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of Welding Pool Surface by Binocular Vision
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Abstract 

Current research of binocular vision systems mainly need to resolve the camera’s intrinsic parameters before the 

reconstruction of three-dimensional (3D) objects. The classical Zhang’ calibration is hardly to calculate all errors 

caused by perspective distortion and lens distortion. Also, the image-matching algorithm of the binocular vision 

system still needs to be improved to accelerate the reconstruction speed of welding pool surfaces. In this paper, a 

preset coordinate system was utilized for camera calibration instead of Zhang’ calibration. The binocular vision system 

was modified to capture images of welding pool surfaces by suppressing the strong arc interference during gas metal 

arc welding. Combining and improving the algorithms of speeded up robust features, binary robust invariant scalable 

keypoints, and KAZE, the feature information of points (i.e., RGB values, pixel coordinates) was extracted as the feature 

vector of the welding pool surface. Based on the characteristics of the welding images, a mismatch-elimination 

algorithm was developed to increase the accuracy of image-matching algorithms. The world coordinates of match-

ing feature points were calculated to reconstruct the 3D shape of the welding pool surface. The effectiveness and 

accuracy of the reconstruction of welding pool surfaces were verified by experimental results. This research proposes 

the development of binocular vision algorithms that can reconstruct the surface of welding pools accurately to realize 

intelligent welding control systems in the future.
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1 Introduction
Gas metal arc welding (GMAW) is widely applied in 

modern manufacturing industries. To improve the weld 

quality of manual GMAW, welders correct either the 

welding parameters or the position of welding gun based 

on information from the welding pool surface acquired 

by sight and their expertise [1]. �is means that the weld-

ing pool surface contains important visual information 

that allows skilled welders to control GMAW process. To 

decrease the workload and occupational risks for weld-

ers, much research has been done in the last few decades 

to transfer this inspection work to intelligent control sys-

tems [2].

Caprio [3] utilized the oscillation of the welding pool 

to estimate its penetration during the Laser Powder Bed 

Fusion process. �omas [4] reconstructed the thermal 

images of cold metal transfer process to monitor the 

porosity defects and improper weld beads. Vasilev [5] 

utilized an ultrasonic thickness measurement system to 

control the welding current and welding speed. �ese 

methods have mostly focused on improving the weld-

ing process with information from one-dimensional or 

two-dimensional welding pool surface data. However, it 

is clear that three-dimensional (3D) information of the 

welding pool surface can better reflect the weld quality.

�e 3D reconstruction method for welding pool can 

be categorized into the 3D structured light method 

[6], shape from shading method [7], and binocular ste-

reo vision method [8]. To avoid arc interference during 

measurement, Zhang et  al. [9] proposed a novel-struc-

tured laser vision system for reconstructing 3D welding 
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pool surface. In their experiments, a structured laser 

was projected onto the welding pool surface and was 

specularly reflected onto a preset imaging plane. �e 

images of the laser points on the plate were captured by 

camera. Finally, the geometry of the welding pool sur-

face was reconstructed by the Edge-point algorithm and 

One-point algorithm [10]. However, the deviation of this 

method can reach a maximum of 1.22 mm. Chen [11] 

proposed a new image processing framework that could 

extract key characteristics of 3D welding pool geom-

etry through its two-dimensional passive vision images. 

It was found that the support vector machine classifica-

tion model was accurate enough to obtain the width and 

height of the welding pool. �e camera’s exposure time 

had to be carefully adjusted for different welding cur-

rents, as it remarkably affected the image quality of the 

welding pool and the accuracy of the results. Zhong et al. 

[12] put forward measures to increase the effectiveness 

and accuracy of shape from shading (SFS) method. An 

improved algorithm was used to reconstruct the weld 

surface of aluminum alloy for gas tungsten arc welding 

(GTAW). However, the SFS method is difficult to be used 

in GMAW process as its spatters, arc interference, and 

welding stability is much worse than that in GTAW. An 

accurate and anti-jamming 3D reconstruction method 

for GMAW is still needed for the suppression of strong 

electromagnetic interference, high heat radiation inter-

ference, weld fumes, and other conditions.

