T

R=—A(K3+1)

T=A(K3)

A(K3)=A(K2)=-R

A{K2)=A({K2Z2)+R
A(K3+1)=A(K2+1}~-T
A(KZHL)=A(K2+]1)+T
JI=JIDTF+JJ

JUAST=4%JLAST+3

CONTINUE

CONTINUE

NTSQ=NT*=NT

M3MT=M3—MT

TF(M3MT) 370,352,360

1GMi3=1

N3VNT=N3/NT

MINN3=NT

GU TO 380



370

389

450
460

470

480

550
560

570

58C

610

620
630

700

810

1603=2

N3VYNT=1

NTVN3=NT/N3
MINNMN3=N3

JJU3 = NTSQ/N3
M2MT=M2-MT

IF (M2MT)470,460,460
1Gn2=1

NZVNT=N2/NT
MINNZ=NT

GO T 480

1502 = 2

N2VNT=1

NTVN2=NT/N2
MINN2=N2
JJJD2=NTSG/N2
MLIMT=M1-MT
IF(MLMT)570,560,560
1G0Ol=1

NIVNT=N1/NT
MIANL=NT

GG TO 580

1601=2

NlvhT=1

NTVNL=NT/NL
MINNL=N1
JJDL=NTSQ/NL

Jd2=1

J=1

DO 380 JPP3=1,N3VNT
IPP3=INV{JJI3)

DO 870 JP3=1,MINN3
GG T (61046200, 1G03
IP3=INV(JP3)%*N3VNT
GO0 TO &30
IP3=INV(JIP3I/NTUN3
I3=([PP3+[P3)%*N2
JJz=1

DO B70 JPP2=1,N2VNT
IPP2=1IKV{JJ2)+13

DI} 860 JP2=1,MINN2
GC TO (710,720),1G602
IP2=INV{JP2) *N2VNT
GO TO 730
IP2=INVIJP2}/NTVN2
[2=(IPP2+[P2)%*N]
Jdi=1l

DO 860 JPPLl=1,NLVNT
[PPLI=INV(JJL)+{2

D 850 JPLl=1,MINNL
GO TO (810,820),1GO1
[PL=INVIJPLYENLVNT
GO TO 830

-140-
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[Pl=INV(JP1)/Nt¥ﬁ£//,///////
[=2%([PPLIR LI+

[F (J=17 84C,845,845
T=A(1)

AlT)=A0J)

ALJY=T

T=A(T+1)

ALT+L)=A{J+1)

A(J+1)=T

CONTINUE

J=J#2

Jdl=dJd1+J401
Jd2=J342+J.102

JJa = JJ43+34D3

IF(IFSET) 855,895,891

DO 692 I = 1,NX

A2%1) = =AL2%1)

RETURN

MT=MAXO(M(L) <M(2),M(3)) =2
IF{*T.LT.1) GU TO 9C5

MT = MAXO(2,MT)

IF (MT=13)9Cé&,SC6,9G5
IFERR = |

GO TC 895

IFERR=0

NT=2%%NT

NTV2=NT/2
THETA=.7853981634
JSTEP=NT

JDIF=NTV2
SUJRIF)=SINITHETA)

DC 950 L=2,MT
THETA=THETA/2.
JSTERP2=JSTEP

JSTFP=JDIF

JDIF=JSTEP/2
S(JCIF)=SIN(THETA)
JCL1=NT-JDIF
S{JC1)=COS(THETA)
JLAST=NT=-JSTEPZ

IF(JLAST = JSTEP) 950,520,920
DO 940 J=JSTEP,JLAST,JSTEP
JC=NT-J

Ju=J+JdD1F
S(JDI=S(JIESLICLI+S LIDIF %S (JC)
CCATINUE

e



960

970

980
982

MTLEXP=NTV2

LNMLIEXP=]

INV(1)=0

DO 980 L=1,MT
INVILMLEXP#1) = MTLEXP
D0 970 J=2,LMLEXP
JI=JHLMLEXP
INVIJII=INVII)I+MTLEXP
MTLEXP=MTLEXP/2
LMLEXP=LMLE XP%2
tFCIFSET)LR,895,12
END

