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Abstract

We propose a solution to the problem of 3D reconstruction from cross sections, based
on the Delaunay triangulation of object contours. Its properties—especially the close
relationship to the medial axis—enable us to do a compact tetrahedrisation resulting
in a nearest-neighbor connection. The reconstruction of complex shapes is improved
by adding vertices on and inside contours.

Résumé

Nous présentons ici une solution au probleme de la reconstruction tridimensionnelle
d’objets a partir de coupes paralléles, qui utilise la triangulation de Delaunay des
contours des objets. Nous construisons une tétraédrisation de ’objet reliant les contours
a leurs plus proches voisins, grace aux propriétés de la triangulation de Delaunay,
en particulier sa relation étroite avec ’axe médian. Dans le cas d’objets complexes
(branches, trous), nous améliorons la reconstruction en ajoutant des sommets sur et a
Iintérieur des contours.
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Introduction

An important problem in medical imaging is the creation of three dimensional models
from a set of tomographic cross sections. Such reconstructions of human organs are
already used for

e surgery planning
e prothesis milling
e radiation therapy planning

e volumetric measurements

According to the high interest, there have been a great number of approaches,

which may roughly be classified into two groups: surface reconstruction and volume
reconstruction. The first group contains the classical solutions of [Kep75] and [FKUT77].
In the second we find the today’s dominant voxel technique.

Another volume approach is the Delaunay reconstruction proposed in [Boi&8]. In

this article, we consider the Delaunay reconstruction from a different point of view that



allows us to compare its heuristic to that of the voxel technique. We show its close
relationship to the medial axis and finally add some new extensions.

In the following section, we will give a brief description of the surface- and volume-
approach and discuss some theoretical questions. In section 3 we explain the principal
terms Voronoi diagram and Delaunay triangulation and give a range of successive re-
finements, from Voronoi diagram of point sites to the medial axis. Finally, we describe
the Delaunay reconstruction in section 4.

2 Previous Solutions

2.1 Surface reconstruction

Historically, surface reconstruction has been the first approach. Running along the
contours, surface triangles are constructed between adjacent planes. Various conditions
may be imposed: maximize the volume, minimize the surface, minimize the edge length
or angles (See Keppel [Kep75] and Fuchs et al. [FKU77]). These solutions were limited
to one single contour on each cross section. In the suite, there were a number of methods
trying to solve the branching problem when the number of contours varies from one
plane to another ([CS78] [Sha81] [MSS91] [Toe89]).

2.2 Voxel reconstruction

A voxel is the spatial equivalent to a pixel. Since scanner data comes on a regular grid,
the pixels, it is quite natural to extend them to a volume element (Barillot [BGLS85]).
However, to avoid excessive radiation, cross section distances often are significantly
greater than the 2D resolution. This makes interpolation necessary in order to avoid
jaggies. To visualize such a heap of cubes, it is necessary to fit a surface on it (Marching
Cube [LC8T]) or to deduce surface normals with other methods [HB86], [Lev88]). The
main disadvantage however is the huge amount of data, which has to be processed. Still,
real time motion requires special hardware. For an exhaustive survey on reconstruction
methods and systems see also [SFF91].

2.3 The reconstruction problem

A 3D object is intersected by a number of parallel planes. Since concave objects are
admitted, we get one or several regions in each plane. The contours of those regions
may be approximated by polygons, possibly some of them lying inside others.

We now want to link these regions (or to connect the contours) in a way to obtain
the “best” approximation to our original object.

One condition the reconstructed object has to satisfy is: If we cut it along the
original planes, we must get the actual regions.

If we consider figure 1, we have to admit that both solutions b and c satisfy the
condition specified above. Selecting a particular solution is a heuristic decision, if no a
priori information is present.
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Figure 1: A set of 6 contours, pairwise superposed in two horizontal, parallel planes p; and ps. (b)
and (c) show two possible connections

All reconstruction methods make such heuristic assumptions, except the interactive
ones. In voxel reconstruction, the heuristic consists in extending all object pixel to a
parallelepiped of height equal to the slice distance, thus favorizing “vertical” connec-
tions. It seems to be quite a simple, natural assumption, and at an adequate relation
of object size and slice distance, the results are fully satisfying.