�e binocular stereo vision method is more accurate 

and efficient in acquiring reconstruction results. Mnich 

[13] attempted to use this method to reconstruct a 

GMAW pool, yet results showed that the binocular vision 

system needed to be improved, as extra-bright areas on 

pool surface could not be reconstructed. Richardson 

[14] used a particle image velocimeter (PIV) to track the 

movement of oxide particles to determine the velocity 

field on welding pool and then transferred the above data 

into a 3D fluid velocity by the stereo vision method. �e 

calibration process was the main factor that influenced 

measurement precision during 3D reconstruction; the 

average distance error between the tested corner points 

was 0.14 mm. Liang [15] established a biprism stereo 

vision system to characterize weld penetration based on 

the geometry of the welding pool surface under pulsed 

GMAW. A two-step stereo matching algorithm was pro-

posed to reconstruct the 3D shape of the welding pool 

surface. However, some regions on the surface were dis-

continuous, and the accuracy of this algorithm was not 

discussed. Xiong [16] also developed a biprism stereo 

vision system to reconstruct welding pool geometry in 

GMAW. A global-based iterative matching algorithm and 

triangle measuring method were optimized. �e results 

were validated by a reconstructed standard cylinder 

with clear checkboard, yet the maximum height error 

was 4.15%, showing that the accuracy and usability of a 

global-based iterative matching algorithm for GMAW 

process without checkboard still needs to be verified and 

improved.

In this paper, an improved binocular vision system 

was developed to observe the welding pool surface. An 

automatic 3D reconstruction method was proposed to 

suppress arc interference on welding pool information. 

�e mathematical models including detection, descrip-

tion and matching of feature points were established to 

effectively and robustly calculate the world coordinates 

of welding pool surface against different welding condi-

tions. �is study was foundation of on-line intelligent 

control of welding pool behavior for GMAW process.

2  Experimental System
�e binocular vision system is given in Figure  1. Two 

Basler acA2000-165uc cameras (color) were used, and 

their CMOS sizes were both 2/3". �e focal length of 

the camera lens was 35 mm with a 650-nm cut-off fil-

ter and 7# welding goggle. �e aperture was F/5.6. Two 

cameras were connected with a synchronizer trigger 

to generate two synchronous images. �e frequency 

of sampling was 200 frames/s with a resolution of 

600×500 pixels and exposure time of 40 μs.

�e weld workpiece was fixed on a moveable work-

bench. Bead-on-plate welding tests were carried out on 

Q235 mild steel plates with dimensions of 250.0  mm 

× 70.0  mm × 5.0 mm. �e welding wire material was 

H08Mn2Si with a diameter of 1.2 mm. �e distance 

between the welding wire tip and workpiece surface 

was 18.0 mm. �e chemical compositions of the weld-

ing wire and base metal are presented in Table  1. �e 

direct current electrode negative mode was used, 

and the distance from the wire tip to the workpiece 

was 18.0 mm. Other welding parameters are listed in 

Table  2. �e torch and cameras were stationary dur-

ing the welding process. �e workpiece and workbench 

were moved at a preset welding speed. 

Figure 1 Binocular vision system
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3  Calibration System
In order to effectively avoid errors caused by perspec-

tive distortion and lens distortion (including radial dis-

tortion, centrifugal distortion, and prism distortion), 

a preset coordinate system for camera calibration [17] 

was used to establish the corresponding relationship 

between the world coordinates and the image coordi-

nates via a calibration target with a point matrix at dif-

ferent positions. For example, Figure  1 illustrates how 

two cameras were fixed on a tripod. Figure 2 shows how 

the target paper was moved along the y direction from 

y=0.0 mm to y=20.0 mm with a moving step length of 

0.5 mm. �e target paper was captured by the two cam-

eras at each position. �e red dot on the target paper 

represents the coordinate origin of the point matrix. 

Finally, Oxyz and Ox0y0z0 were the world coordinate sys-

tem and pixel coordinate system, respectively. 

�e world coordinates of black dots in each target 

image were calculated by their distance from the red 

dot. �at is, when the black dot Pb was located in the a 

row to the left of the red dot, its world coordinate was 

xd= a×1 mm = a mm; when the black dot was located 

in the b row above the red dot, its world coordinate was 

zd = b×1 mm = b mm, as shown in Figure 3. It can be 

seen that the world coordinates of the black dots are 

[xd, yd, zd]=[a, ym, b]. When the world coordinates of all 

grid points on the graph were assigned, the world coor-

dinate system of the calibration system was successfully 

constructed.

It is assumed that a point Pa was located in the area of 

calibration that was captured by two cameras, as shown 

in Figure 4.

�e world coordinates of Pa could be reconstructed 

from the following procedure:

Table 1 Chemical compositions of welding wire and base metal 

(wt%)

Composition (%) C Si Mn P S

Wire (H08Mn2Si)
Q235

0.11 0.65 1.80 0.030 0.030

0.17 0.15 0.30 0.015 0.035

Table 2 Welding parameters

Welding 
current (A)

Arc voltage (V) Welding speed 
(m/min)

Shielding gas (L/
min)

240‒280 33.0 0.5‒0.8 20(Ar)

Figure 2 The 3D point array

Figure 3 Captured images of the calibration target by two cameras at ym
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(1) �e image coordinates of Pa were P1(X1, Y1) in cam-

era 1 and P2(X2, Y2) in camera 2. �e four nearest neigh-

bors of P1 in the captured image were A(xA, yA), B(xB, yB), 

C(xC, yC), and D(xD, yD). �eir world coordinates, which 

were calibrated prior, were A′(xA’, yp, zA’), B′(xB’, yp, zB’), 

C′(xC’, yp, zC’), and D′(xD’, yp, zD’). P′(x′yp, yp, z′yp) could be 

calculated by the four nearest neighbors of P1 as follows:

Similarly, all the corresponding world coordinates of P2 

at 41 planes can be obtained as P′′(x′′yp, yp, z′′yp)(yp=0.5i, 

i = –20, –19, …, 19, 20).

