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Present study addresses the three dimensional flow of Jeffrey fluid. Flow is induced

by a porous stretching sheet. Cattaneo-Christov heat flux model is used to form

energy equation. Appropriate transformations are employed to form system of

ordinary differential equations. Convergent series solutions are obtained. Impact

of pertinent parameters on the velocity and temperature is examined. It is noted

that by increasing the ratio of relaxation to retardation times the velocity compo-

nents are decreased. Temperature distribution also decreases for larger values of

thermal relaxation time. C 2016 Author(s). All article content, except where oth-

erwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4942091]

I. INTRODUCTION

The phenomenon of heat transfer is quite significant in the industrial and biomedical applica-

tions e.g. cooling of electronic devices, nuclear reactor cooling, heat conduction in tissues, energy

production etc. The mechanism of heat transfer has been successfully described by classical Fourier

heat conduction law.1 Main drawback of this model is that it leads to a parabolic energy equation

it means that initial disturbance is immediately sensed by the medium under consideration. This

physically unrealistic feature in the literature is referred as “paradox of heat conduction”. In order to

overcome this enigma, various researchers have proposed alterations in the Fourier’s heat conduc-

tion law. Cattaneo2 introduced relaxation time in Fourier law which represents the time required

for heat conduction to establish in a volume element when temperature gradient imposed across

it. Christov3 further modified the Cattaneo’s model by replacing the ordinary derivative with the

Oldroyd’s upper convected derivative. Tibullo and Zampoli4 applied Cattaneo-Christov heat flux

model to incompressible fluids. Straughan5 applied Cattaneo-Christov thermal convection in hori-

zontal layer of incompressible Newtonian fluid under the effect of gravity. Ciarletta and Straughan6

studied the uniqueness and structural stability Cattaneo-Christov equations. Han et al.7 described

the heat transfer and coupled flow of viscoelastic fluid with Cattaneo-Christov heat flux model.

Cattaneo-Christov heat flux model is used by Mustafa8 to discuss the rotating flow of viscoelastic

fluid bounded by a stretching sheet.

The study of non-Newtonian fluids has gained interest because of their extensive industrial

and technological applications. In view of their differences with Newtonian fluids, several models

of non-Newtonian fluids have been proposed. Materials that do not obey the Newtonian law of

viscosity are non-Newtonian fluid. Materials like apple sauce, drilling muds, certain oils, ketchup

and colloidal and suspension solution are non-Newtonian fluids. The most common and simplest

model of non-Newtonian fluids is Jeffrey fluid which has time derivative instead of convected

derivative. Tripathi et al.9 studied the peristaltic flow of MHD Jeffrey fluid through a finite length

cylindrical tube. Hayat et al.10 discussed the power law heat flux and heat source with radiative
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flow of Jeffrey fluid in a porous medium. Turkyilmazolgu11 analyzed the heat transfer and flow aver

a stretching/shrinking surface near the stagnation point. Shehzad et al.12 examined the influences

of thermophoresis and Joule heating on the radiative flow of Jeffrey fluid with mixed convection.

Das13 studied the heat transfer and slip effects on peristaltic flow of Jeffrey fluid. Flow of Jeffrey

fluid between torsionally oscillating disk is analyzed by Reddy et al.14 Hayat et al.15 investigated the

effects of thermal radiation and variable thermal conductivity on Jeffrey fluid flow. Shehzad et al.16

examined the nonlinear thermal radiation in three dimensional flow of Jeffrey nanofluid.

Now a days fluid flow over a stretching surface has gained importance among researchers

due to its industrial and engineering processes for example in manufacturing and extraction of

polymer and rubber sheets, glass fiber and paper production, manufacture of foods, liquid films in

condensation process etc. Crane17 first of all investigated the stretched sheet flow. Since then various

aspects of stretched flow problems have been investigated by several researchers.18–23 In past most

of the work is on the boundary layer flow with stretching surfaces where stretching velocity is

directly proportional to the distance from the fixed origin. In such procedures simultaneous heating

or cooling and kinematics of stretching have vital impact on the quality of the final product.