-112-
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Appendix H. Subroutines for the
Attenuation-Corrected Iterative Least-Squares Algorithm
The reconstruction of objects by using an emission source will have a
density lower than the true image, due to attenuation, if the projection data

are assumed to be

R

" A(i,j) - (H1)

(i, j)eray(k,0)
The results of this are discussed and shown in Section (3.9). To correct for
this we have developed a least-squaresiterative algoritam (Fig. H-1) which
assumes that

2. a4, 3, (H2)

R =
(i, j)eray(k,0) Y

ko
where f?. are the attenuation factors. In order to evaluate the factors fgj
the object is first reconstructed by CALL LESQ (B, P, ITER) for a few iterations,
ITER, and where the projections P(M, K) are the geometric mean of opposing
views. Then the shape of the object is outlined by assuming a particular
threshold, XLEVAL, by

CALL SEARCH(B, BX, BOUNI, BOUNJ,X1.EVAL, L)
where B is the NXN reconstructed array after implementating LESQ; BX
is an NXN array used to define whether a pixel with values given by B is an
interior, boundary, or exterior point; BOUNI, BOUNJ, give the x and y co-
ordinates respectively for the boundary points; XLEVAL is a threshold value
such that the boundary is determined if B(I, J} > MAX/XLEVAL, where MAX
is the maximum value for B; and L is the total number of boundary points.

Therefore, if the matrix B is

i

o 0 o0 0 0 o0
o 0 0 0 0 O 0 0 o0
0O 0 0 0 20 2¢ 0 0 O O
0 0 O 20 10 15 25 0 o0 O
¢ 0 20 15 6 10 2¢ 0 o0 O
0 0 20 45 5 40 20 0 O O
0O 0 0 24 22 20 0 0 0 O
0o 0 o0 0 0 0 O
o 0 0 0 O 0o 0 0 o
0o o o0 O 0 0 0 o O

L
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then the matrix BX returned will be

0 0 0 0 0 0 0 0 0 O]
0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0O

0 0 0 4 -2 -2 1 0 0 0

0 0 4 -2 -2 -2 1 0 0 0

0 0 i -2 -2 -2 1 0 0 0

0 0 0 1 14 1 0 0 0 0

0 0 0 0 0 0 0 0 0 O

0o 0 0 0 0 0 0 0 0 O
(0 0 0 0 0 0o 0 0o o of.

Note that the searching occurs first from each side, then from the top and
bottom. It is assumed that the object is convex as will be the case for any
brain scan.

Next the values f?j are determined by

CALL DIST(BX, BOUNI, BOUNJ, I1,J1,M, L, ATC,FACTOR, XD)

where BX is the NXN array described above; BOUNI and BOUNJ are the
arrays containing the x and y coordinates respectively for the boundary points;
I1 is the x coordinate and J1 is the y coordinate for the pixel whose FACTOR=£€J.
is desired; M is the index of the angle, L is the total number of boundary
points, and ATC is the assumed attenuation coefficient; and XD is the distance
of the pixel from the boundary if it is an interior point (XD = 0 if the pixel is an
exterior point).

For interior points the factor, FACTOR =f€j » will be

FACTOR = EXP (-ATC*XD)

where XD is the distance of the pixel from the boundary, and where the dis-
tance is measured along a line at the angle IA(M) and in the direction of the
projection. For exterior points, FACTOR will be zero since there is no density
at these points for an emission study. This saves computer time in not having
to determine the factors for exterior points.

Next the reconstructad array corrected for attenuation is determined by

CALL LESQC (B, PP,FACT,ITER)

where B is the reconstructed array, PP is the sample projection data, ITER

is the number of iterations, and FACT (I, J,M) is the array storing the factors
%
1]
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Io executing this subroutine on the CDC 7600 at Lawrence Berkeley Labs,
we had to use Large Core Memory in order to store the 46 X46X36 array
FACT; thus the dimension declaration, LARGE is used to allocate storage.