(2) �e distance Dyp between P′(x′yp, yp, z′yp) and 

P′′(x′′yp, yp, z′′yp) at all the y-planes was calculated as 

follows:

When Pa was in a certain y-plane (y = 0.5i), P′ and 

P′′ overlapped, and Dyp was 0. �en x′yp = x′′yp and z′yp 

= z′′yp; the world coordinates of Pa were (x’yp, yp, z’yp). 

Otherwise, Pa was located between two adjacent plane 

matrices where the sum of Dyp1 and Dyp2 represented the 

minimum. If yp1=0.5i and yp2=0.5(i+1), the world coor-

dinates were as follows:

(1)

[

xA′ xB′ xC ′ xD′

zA′ zB′ zC ′ zD′

]

×

[

XA XB XC XD

YA YB YC YD

]

−1

×

[

X1

Y1

]

=

[

x′

yp

z′

yp

]

.

(2)
Dyp =

√

(x′
yp − x′′

yp)
2 + (z′

yp − z′′
yp)

2,

(yp = 0.5i, i = −20, −19, · · · , 19, 20).

(3)x =
1

2
(x′′

yp1 + x′

yp1),

where P′yp1 and P′yp2 were points captured by cam-

era 1, and their world coordinates are (x′yp1, yp1, z′yp1) 

and (x′yp2, yp2, z′yp2), respectively. Similarly, P′′yp1 and 

P′′yp2 were points captured by camera 1, and their world 

coordinates were (x′′yp1, yp1, z′′yp1) and (x′′yp2, yp2, z′′yp2), 

respectively. �us, the world coordinates of point Pa were 

successfully achieved. Verification experiments showed 

that the maximum relative error between the recovered 

and measured results was less than 0.6% [17].

4  Pre‑preprocessing of Welding Pool Image
�e size of the welding pool under the arc is small, and 

there are various noises in the process of image acquisi-

tion and quantification. In addition, the existence of a 

strong arc will also affect the extracting and matching 

processes of feature points, which decreases the accuracy 

of 3D reconstruction. �erefore, image processing algo-

rithms, which mainly include gray-level transformations, 

image filtering, and edge detection, are needed to pre-

process the welding pool images [18]. Figure 5 shows the 

original images of the welding pool under the arc. Fig-

ure 6 shows the processed images, which can be used for 

feature-point detection.

5  SURF‑BRISK‑KAZE Feature Point Matching 
Algorithm

Finding the matching feature points accurately and effi-

ciently is a high priority for welding pool surface recon-

struction. �e algorithms need to adapt to various 

requirements, such as the small scale of the welding pool, 

affine transformation of camera angles, noise interference 

(4)y =

(z′

yp2 − z′′

yp2) × yp1 + (z′′

yp1 − z′

yp2) × yp2

(z′

yp2 − z′′

yp2) + (z′′

yp1 − z′

yp2)
,

(5)z =

(z′

yp2 − z′′

yp2) × z′

yp1 + (z′′

yp1 − z′

yp2) × z′′

yp2

(z′

yp2 − z′′

yp2) + (z′′

yp1 − z′

yp2)
,

Figure 4 A schematic of the mapping between the two image 

coordinates and their world coordinates

Figure 5 Captured images of the welding pool under the arc (240 A, 

33 V, 0.6 m/min)
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of spatter and arc electromagnetism, severe illumination 

of arc, and nonlinear image distortion.

5.1  SURF Feature Point Detection

For some welding pool images captured by cameras 1 

and 2, box filters [19] were used to approximately replace 

the Gaussian second order derivatives. �e different box 

filters were selected to establish the scale space for fea-

ture-point detection. �e feature points were extracted 

by a Hessian matrix and a threshold on each scale space 

layer. For an image I(x, y), a Hessian matrix with scale σ at 

point (x, y) was defined as follows:

where Lxx is the convolution of the Gaussian second 

order partial derivative (Gaussian filter), and the input 

image I(x, y) at point (x, y), the meaning of Lxy, Lyy, and 

Lyx are the same as Lxx. �e Gaussians is defined as

To facilitate the calculation, the convolution Dxx, Dxy, 

and Dyy of the box filters and the input image was used 

to replace Lxy, Lyy, and Lyx to construct the fast Hessian 

matrix. Box filters in size 9×9 were substituted by the 

Gaussian filter when parameter λ was 1.2. �e relation-

ship between Dxx, Dyy and Lxx, Lyy is as follows:

where ||∙||F is the Frobenius norm, and ω is used to bal-

ance the relative weights in the expression for the Hes-

sian’s determinant. In practical application, a value of 0.9 

was adopted to obtain an approximate Hessian matrix 

determinant:

(6)H =

[

Lxx(x, y, �) Lxy(x, y, �)

Lyx(x, y, �) Lyy(x, y, �)

]

,

(7)g(�) = 0.5 exp(−
x2 + y2

2�2
)/(2π�

2).