In our approach, we subdivide the planar regions into triangles, and extend these
triangles to tetrahedra by linking them to the contours in adjacent cross sections. Our
attempt hereby is to achieve an almost vertical, "voxel-like” connection (heuristic),
but in the same time to reduce the data, avoid anti-alias or interpolation steps and
get directly a polyhedral representation which is suitable for rendering on standard
graphics workstations.

3 Definitions

3.1 Voronoi Diagram - Delaunay Triangulation

Given a set S of N sites S = {p; € E%|i = (1..N)} such that no four sites lie on a
common circle.

We define V(i) as the set of points closer to site p; than to any other site in S.
V(%) is called the Voronoi cell associated with p; (See fig. 2). The union over all V (1),
V(9), is called the Voronoi diagram of S. It can be considered as a subdivision of the
plane in convex polygonal regions—the Voronoi cells. The boundaries of the regions
are referred to as Voronoi edges, the joints of (always) three Voronoi edges are called
Voronoi vertices. Each Voronoi edge is associated with two adjacent Voronoi cells,
and is a part of the perpendicular bisector of their sites, thus denoting the locus of
equal distance. A Voronoi vertex is equidistant to three sites.

If we draw a line segment between each pair of sites whose Voronoi cells share an
edge, we obtain a triangulation of the points in S called the Delaunay triangulation
(See fig. 3).

The Delaunay triangulation is the straight-line-dual of the Voronoi diagram :

e each Voronoi vertex is the circumcenter of a Delaunay triangle.



Figure 2: A Voronoi cell (left) and the Voronoi diagram (right) of a number of sites

Figure 3: A Voronoi diagram (dashed) and its straight-line-dual, the Delaunay triangulation .



e each Voronoi edge corresponds to an edge in the Delaunay triangulation , despite
the fact that they may not even intersect. This geometric difference between
Voronoi diagram and Delaunay triangulation becomes important in the recon-
struction issue.

Some further properties of the Delaunay triangulation are :

The border of the Delaunay triangulation is the convex hull of its sites.
e The Delaunay triangulation maximizes the minimum angle over all triangulations.

e The number of triangles in the Delaunay triangulation is at most 2N — 5, where
N is the number of vertices in the triangulation.

e A Delaunay triangle does not contain any other site in its circumcircle (empty
circle property). This implies that any triangulation without obtuse angles must
be Delaunay.

The definition of Voronoi diagrams and Delaunay triangulation in 3D space is
straightforward (Refer to [PS85]). Instead of triangles we will get tetrahedra, besides
Voronoi edges there will also be Voronoi faces, and the empty circle property translates
in empty sphere property.

3.2 Contour containment

In our application, we have to deal with contour lines, approximated by simple closed
polygons. Just triangulating the polygons vertices may result in a triangulation where
contour segments are not guaranteed to be edges of the triangulation. Since our issue
is to get a 3D polyhedron whose intersection with the given cross sections yields in the
original contours, our triangulation has to satisfy the following requirement:

All contour segments have to appear as Delaunay edges in the Delaunay triangula-
tion (contour containment condition).

An easy solution is to insert new points on the concerned contour edges, so that
the contour shape is not changed (cf. figure 4).

3.3 Internal and external Voronoi skeleton

Once the containment condition is satisfied, we can divide the Delaunay triangles in
two groups: internal triangles lying inside the contours and external triangles lying
outside the contours.

We call internal Voronoi skeleton the edges of V(S) which are dual to an internal
Delaunay edge (that is an edge shared by two adjacent internal Delaunay triangles).



Figure 4: (a) A contour. It is evident, that triangle e,f,g cannot be part of a Delaunay triangulation,
since its circumcircle would contain another site. (b) shows the Delaunay triangulation of the contour
points. Contour segments which are incident with Delaunay edges are drawn bold. Contour edge f,g is
contained after insertion of a vertex on e,f (c).