In this paper three dimensional flow of Jeffrey fluid is examined by using Cattaneo-Christov

heat flux model. The equations are solved analytically by homotopy analysis method (HAM).24–30

Convergent series solutions are determined. Graphs are plotted and examined for the effects of

interesting parameters on the velocity and temperature.

II. MATHEMATICAL FORMULATION

We study the steady three-dimensional incompressible flow of Jeffrey fluid bounded by a

porous stretching sheet at z = 0. The flow is confined to z ≥ 0. Fluid rotates about z − axis with

angular velocity Ω. The whole system is in a state of rigid body rotation. The sheet is kept at

constant temperature Tw whereas T∞ being ambient temperature such that Tw ≥ T∞. Fluid flow can

be expressed by the velocity field V = [u(x, y, z), v(x, y, z), W ]. For present problem governing

boundary layer equations are as follows:

∂u

∂x
+

∂v

∂ y
+
∂w

∂z
= 0, (1)

u
∂u

∂x
+ v

∂u

∂ y
+ w

∂u

∂z
− 2Ωv =

ν

1 + λ1

(

∂2u

∂z2
+ λ2

(

∂u

∂z

∂2u

∂x∂z
+
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∂z

∂2u
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∂z2
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∂3u

∂x∂z2
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(2)

u
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∂x
+ v

∂v
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(

∂2v

∂z2
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∂3v
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)

))

,

(3)

ρcp

(

u
∂T

∂x
+ v

∂T

∂ y
+ w

∂T

∂z

)

= −∇.q, (4)

where (u, v,w) are the velocities along (x, y, z) direction respectively, ν kinematic viscosity, T

the temperature, cp specific heat, ρ fluid density, λ1 ratio of relaxation to retardation time, λ2

retardation time and q the heat flux satisfying

q + λ3

(

∂q

∂t
+ V.∇q − q.∇V + (∇.V)q

)

= −k∇T, (5)

in which λ3 and k are thermal relaxation time and thermal conductivity of fluid respectively.

Following Christov,3 we omit q by using Eqs. (4) and (5) and obtain
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(6)

Corresponding boundary conditions are

u = Uw(x) = ax, v = Vw(y) = by, w = W , T = Tw at z → 0,

u → 0, v → 0, T → T∞ when z → ∞,
(7)

where a and b are rates constants having dimension T−1. We consider the following transformations

η =



a

ν
z, u = ax f ′(η), v = ayg′(η), w = −

√
aν( f (η) + g(η)), θ =

T − T∞

Tw − T∞
. (8)

Continuity equation is satisfied automatically and Eqs. (2), (3), and (6) and (7) give

f ′′′ + β[ f ′′
2 − f ′′′g′ − f ′′′′( f + g)] + (1 + λ1)[ f ′′( f + g) − f ′

2
+ 2λL2g′] = 0, (9)

g′′′ + β[g′′
2 − g′′′ f ′ − g′′′′( f + g)] + (1 + λ1)[g

′′( f + g) − g′2 − 2λ/L2 f ′] = 0, (10)

1

Pr
θ ′′ + ( f + g)θ ′ − γ[( f + g)2θ ′′ + ( f + g)( f ′ + g′)θ ′] = 0, (11)

f ′(0) = 1, f ′(∞)→ 0, f (0) = S,

g′(0) = α, g′(∞)→ 0, g(0) = 0,

θ(0) = 1, θ(∞)→ 0,

(12)

where λ = Ω/a denotes the rotation parameter, β = λ2a the Deborah number, Pr = ρcpν/k the

Prandtl number, α = b/a the ratio of stretching rates, γ = λ3a the thermal relaxation time and

S = −W/
√

aν the suction/injection parameter.

III. HOMOTOPIC SOLUTIONS

A. Zeroth-order deformation equations

Initial guesses and auxiliary linear operators are taken as follows:

f0(η) = 1 − exp(−η) + S, g0(η) = α(1 − exp(−η)), θ0(η) = exp(−η), (13)

L f = f ′′′ − f ′, Lg = g′′′ − g′, Lθ = θ ′′ − θ, (14)

with

L f

�
c1 + c2eη + c3e−η

�
= 0,

Lg

�
c4 + c5eη + c6e−η

�
= 0, (15)

Lθ

�
c7eη + c8e−η

�
= 0,

in which ci(i = 1 − 8) are the constants.