(8)ω =

∥

∥Lxy(1.2)
∥

∥

F
�Dxx(9)�F

�Lxx(1.2)�F
∥

∥Dxy(9)
∥

∥

F

≈ 0.9,

A threshold was needed to estimate the feature points 

detected by the Hessian matrix. When the value of 

Hessian’s determinant for the test point was greater 

than this threshold, a non-maximum suppression in a 

3×3×3 neighborhood was applied. When the value of a 

text point was greater than that of 26 neighbor points, 

it was selected as an optimal feature point. When the 

maxima detected by Hessian matrix was less than the 

threshold, this maximum was excluded, so the speed of 

maxima detection was accelerated. Figure  7 shows the 

feature points extracted by the speeded up robust fea-

tures (SURF) algorithm. It can be seen that the SURF 

feature points (red dots) were evenly distributed in the 

welding pool, having the advantage of affine invariance; 

however, it cannot fully reflect the edge profile.

5.2  BRISK Feature Point Detection

In order to obtain the characteristic of scale invariance 

on the edges of the welding pool, the scale space was 

composed of four inner layers ci and four middle lay-

ers di(i=0,1,2,3) in the frame structure of binary robust 

invariant scalable keypoint (BRISK) feature detection 

[20]. Each inner layer image was obtained by 0.5-times 

down sampling of the previous inner layer image, where 

the original image corresponded to the c0 layer. Each 

intermediate layer di was located between two adjacent 

inner layers ci and ci+1. �e first intermediate layer d0 

was obtained by 1.5-times down sampling of the origi-

nal image c0, and the remaining intermediate layers were 

obtained by 0.5-times down sampling of the previous 

intermediate layer. It was assumed that δ represented the 

scale, where δ(ci)=2i and δ(di)=1.5×2i.

After the scale space of BRISK was constructed, the 

feature points were extracted on each scale. �e extreme 

points detected in the spatial domain and the scale 

(9)det(Hessian) = DxxDyy − (0.9Dxy)
2
.

Figure 6 Pre-processed images of the welding pool under the arc 

(240 A, 33 V, 0.6 m/min)

Figure 7 SURF feature points of the welding pool image under the 

arc (240 A, 33 V, 0.6 m/min)
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domain were regarded as feature points, so the BRISK 

corner points had scale invariance for the welding pool 

edges. BRISK feature point detection was determined by 

the following equation:

where I(R) was the gray value of the central pixel R, I(x) 

was the gray value of the pixel points surrounding P, and 

ε was the threshold, which was 0.00001 in this study. If 

N was greater than ε, the candidate point was the feature 

point. BRISK feature points on the welding pool images 

are shown in Figure 8. It can be seen that the BRISK fea-

ture points reflected the edge profile well. However, the 

resolution on each layer of scale space calculated by the 

SURF and BRISK algorithms was blurry, which affected 

the accuracy of feature points. It also affected the number 

of feature points detected in the blurry area, created by 

welding pool oscillation.

5.3  KAZE Feature Point Detection

�e additive operator splitting algorithm and the variable 

conductance diffusion method were used to construct 

nonlinear scale space in this study. �e logarithmic steps 

were used in nonlinear scale space to generate the O 

group and S group [21]. Different groups and layers were 

identified by group index o and layer index s, respectively. 

�e corresponding relationship between group, layer and 

scale parameter σ was expressed as follows:

where σ0 was the initial scale parameter, which flat-

tens the original image to reduce the noise induced by 

the arc’s magnetic field. �e relationship between time 

parameter t and scale parameter  σi is:

(10)N =
∑

|I(x) − I(R)| < ε,

(11)
σi(o, s) = σ02

o+s/S
, o ∈ [0, · · · ,O − 1],

s ∈ [0, · · · , S − 1], i ∈ [0, · · · ,O × S − 1],

�e nonlinear scale space is expressed as:

where L is the luminance of the image and Ai is a 

matrix that encodes the image conductivities for each 

dimension.

Combining Eqs. (11) and (13), the KAZE feature points 

on two images captured by cameras 1 and 2 are shown in 

Figure 9. �e results show that this method was effective 

to extract feature points from smooth surface with small 

brightness differences, especially for the white-dotted-

line area.