T
N
N
. AN - - - EVS

Yo — IVS

Figure 5: Internal (IVS) and external (EVS) Voronoi skeleton of three contours



Similarly we define external Voronoi skeleton the edges of V(S) which are dual to
an edge shared by two external Delaunay triangles (See fig. 5).

The internal Voronoi skeleton represents in some sense the contour polygon, but
as we mentioned above, the Delaunay edges and the Voronoi edges of a point set may
be quite different. The internal Voronoi skeleton is not guaranteed to lie inside the
polygon boundaries. Even worse, polygons with same shape but different distribution
of vertices may have totally different Voronoi skeletons (See fig. 6). Thus the quality
of shape representation is not very high at this stage.

3.4 Increasing the quality of shape representation

To guarantee that the internal Voronoi skeleton lies inside its contour polygon, we add
new vertices on contour segments involved in obtuse Delaunay triangles (See fig. 6):
For each contour segment, we consider the opposite angle of the triangle it belongs
to. If it is greater than 90 degrees, its corresponding Voronoi vertex lies outside the
triangle. In this case we add a new point at the normal projection of the opposite vertex
onto the contour segment. This will divide the obtuse triangles in two right-angled
triangles (See fig. 6). It is to point out that this procedure doesn’t eliminate all obtuse
angles in the Delaunay triangulation, only obtuse angles opposed to contour segments
are detected. But it is sufficient to guarantee that the internal Voronoi skeleton stays

inside its contour.
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Figure 6: Two vertices have been inserted in the right image to avoid obtuse angles

In general, increasing the number of polygon vertices makes the Voronoi skeleton
tending towards the center of the polygon (see fig. 7). Suppose we add n vertices, equally
spaced, onto the contour. If we increase n, we get an approximation of the medial



axis. The medial axis of a polygon is the locus of points with equal distance to at least
two contour points. It is a well studied object in pattern recognition, because it highly
represents the metric and topological properties of shapes (cf. [Blu67] [KKOKS89]).
If several contours are present in one layer, the external Voronoi skeleton or external
medial axis is forming a kind of “macro” cells. The points inside such a “macro”
Voronoi cell are closer to its contour than to any other contours. Hence the external
Voronoi diagram is the locus of equidistance from at least two contours (see fig. 5).

Figure 7: Two approximations of the medial axis, with 27 and 72 vertices on the contour.

The next step would be to calculate the real medial axis, not just its approximation.
This can be done by constructing a generalization of the Voronoi diagram - the edge
Voronoi diagram (EVD) - where sites are no longer points but entire contour edges
(see [Kir79], [Yap87], [For85]). Once again we would get both an internal and external
Voronoi skeleton, which now is built of straight line segments and arcs of parabola.
The internal Voronoi skeleton is the medial axis representing the contour, the external
Voronoi skeleton in fact is the generalized Voronoi diagram where the sites are simple
closed polygons (the contours).

Finally we can imagine—we will see the reason later—to fill up the interior of
the contours with nearly equally spaced vertices to achieve a regular triangular grid
without obtuse angles. The construction of such a mesh is often required in finite
element calculation, a solution by successive refinement is shown in Hermeline [Her82].
Because such a mesh satisfies the empty circle condition, it is a Delaunay triangulation.
The internal Voronoi skeleton of a filled polygon is a mesh of Voronoi cells, its density
depends on that of the internal vertices. In case of infinite density, it would represent
the entire area inside the contour.



4 Volume reconstruction

We reduce the problem to find an overall reconstruction to computing a solid slice
between each pair of adjacent cross sections. In each cross section, our input consists of
one or several closed simple polygons, which possibly may lie one inside another. The
contours are oriented in such a way that the inside of the object they are describing is
on its right side, the outside on its left.