The sums for the projection data given by Eq. (H2) are obtained by

CALL SUMM (B,XR,FACT)
where B is an NXN array, XR is an array containing the projections of B,
and FACT is the array storing the factors f?j. Each projection is denoted by
XR (M, K)where M is the index of the angle and K is the index of the ray.
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Input projection
values P(M,K)

| CALL, CONST j

. ‘Comment: See Appendix F for
rCALL LESQ (B P ITE4|/ flow chart for LESQ. Note

that P’ is the geometric mean
of opposing views

Determine shape of object by
CALL SEARCH (B,BX, BOUNI,BOUN]J,XLEVAL,L)
1
For all 1,},M determine factors FACT(1,] M)
by
CALL DIST/BX,BOUNI,BOUN] I1,J1,M,L ATC, FACT(I,], M),XD)
]
Reconstruct the image corrected for attenuation
by
CALL LESQC(B,P,FACT,ITERR)

Comment: The flow chart for LESQC is similar to that given for LESQ in Appendix F.
However, CALL SUMM(B,XR) replaces CALL SUM(B,XR) where in SUMM it is

assumed that XR(M,K)=ZFACI‘(I,],M) * B(L,]), and the equati.* s for DEL
(L)€ ray(K,M)
and DAMP are

M1
DEL(L)) =2 g‘} FACT(1,] M) » [l-XR(M,K)/P(M,K)]f/ FACI‘(I,],M)ZIP(M,K)

M=1
M1 IR(M M1 IR(M)

DAMP =3 3" )\DEL(M K) «[1-XR(M,KVEM,K)] {/Y Z XDEL(M,K)2/P(M,K)
M=1 K=1 M=1K

Figure H-1. Flow chart for the attenuation corrected iterative least-squares algorithm,
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SUBRCUTINE LEARCH(B¢RX e BCUN [¢4BOUNJs XLEVAL4L)
DIMENSION Bla6,46)yB8X(45446)
INTEGER BOUNT{200},BOURJ(20C)
COMMON S{3619CU356)3T(36)4IR(36) s XL(36)9IA(36) s XNyXNLsXNZeNsN1sML
MAX=Da

NrN=N/2+1

L=0

DU LL I=s14N

NO 11 d=1.N
TF(B(I,J)=-MAX)11lyLlLl,12
MAX=B(I,J)

CONTINUE

D0 13 [=1,N

DO 13 J=1sN

BX(Isd)=0.

CONTINUF

DO 1 J=1,N

11=C

12=N+1

ITL=1

[7¢=1

Pl 2 K=1,NN

I1=11+1

[2=12-1

IF(ITL) 3,344
IF(B(ILsI)-MAX/XLEVAL)G:+9,6
BX{lled)=1.

1IT1=0

L=(+1

BOUNI(L)=I1

BOUNJ(L)=J

GQ TC 9

BX{Iled)=-2.

[F(IT2510410,47
IF(B{I2:J)-MAX/XLEVAL) 24248
BX(12,4)=1.

L=L+1

BUUNI(L)=I2

BOUNJ(L)=J

172=0

6O TO 2

BXx{I12:J)=-2.

CONTINUE

CONT INUE

DO 21 f=1,N

J1=0

J2=N¢l

1Tl=1

1T2=1

DO 22 K=14NN

Jl=Jl+l

JZ2=J2-1

IF(1T1)23,23,24
IFIBX(1+J1))35425+33



25
26

33

35
37

36
23
27
28
29

31

30
47

46
22
21
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TF(BCLeJLI-MAX/XLEVAL)1 23423426
BX(IyJ1l)=1.

L=L+1

BOUNI(LI)=T

BCUNJ(L)=J1

ITl=0

GO TD 23
IFIB{l,J1)-MAX/XLEVAL)364364+37
BX(1sJdl)=1.

Lt=L+1

BOUNT({L)=1

BOUNJI(L)=Jl

IT1=0

G0 TO 23

BX{14JL)=0.

IF(1T2)22422427
IFIBX{1,J2))30,28,31
IF(B{I,J2)~MAX/ XLEVAL)22+22,29
BX(14J2)=1.

L=1+1

BOUNI(L }=1

BOUNJtLY=U2

I1T2=0

GO TO 22
IF(B(T,J2)-MAX/XLEVAL)&46946,947
BX{i,J2)=1.

L=L+1

BOUNI(L)=1

BCUNJS(L)=U2

172=0

601 TC 22

BX{1+42)=0.