5.4  SURF-BRISK-KAZE Feature Description and Matching

In order to match the feature points in the SURF, BRLSK, 

and KAZE methods, a descriptor was determined for the 

extracted points. �e details of the descriptor, which is a 

64-dimensional vector, has been discussed in reference 

[19].

�e 64-dimensional vector obtained by the above 

method only included grayscale information of the weld-

ing pool images; the color information of images were 

not considered, which might decrease the matching 

accuracy of welding pool images.

�e information of the original welding pool images 

(color) was much richer than the pre-processed weld-

ing pool images (gray) in Section  4. �e signal interfer-

ence was also included in the original images. To utilize 

the color information of the original images effectively, 

only the information of feature points in Sections 5.1‒5.3 

and their eight neighborhoods were used to improve the 

above 64-dimensional vector. �e steps were as follows:

(1) It was assumed that r, g, b were the values of color 

information for the feature point (x, y). �e value nc was 

the total number of the feature points (x, y) and their 

(12)ti =
1

2
σ
2
i , i ∈ [0, · · · ,O × S − 1].

(13)L
i+1

= (I − (ti+1 − ti) ·

m∑

i=1

AiL
i)−1

L
i
,

Figure 8 BRISK feature points of the welding pool image under the 

arc (240 A, 33 V, 0.6 m/min)

Figure 9 KAZE feature points of the welding pool image under the 

arc (240 A, 33 V, 0.6 m/min)
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neighborhood pixels. Here, r, g, b∈[0, 255], and nc was set 

at 9 in this study.

(2) Calculating the mean values μr, μg, and μb of the fea-

ture point (x, y) and its eight neighborhoods. �e value E 

was the 3D vector composed by μr, μg, and μb. �e equa-

tions were detailed as follows:

(3) Calculating the variances δr, δg, and δb of the feature 

point (x, y) and its eight neighborhoods as follows. F was 

the 3D vector composed by δr, δg, and δb.

(4) Normalizing vector E and F, respectively.

(5) �e normalized mean value vector En and variance 

vector Sn were combined to form a six-dimensional RGB 

color classification descriptor vector Vc.

(6) By substituting Eq. (17) into Vs=(i1, i2,…, i64), the 

descriptor V was expressed as follows:

�e matching process was carried out as follows. A 

feature point P1 (image of camera 1) was compared with 

a feature point P2 (image of camera 2) by calculating 

the Euclidean distance between their descriptor V. �e 

Euclidean distance is:

(14)
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1
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i=1
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1
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n
�
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1
n

n
�
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2,

F = (δr , δg , δb).

(16)







En =

�

µr
255

,
µg

255
,

µ
b

255

�

,

Fn =

�

δr
255

,
δg
255

,
δ
b

255

�

.

(17)Vc =

(

µr

255
,

µg

255
,

µ
b

255
,

δr

255
,

δg

255
,

δ
b

255

)

.

(18)

V =

(

i1, i2, · · · , i64,
µr

255
,

µg

255
,

µ
b

255
,

δr

255
,

δg

255
,

δ
b

255

)

.

(19)dE =

√

(

i′
1
− i′′

1

)2
+

(

i′
2
− i′′

2

)2
+ · · · +

(

δ′
g

255
−

δ′′
g

255

)2

+

(

δ
′

b

255
−

δ
′′

b

255

)2

,

where V′=(i′1, i′2,…, δ′g/255, δ′b/255) is the descriptor 

of P1 and V″=(I″1, I″2, …, δ″g/255, δ″b/255) is the 

descriptor of P2. A matching pair was detected if the ratio 

of their distance to the distance of the second nearest 

neighbor was less than 0.6.

Figure  10 shows the matching pairs obtained by the 

SURF-BRISK-KAZE algorithms whose descriptor was 

64-dimensional. Figure  11 shows the matching pairs 

obtained by the improved 70-dimensional descriptor V. 

�ough the number of mismatching pairs was decreased 

because of the use of V, some mismatching pairs still 

remained, and mismatch elimination was needed.

6  Improved RANSAC Algorithm
�ere were some mismatching pairs (gross errors) in 

the above matching pairs. A random sample consensus 

algorithm was used to eliminate the mismatches in this 

work. �e traditional RANSAC algorithm can complete 

the estimation for the model parameters through data 

iteration and result validation. It can also reduce the 

number of gross errors to increase the matching accuracy 

Figure 10 Traditional SURF-BRISK-KAZE matching pairs and 

mismatching area (240 A, 33 V, 0.6 m/min)

Figure 11 Improved SURF-BRISK-KAZE matching pairs and 

mismatching area (240 A, 33 V, 0.6 m/min)
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[22]. However, the traditional RANSAC algorithm also 

has shortcomings. For example, the iteration time of the 

traditional RANSAC algorithm depends on the experi-

mental data and the valid data rate. When the number 

of valid data is small, the number of iterations of the 

algorithm will increase exponentially because of a large 

number of mismatching pairs, which greatly increases 

the running time of the algorithm. Meanwhile, the initial 

model parameters are calculated based on a subset of the 

experimental data. When the valid data rate of the subset 

is not high, the initial model will be extremely unreason-

able, and the verification of this unreasonable model will 

consume a lot of time, which seriously affects the over-

all efficiency of the algorithm. �e traditional RANSAC 

algorithm was improved as follows.