Let P; and P, be two adjacent cross sections with C; and C5 the set of contours in
each plane. Cy = {cl;|i = 1..ny} and Cy = {c2;|¢ = 1..ny}, with ¢i; being simple closed
polygons.

Let S; be the set of vertices of C;(i = 1,2).

4.1 The subdivision of the plane

We first make a subdivision of the planes P; and P, but unlike to the voxel method,
where the plane is divided into a regular grid (pixels), we choose the Delaunay tri-
angulation of the contour vertices. If necessary, additional vertices are added on the
contours, to satisfy the contour containment condition and to avoid obtuse angles, as
described in the previous sections (see fig. 8).

[ =<

P

Figure 8: Delaunay triangulation of contours in two adjacent planes

The first advantage is the data reduction, since the number of triangles is linearly
related to the number of contour vertices. To represent the object regions by a regular
grid would cost space in quadratic terms.

There are several reasons to take the Delaunay triangulation :

e There exists several well known algorithms to calculate it.

e The shape of a Delaunay triangle is in general compact (maximizing the minimal
angle).

e Due to its close relationship to Voronoi diagrams, we can perform fast point
location in it

10



4.2 2D to 3D mapping

In the next step, for each triangle t € P; we search the vertex v € Py which lies closest
to the circumcircle of ¢. We connect ¢ with v to obtain a tetrahedron. The same is
done with P; and P, inversed (see fig. 9).

Figure 9: Connecting triangles to tetrahedra

Up to now our triangulation consists of tetrahedra which we call of type t; or g,
depending on whether they have a facet in P, and a vertex in P, or a facet in P, and
a vertex in P;. The third kind of tetrahedra, called t,5, having one edge in P; and one
edge in P, is still missing. We define the graph G = V(51) U proj(V(52)) the union
of the Voronoi diagram of 57 and the orthogonal projection of the Voronoi diagram of
S5 onto the Voronoi diagram of S7. All information is then contained in that graph: A
Voronoi vertex of V(51) is representing a t; tetrahedron , a Voronoi vertex of V/(53) is
representing a ty tetrahedron , and each intersection of two Voronoi edges corresponds
to a t19 tetrahedron . We call the vertices in G resp. t1, t2 or t1o vertices.

As shown in [Boi88], the resulting triangulation is in fact the 3D Delaunay trian-
gulation of the vertices of 57 U S3. Its border is the convex hull of 57 U 55.

4.3 Elimination step

We have to eliminate all tetrahedra having an edge in P; or P; outside the contours (see
fig. 10). This corresponds to remove all vertices from G lying on external Voronoi skele-
tons.

There may still remain non solid connections, tetrahedra which are only connected
along an edge or at one single point to one of the two planes (see fig. 11). We can find
and remove these portions in our graph G.

If we discuss the behavior of the reconstruction on our graph G, we observe the
following facts:

e External Voronoi skeletons cut the object in parts. We call £; the regions (cells)
formed by the intersection of the external Voronoi skeletons in G (¢ = 1..k).

11
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Figure 10: Tetrahedra lying outside the contours

Figlll‘e 11: Non solid connections
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e If an external Voronoi skeleton crosses an internal Voronoi skeleton, its cor-
responding contour is split along the Delaunay edge dual to the intersected
Voronoi edge (See fig. 12).

e Those parts of internal Voronoi skeletons lying in the same region F; will corre-
spond to the connected contour parts in the final reconstruction.

o If the internal and external skeletons are good approximations of the medial
axis (that is, the number of vertices on the contour polygons is sufficiently high),
contours will split along the external medial axis. Contour parts will be connected
to their nearest-neighbor-contour parts.

+ " Proj(EVSy)

Figure 12: Contour split

4.4 Introducing internal vertices

So far, this reconstruction algorithm works well for simple contours. With complex
contours, especially for complicated branching and birth of holes, there may rest some
unsatisfying results, which arise from the fact that there are no vertices inside the
contours (see fig. 13). Contour splits only can occur along one single edge which is
crossing the entire contour.