CUNTINUE

CONT INUE

RETURN

END
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SUBRUUTINE CIST{BXBOUNI+BOUNJyI1yJ1lsMyLeATCyFACTCGRy XD)
DIMENSION BX(46,46)
COMMON S(36)9C{36),T(36)3IR136" yXLL36)2TA(36) s XNpXNLyXNZoNoN1yML
INTEGER BCUNIE{20n}),BCUNJI{(27C)
FACTNR=1.
XD=0.
XL1=FLOAT(IL)
XJ1=FLOAT (J1)
TF(BX(TLsJL1)1297,201,2C0
200 IF{IA(M))203,2044223
203 LF(TIA(M)=90)205,206,207
207 IF(IA(M)-180)208,206,210
210 IF(IA(M)=2701211,212+213 .
204 I=11
L I=1+1
IF(BX{1+J1))1+956,2
2 XD=FLOAT(I-I1)
GO TO 999
205 XLL=64%.
DO 3 K=l,L
IFLI1elLToBOUNI(K) eANDeJLlaLToBOCUNJ(K)} )43
4 BI=FLGAT(BOUNT(K))
BJ=FLOAT(BOUNJ(K))
XLX=ABS(BI-XJL=(BI-XI1)*T (M) )I*=C(M)
[F{XLL-XLX)343:5 '
5 XLL=XLX
XD=SQRT{(XIL-BI)*%2+(XJ1-BJ)%¥*2)
3 CONTINUE
GO 10 999
206 J=J1
1l J=J+l
TF(BX(TLyJ))11,9G9,12
12 X0=FLOAT(J~J1)
GO TO 999
208 XLL=64.
DO 33 K=1,L
IF{I1aGToBOUNI(K)ANDoJLSLT SBOUNJ{K)) 34,33
34 BI=FLOAT(BOUNI(K))
BJ=FLCAT{BOUNJ(K})
XLX=ABS(BY=XJL+(XIL-BII2*T (M) )I®C{M)
IF({XLL=-XLX)33,33,35
35 XLL=XLX
XD=SQRT((XIL1=BI)#xx2+{XJ1-BJ)**2)
33 CONTINUE
GO TO 4999
202 =11
4l I=1-1
TFIBX{1,J1))41,9G69442
42 XD=FLOAT(I1-1)
GO TO 999
211 XLi=64.



54

55
53

212
61

62

213

74

75

73
599
201
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DD 53 K=1,L _
TE(TLoGToBOUNT (K)4ANDeJ1oGT «BOUNJIK)) 54,53
BI=FLOAT(BOUNI(K))
BJ=FLOAT(BCUNJ({K}}

XLX=ABS (XJL=Bd=(XIL-BI)#T (M) )*C(M)
IF{ XLL=XLX) 53,5355

XLL=XLX
XD=SQRT((XT1-BI)*%2+(XJ1=BJ)*%2)
CONT INUE

G TO 999

J=J1

J=J-1

IF(BX(T1,d1161+959,62

XD=FLOAT( J1-4)

GO 10 969

XLL=64.

DO 73 K=1,L

TFUILLToBOUNT (K)2ANDGJLoGT <BOUNJ(K)) 74,73
BI=FLCAT{BOUNI(K))

BJ=FLOAT {BOUNJ (K })

XLX=ABS (XJ1-BJ+{BI-XI1L)*T (M) )%C (M)
TE(XLL=-XLX)T3,73,75

XLL=XLX
XD=SQRT({XI1-BI}#%2+{XJ1-BJ)¥%2)
CONTINUF

FACTOR=EXP(-ATC*XD)

RETURN

END
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30
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80
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SUBRCUTINE LESQC(8,PP,FACT, ITERR)

DIMENSION 65{46,46)sNEL(46446)4PP{3646%) 9 XRU36464)+XDEL(36+64)
COMMON S{3614C(36)eTI306)2IRI36) ¢ XLI36) ¢ TA[36) 9 XN2XNLoXN2yNyN1,M1
LARGE FACT{46y46436)

Kl=1

CALL SUMM(B,XR,FACT)
DO 20 [=1.N

DO 20 J=1,N

XipP2=0.

R=0.