6.1  Data Preprocessing

�e data pre-processing model was defined as M(P, C). P 

was the matching pairs (P1, P2) obtained by Section 5.4, 

which was written as:

C was the criterion for eliminating mismatching point 

pairs of P, and it was expressed as:

where ki is the ratio calculated by pixel coordinates, and 

k is the median of ki. Δk is the threshold value, which 

was 0.9 in this study. If di* is the square root calculated 

by pixel coordinates, di is the top 80% of di* value from 

small to large. d is the median of di, and Δd is the thresh-

old value, which was 13 in this study. �e ki and di were 

expressed as:

where xi and yi are the pixel coordinates of P1[i] cap-

tured by camera 1, and xj and yj are the pixel coordinates 

of P2[i] captured by camera 2.

To increase the proportion of valid data in the data set 

of P, all the matching pairs were first calculated based on 

Eqs. (22) and (23). Any matching pair that did not satisfy 

Eq. (21) was deleted from the data set of P, and others 

were selected as a new data set of Q. �e Q contained 

enough matching pairs, which can be used to estimate 

the truest homography matrix parameter model as much 

as possible. �e proportion of valid data in the Q became 

larger, which greatly reduces the number of iterations to 

(20)P =
{

P1[i],P2[j]|i = j = 0, 1, · · · , n − 1
}

.

(21)

C = (
∣

∣ki − k
∣

∣ ≤ �k)&&(
∣

∣di − d
∣

∣ ≤ �d),

i = 0, 1, · · · , n − 1,

(22)ki =

yj − yi

xj − xi
,

(23)di =

√

(xj − xi)2 + (yj − yi)2,

calculate the maximum valid data. As a result, the effi-

ciency of the algorithm was improved. �e above work 

completed the pre-purification of the raw data for the 

RANSAC algorithm. Figure 12 shows the matching pairs 

pre-processed by the data pre-processing model. Com-

pared to Figure 11, the number of mismatching pairs was 

decreased.

6.2  Pre-test Model

In the traditional RANSAC algorithm, the subset (S) is 

randomly extracted from experimental data (P) of Sec-

tion  5.4, and the corresponding initial model is esti-

mated by the subset. �e initialization model is tested 

by all the remaining matching points (CPS), which are 

not belong to the above subset. �is circulative pro-

gress needs much verification time because many ini-

tialization models are not reasonable, especially when 

the proportion of mismatching pairs is high.

To increase efficiency of the RANSAC algorithm, a pre-

testing model was proposed to estimate the initial models 

before the traditional testing of RANSAC algorithm. �e 

steps of the pre-testing model were as follws.

(1) n pairs of matching points were randomly selected 

from the new data set (Q) of Section 6.1.

(2) �e improved initial model T was estimated by m 

pairs of matching points, which was written as follows, 

where m ⊆ n:

where, t11, t12,…, t33 are the parameters of T, (x1, y1) 

is the pixel coordinate of P1[i], and (x2, y2) is the pixel 

(24)T =





t11 t12 t13

t21 t22 t23

t31 t32 t33



,

(25)β





x1
y1
1





=





t11 t12 t13
t21 t22 t23
t31 t32 t33









x2
y2
1



,

Figure 12 Matching pairs preprocessed by the data preprocessing 

model (240 A, 33 V, 0.6 m/min)
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coordinate of P2[j]. m is the number of matching pairs 

needed to solve the Eq. (25), which was 4 in this study.

(3) �e remaining n-m pairs were used to verify the 

reasonability of T by the following equation:

where Es is test error calculated by the matching pairs of 

 Cnm. �e threshold tp was 0.6 in this study.

(4) If the Es values of all n-m pairs were less than 

tp, the initial model T was started to be tested by the 

remaining matching points  (CQn) of Section 6.1 as the 

traditional RANSAC algorithm; otherwise, the initiali-

zation model T was discarded directly, and n pairs of 

matching points were re-selected for the next cycle of 

iterative estimation.

�e unreasonable initial models were discarded 

quickly by the above calculation, which reduced the 

detection time to verify the initial model. A flow chart 

of the improved RANSAC algorithm is shown in Fig-

ure  13. �e real detection time of traditional and 

improved RANSAC algorithms are discussed in Sec-

tion  6.3. Figure  14 is the matching point pairs of the 

welding pool under the arc processed by the improved 

RANSAC algorithm.