What would happen if we fill up the interior of the contours in a way to achieve
a regular, non obtuse triangle mesh described in the previous section, and apply our
reconstruction algorithm on this configuration?

In figure 14, the external Voronoi skeleton EV Sy in P, cuts the contour in Py
in 3 regions: a’, b’ and ¢. Since all small triangles have non-obtuse angles, their
circumcenters are lying inside the triangles. So all the triangles lying in region a’ are
connected to contour a, b’ to b and ¢’ to ¢. The splitting line in P; would approximate
more or less the projection of £V Sy, dependent on the size of the small triangles and
hence on the number of inserted vertices. Fortunately, it is not necessary to fill the

13



Figure 13: Internal points: (a),(c) solutions without internal vertices, (b),(d) would be better solutions

P

Y Proj(EV S,)

Figure 14: Contours with small triangular mesh inside
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entire contours to get this result. It is sufficient to put vertices onto the projections of
the external Voronoi skeletons in the opposite planes.

F <
~

EVS,

Figure 15: Internal vertices along the projection of the external Voronoi skeleton

In figure 15, vertices have been inserted inside the contourin Pj, along the projection
of £V Sy. The contour contains now three internal Voronoi skeletons, which lie inside
the regions a’, b’ and ¢, if the density of inserted points is sufficient, and the procedure
to avoid obtuse angles is applied. Thus the region a’ is connected to contour a, b’ to b
and ¢ to ¢. The splitting line now follows the projection of EV S5, which itself is the

approximation of the medial axis (see fig. 16).
Our complete reconstruction algorithm looks now as follows:

1. In each cross section do:
(a) Compute the 2D Delaunay triangulation of the vertices
(b

) Add vertices to satisfy the contour containment condition
(c) Add vertices to avoid obtuse angles
)

(d) Add vertices along the external Voronoi skeleton inside the contours of the
two adjacent sections

2. With each pair of adjacent cross sections do:

(a) Extend the two 2D triangulations to one 3D Delaunay triangulation

(b) Remove external tetrahedra and non-solid connections

15
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Figure 16: An example of splitting one contour into three branches.

CTOSS added | cpu | time/ | surface
sections | contours | points | points | time | point tiles
pelvis 23 34 2059 622 6.50s | 3.15ms 5518
knee 42 106 2028 191 5.33s | 2.62ms 4386
heart 29 58 1222 243 3.60s | 2.94ms 2988
head 17 25 856 155 2.35s | 2.74ms 2032

Figure 17: Some experimental results

5 Experimental Results

The algorithm has been implemented in C and tested with various medical data. In all
practical cases, the cpu time is almost linearly related to the number of contour vertices,
because we are exploiting the fact that input vertices are sorted along contours. This
allows a constant time point location. The cpu time on a DECstation 5000 is less than
4ms per vertex. Experience has shown that the number of added vertices depends on
the contour complexity and does rarely exceed 30%. Fig. 17 shows some typical results.
The pelvis in fig. 20 has been rendered on a Personal Iris.

6 Conclusion

We have shown a solution to the reconstruction problem using the 3D Delaunay tri-
angulation. The heuristics are based on the notion of the medial axis, thus realizing
a nearest neighbor connection between adjacent planes. Especially, we showed how to
calculate an approximation of the medial axis, whose quality is adjustable by adding
automatically vertices on and inside the contours.

Our method provides a 3D polygonal representation, composed of tetrahedra. The

16



surface triangles are used for visualization. The tetrahedra structure is useful for further
applications, like simulation of motion or finite element methods.
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Figure 18: a) and b) show two adjacent cross sections of a pelvis. Slice distance is about 8mm. The
vertices inserted during the reconstruction are shown in c) and d).
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Figure 19: a) The upper cross section of fig. 18 with internal (bold) and external (bold dashed)
Voronoi skeleton. b) The reconstructed surface between the two sections, seen from above. c) and d)
are two shaded perspective views of the slice.
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Figure 20: The overall reconstruction of a human pelvis from 23 MR images
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