DO 30 M=]1,M1

CALL RAY (I, JeMeK)
XX=PP{MyK)+1,
XIP2=XTP2+FACT{ 1y J s M) X%2/XX
R=R+FACT (T ,,JyMI%{Lla=XR{MsK)}/XX)
CONTINUE

DELIT,J)=R/XIP2

CONTINUE

CALL SUMM(DEL,XCEL, FACT)
XNUM=0.

DEM=0.

DC 80 ¥M=1,.,M]

MR=TR{M)

DO 80 K=1,sMR

XX=P(MyK)tl.
XNUM=XNUM+XDEL (MeK) ¥ (1 ,=XRIMyK}/XX)
PEM=DEM+XDEL (Mg K) 22 7XX
CONT INUF

DANMP=XNUM/DEN

DO 83 1=14N

00 83 J=1.N
BLLod)=BU1yJ)+DAMPEDEL(I,J4)
IF(B(T,4))10,83,83
B(l+sJ0=0.

CORT INUE

Kl=K1+1
IF(KL-ITERR)79,79,381

RETURN

END
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66
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54

67
61

53

68
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SUBROUTINE SUMM(B,XR,FACT)
DIMENSTON Bl(46,46), XR{36,64)
COMMON S{36)sC{36),T{(30) 1 IR(36)yXL36)3TA(36) XNy XNLsXNZyNyRLyML
LARGE FACT(46y4%6+36)

DO 18 M=1l.ML

MR=[R{M)

[FIIA(M) eEWa DR LIA(M)LEQ.180)52951
ITFUIAINM)eEQe90.CRIA(M)EQe270)54,53
DN 19 K=14MR

XR{MyKI=0,

DO 66 I=1N
XRAMyKI=XR{M,K) +FACT (] ,KyMYBBLI4K)
CONTINUF

CONTINUE

GU Tu 18

DO 61 K=l,MR

XR(MyK)I=0a

DO 67 J=1.N
XR{MyKI=XR{MyK}+BIK, J)EFACT {KyJ M}
CONT ENUE

CCNTINUE

GO 79 L8

D0 63 K=1,4MR

XR{MyK)=0,

CALL YMINIK M, 1YL,1Y2}

D0 68 J=1VYl,1Y2

CALL XMIN(K yMyJyIX1,1X2)

DO €¢8 [=1XL,IX2

XRAM G KY=XR{MKI+B (L 4 J)*FACT L M)
CUNTINUE

CUNTINUF

CONT INUE

Rt TURN

END
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Appendix I. Subroutine for Array Imaging

The reconstructed array can be imaged, as in Fig. I-1, on the computer

printout by
CALL ARAYPLT(B,N)
where B is an NXN array.

This subroutine utilizes the over-printing capability on the line printer at
Lawrence Berkeley Laboratory. The line printer has ten characters per inch
and six lines per inch. Therefore, the subroutine interpolates between tpe
lines in order for the array to appear square. Some printers have eight lines
per inch for which the subroutine would have to be changed accordingly. A
printer with eight lines per inch is considerably more desirable. McLeod (1970)

describes the particular algorithm used here.
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Figure I-1. Example of overprinting technique used for CDC or IBM high-speed
printer output display of images.
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SUBRQUIINE ARAYPLT(B,N)

DIMFENS TON B(46,46),LN1(128),LN2(L128)-LN3(128) yLN4(1L28),LN5(128),LN
260128),LNTL128),LNB(128),BEN(2])

INTEGER GRAYL(21)+GRAY2(2L) yGRAY3(21)yGRAY4(21),GRAYS(21),GRAYE (2]
2) s GRAYT(2L),GRAYB(21)

DATA (GRAYYI(I},I=1+21)/iv 9lb—ylH=4lH¥+s1H) 91lHL s 1HZy LHX s 1HAy LHM,1HO
2elFCy1HQe LHDy LHO 4 LHO 4 10 9 LHCy LHG, LHO, LHO/

DATA (GRAY2(1)41=1221)/1H s1b 4LlH ylH s1H »1H olH 41H ¢1H o1H 41H~
2yll=g lHtg LH¥ s LH+ s L+ Lh Xy LF Xy LHXgLHXy LHX/

DATA (GRAV3(L)yI=19s2L3/1F 41F ylH yiH 41H 4LlH s1H o1lH ¢H »LlH ,1H
291H 9lH 9Ll ¢1H S1H s1H* ylH ¢lH 41H ,LlH*/