(26)Es =

n−m
∑

i=1

[

(

x1i
t11x2i + t12y2i + t13

t31x2i + t32y2i + t33

)2

+

(

y1i
t21x2i + t22y2i + t23

t31x2i + t32y2i + t33

)2
]

,

6.3  Estimation of Commutating Time

To obtain at least one subset that could pass through the 

verification of the traditional RANSAC algorithm under a 

certain confidence p (0.95‒0.99), the minimum sampling 

times k must meet the following requirement:

where ω is the proportion of the mismatching pairs in 

P, and mt is the minimum sample number for all subsets 

to calculate the initial model parameters of verification 

which was 4 in this study.

Supposing that the number of P is nP, it takes ts seconds 

to conduct a random sampling from the data set, and it 

takes tc seconds to calculate the initial model. tj is the time 

to test the initial model by one couple of remaining match-

ing pairs. �e total time to test the initial model is (nP−4)tj. 

�erefore, the calculation time Tt of traditional RANSAC 

algorithm with k random sampling times is:

In this study, the average k was 500, ts was 2.21×10−4 s, 

tc was 5.45×10−5 s, and tj was 3.67×10−5 s. �e computer 

processor used was an Intel(R) Core(TM) i7-9750H CPU 

@ 2.60 GHz with a memory of 8 GB.

For the improved RANSAC algorithm, the minimum 

sampling times k′ must meet Eq. (27) as well, where mt is n 

mentioned in Section 6.2. Eq. (28) is modified as:

where T′ is the calculation time of the improved 

RANSAC algorithm, nQ is the number of Q, and ωQ is the 

proportion of the mismatching pairs in Q.

(27)1 − (1 − (1 − ω)mt )k = P,

(28)Tt = k(ts + tc) + k(nP − mt)tj .

(29)

T ′
= k ′(ts + tc) + k ′(n − m)tj + k ′(nQ − n)(1 − ωQ)ntj ,

Figure 13 Flow chat of the improved RANSAC algorithm

Figure 14 Matching pairs of the improved RANSAC algorithm (240 

A, 33 V, 0.6 m/min)



Page 10 of 13Gu et al. Chin. J. Mech. Eng.           (2021) 34:47 

�e time reduced by the improved RANSAC algorithm 

is as follows:

In this study, k′ was 1500. �ough the total time of 

ts and tc was increased if k′ was larger than k, it was an 

order of magnitude smaller than the time for testing the 

initial model. �erefore, the improved RANSAC algo-

rithm reduced a series of unnecessary operations and 

improved the efficiency of the algorithm. While its cal-

culation accuracy was not smaller than that of the tradi-

tional RANSAC algorithm, the values of k′, n, and m were 

not optimal yet and can be optimized in the future.

Compared to the traditional RANSAC algorithm, the 

calculating efficiency in the improved RANSAC algo-

rithm was increased by at least 160% in this study, as 

shown in Table  3, which showed a large potential to 

reduce the calculating time.

7  Reconstruction Results and Validation
�e GMAW experiments were carried out to capture 

pairs of the welding pool images under the arc. �e 

parameters of the welding process are shown in Table 2. 

�e feature-matching points on each pair of welding pool 

images were extracted according to Sections  5 and 6. 

�e world coordinates of the welding pool surface were 

reconstructed according to Section 3. �e results for 240 

A and 33 V are shown in Figure 15.

(30)

�T = Tt − T ′
= (k − k ′)(ts + tc)+

[

k(nP − mt) − k ′(n − m) − k ′(nQ − n)(1 − ωQ)n
]

tj .

7.1  Surface Reconstruction

�e way to transfer the point cloud into the 3D recon-

structed surface was through the LOWESS regression 

smoothing filtering algorithm, which was a local scatter 

weighted estimation algorithm depending on the adja-

cent points [23]. �e algorithm added a sliding window 

on the basis of the least square method. If the sliding 

window width was large, there would be more scattered 

points in the covered window, resulting in a smooth sur-

face of welding pool and loss of large original data infor-

mation. On the contrary, if the sliding window width was 

small, the welding pool surface was rough, which also 

increased the accuracy of reconstructed surface.