CATA (GRAY4{1),1=1,421)/1F s 1H o1l y1H olH s1H 41H 41H 41H s1H 4 ]1H
291H s1H 9lHeylH-plHerlHe s lHaylHaylHepiHW/

DATA {GRAYS(I),1=1921L)/1H 41H y1H #1H y1H 41H s1H 1H +1H s1H ,1H
ZylH '].H le 1~“‘i ,lH‘:yIH—OIF"'I.HH’IHH'].HH/

DATA (GRAYO([)4I=1921371KH 41H y1H olH 41H o1H s1H s1H s1H o1H ,1H
29lH 41H 91H s1H 4LH +1H 41FC+1HB, LHSE, LHE/

DATA (GRAY7(I),0=1421)/1H ¢1H olH s1lH 42lH 41H 41H 41H y1H s1H ,1H
2elH s1lH SIH S1FE J1H 91k s 1F slit y1HVy LHV/

DATA (GRAYB{1)s1=1421)/1H »1H 414 s1H 41H ,1H 'lH s1H 31H +1H I1H
2slH ylH ¢lH s1H ¢1lH 1H 414 ,1H 41H , lHA/

DATA (DEN(T1},1=1,21)/a 0,.15p.ZZ;.ZS,.299.35,.37o.40,.42.-459-53:.5
26,;601-649.671 -79'-851.89'-‘;3,-97,1 / °

XMAX=0,

DO.S00 I=1yN

NG 500 J=1,N

IF{B(1,4))5C1,50C,500

B(I,J)=0.

CONTINUF

DO 1 I[=14N

DO 1 J=14N

[F{(XMAX~-B(1sJ))33s1,1

XMAX=B(T1,J}

CONTINUF

TF(NGTL102)23,24

NLl=MN+6/10

NN=(60-N1}/4-1

DO 22 I=14NN

PRINT 121

FORMAT (/)

CONTINUE

D0 2 I=1,128

LNI(1)=1H

LN2(I)}=1H

LN3(E)=1H

LN&(I}=1H

LNS(I)=1H

LN6{(1)=1H

LN7([)=1H

LN3(T)=1H

CUNTINUE

I1=(128-N}/2

I2=TLl+N~1

fri=11-1

112=12+1
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BO 12 [=112,112
LNI(T)=1H*
12 CONTINUF
PRINT 10024LN1
1002 FORMAT(LlX,128(A1))
N1=N*6/10
DO 3 K=14N1
Jl=N=-(K~-1}%*10/6
J2=J41-1
XJ=FLOAT(N}-FLDAT(K-1)%10./¢.
=0
DO 4 [=11,12
[I=1I+1
D=BUILedL)+(B(IT14J2)-BCTI4d))*(FLUATIJIL) -XJ)/FLOAT(IL-J2)
D=D/XMAX
DO 5 M=1,21
IF(C-DEN{M) )6, 7,5
5 CONTINUE
6 Ml=M~1
M2=M
T=(DEN(M2)+DEN(ML} ) /2.
R=DEN{M2)-DEN{ML}
D=N+R/2.-R*RANF{C.)
TF{0-T19,49+10
9 L=M1
GO TO 29
L0 L=M2
GO 10 20
7 L=M
20 LNL(T)=GRAYL{L)}
LN2{Ti=GRAY2(L)
LN3(I)=GRAY3(L)
LN4 ([} =GRAY4 (L)
LNS{L)=GRAYS5{L)
LNG{1)=GRAY6(L)
LN7(1)=GRAY?(L)
LNBLT}=GRAYS (L)
4 CONTINUSE
PRINT LOOLyLNIL-
PRINT LO0LyLN2
PRINT 1001,LN3
PRIAT 1001,LN4
PRINT 107 1,LN5S
PRINT LUOLlsLN6
PRINT LOOLHLN7
PRINT 1000,LNG
1000 FORMAT{IH ,128(Al})
L00L FORNAT(Lh+,126(A1)}
3 CONTINUE
DY 13 [=111,112
LNL{L)=]1H%
13 CONTINUE
PRINT 1002,LNIL
RF TURN
END
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