In this experiment, the window width was selected 

as 6 pixels based on the comparative tests, which pro-

vided high accuracy for the 3D reconstructed data and 

Table 3 Comparison between the improved RANSAC algorithm and the traditional RANSAC algorithm

Image group Total 
feature 
points

Traditional RANSAC Improved RANSAC Time di�erence
�T  (s)

Increasing
e�ciency
(%)Interior points Rate (%) Algorithm 

time (s)
Interior points Rate (%) Algorithm 

time (s)

1 5900 638 10.81 43.77 858 14.54 12.54 31.23 249.04

2 6501 640 9.84 55.55 790 12.15 18.78 36.77 195.79

3 5817 616 10.59 54.05 764 13.13 19.87 34.18 172.02

4 6434 650 10.10 53.69 771 11.98 19.32 34.37 177.90

5 4698 549 11.69 52.13 701 14.92 19.82 32.31 163.02

6 5454 613 11.24 52.71 744 13.64 19.37 33.34 172.12

7 5472 648 11.84 54.64 973 17.78 20.40 34.24 167.84

8 5650 600 10.62 54.30 943 16.69 19.88 34.42 173.14

Figure 15 Point cloud of the welding pool under the arc

Figure 16 3D reconstruction of the welding pool under the arc

(See figure on next page.)
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produced a smoothly reconstructed surface without 

trimming. �e point with the smallest z value in the point 

cloud was selected as the center of the welding pool. It is 

assumed that the world coordinate of the point was (x0, 

y0, z0), and the final surface reconstruction was the sym-

metric treatment of the smoothly reconstructed surface 

in the plane where y=y0. �e final surface reconstruction 

of Figure 15 is shown in Figure 16. It can be seen that the 

reconstructed welding pool surface was consistent with 

the actual welding pool surface in GMAW.

7.2  Validation

In order to verify the validity of the above feature point 

extracting and matching algorithms for welding pool 

images pairs during GMAW, a verification experiment 

was carried out. �e diameter of silicon nitride tracer 

particle was a little smaller than that of blind hole, so 

the tracer particle could be embedded tightly in the 

workpiece as shown in the Figure  17. �ese tracer par-

ticles would float on the surface of the welding pool 

when the solid metal near the blind hole was melted. 

�is phenomenon was captured by the above binocular 

vision system, as shown in Figure 18. �e feature points 

at the junction of the tracer particle and the welding pool 

can be selected manually, as shown in Figure 18 (yellow 

dots). It was clear that the yellow dots were the correct 

feature matching points. �eir world coordinate values, 

calculated directly by Section 3, can be used to verify the 

accuracy of their neighbor feature matching points (red 

dots in Figure 18) extracted by the above improved algo-

rithms. Here, the heights of the yellow dots and red dots 

were assumed to be similar as they were close to each 

other on the smooth surface of the welding pool, though 

their world coordinates in the x and y directions were 

different.

Table  4 provides a comparison between the heights 

of the yellow dots and red dots. �e maximum absolute 

error in the z direction was less than 0.07 mm, and the 

maximum relative error was smaller than 6.0%. All the 

results indicated that the proposed algorithms men-

tioned above can reconstruct the 3D surface of welding 

pool for GMAW with high efficiency.

8  Conclusions

(1) A new method was proposed to determine the fea-

ture matching of welding pool captured by a bin-

ocular stereo vision system. It included improved 

SURF-BRISK-KAZE algorithms, improved 

RANSAC algorithms, and surface reconstruction 

algorithms, which realized the 3D reconstruction of 

the welding pool surface under the GMAW arc.

(2) �e feature points descriptor was improved by con-

sidering the color information of images, which 

increased the matching accuracy of welding pool 

Figure 17 Tracer particles embedded in workpiece

Figure 18 Tracer particle verification (240 A, 33 V, 0.6 m/min)

Table 4 Comparison between the tracer particle and the matching point pairs

Image group Tracer particles 
( mm)

Matching point 
pair 1 (mm)

Matching point 
pair 2 (mm)

Matching point 
pair 3 (mm)

Maximum abs 
(error) (mm)

Maximum 
relative error 
(%)

1 −1.31727 −1.36893 −1.33676 −1.33862 0.05136 3.92

2 −1.32219 −1.29371 −1.33483 −1.37148 0.05199 3.78

3 −1.19575 −1.23198 −1.23604 −1.12156 0.06419 5.37

4 −1.26499 −1.28316 −1.32741 −1.25829 0.06243 4.93

5 −1.17624 −1.16843 −1.21358 −1.16923 0.03736 3.17

6 −1.42836 −1.47268 −1.43864 −1.43269 0.04432 3.10

7 −1.27823 −1.29906 −1.24084 −1.24821 0.03748 2.93

8 −1.36529 −1.32842 −1.31868 −1.35937 0.04863 3.59
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images. A data preprocessing and pre-test model 

were added to the RANSAC algorithm to improve 

the calculating efficiency of the algorithm.

(3) �e experimental results exhibited high accuracy 

and efficiency of the new method in reconstruction 

of welding pool surface. For the reconstructed data, 

the maximum relative error was smaller than 6.0%.

(4) �e quantitative relationship between welding 

pool surface and weld quality should be established 

based on the experience of a skilled welder, and the 

parallel computing method should be improved by 

the CUDA to realize the real-time 3D reconstruc-

tion of welding pool surface in the future.
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