If q ∈ [0, 1] indicates the embedding parameter and ℏ f ,ℏg and ℏθ the non-zero auxiliary param-

eters then the zeroth order deformation equations are established as follows:

(1 − q)L f [F(η, q) − f0(η)] = qℏ fN f [F(η, q), G(η, q)], (16)

(1 − q)Lg [G(η, q) − g0(η)] = qℏgNg[G(η, q), F(η, q)], (17)

(1 − q)Lθ [ϑ(η, q) − θ0(η)] = qℏθNθ[ϑ(η, q), F(η, q), G(η, q)], (18)
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F(0, q) = S, F ′(0, q) = 1, F ′(∞, q) = 0, (19)

G(0, q) = 0, G′(0, q) = α, G′(∞, q) = 0, (20)

ϑ(0, q) = 1, ϑ(∞, q) = 0, (21)

where N f ,Ng and Nθ are given by

N f [F(η, q), G(η, q)] =
∂3F(η, q)

∂η3
+ β *,

(

∂2F(η, q)

∂η2

)2

−
∂3F(η, q)

∂η3

∂G(η, q)

∂η

−
∂4F(η, q)

∂η4
(F(η, q) + G(η, q))

)

+ (1 + λ1)

(

∂2F(η, q)

∂η2

�
F(η, q)

+G(η, q)
�
−

(

∂F(η, q)

∂η

)2

+ 2λL2∂G(η, q)

∂η
+
- ,

(22)

Ng [G(η, q), F(η, q)] =
∂3G(η, q)

∂η3
+ β *,

(

∂2G(η, q)

∂η2

)2

−
∂3G(η, q)

∂η3

∂F(η, q)

∂η

−
∂4G(η, q)

∂η4
(F(η, q) + G(η, q))

)

+ (1 + λ1)

(

∂2G(η, q)

∂η2

�
G(η, q)

+F(η, q)
�
−

(

∂G(η, q)

∂η

)2

− 2
λ

L2

∂F(η, q)

∂η
+
-

(23)

Nθ [ϑ(η, q), F(η, q), G(η, q)] =
1

Pr

∂2ϑ(η, q)

∂η2
+ (F(η, q) + G(η, q))

∂ϑ(η, q)

∂η

−γ
(

(F(η, q) + G(η, q))2
∂2ϑ(η, q)

∂η2
+
�
F(η, q)

+G(η, q)
� ( ∂F(η, q)

∂η
+
∂G(η, q)

∂η

)

∂ϑ(η, q)

∂η

)

.

(24)

B. mth-order deformation equations

The mth order deformation equations can be written as follows:

L f [ fm(η) − χm fm−1(η)] = ℏ fR f , m(η), (25)

Lg [gm(η) − χmgm−1(η)] = ℏgRg, m(η), (26)

Lθ [θm(η) − χmθm−1(η)] = ℏθRθ, m(η), (27)

fm(0) =
∂ fm(0)

∂η
=

∂ fm(∞)
∂η

= gm(0) =
∂gm(0)

∂η
=

∂gm(∞)
∂η

= θ(0) = θ(∞) = 0, (28)

where the functions R f , m (η) ,Rg, m (η) and Rθ, m (η) have the following forms

R f , m (η) = f ′′′m−1 + β

m−1


k=0

[ f ′′m−1−k f ′′k − f ′′′′m−1−k fk − f ′′′′m−1−kgk − f ′′′m−1−kg
′
k]

+(1 + λ1) *,
m−1


k=0

[ fm−1−k f ′′k + gm−1−k f ′′k − f ′m−1−k f ′k] + 2λL2g′m−1
+
- ,

(29)

Rg, m (η) = g′′′m−1 + β

m−1


k=0

[g′′m−1−kg
′′
k − g

′′′′
m−1−kgk − g

′′′′
m−1−k fk − g′′′m−1−k f ′k]

+(1 + λ1) *,
m−1


k=0

[gm−1−kg
′′
k + fm−1−kg

′′
k − g

′
m−1−kg

′
k] − 2

λ

L2
f ′m−1

+
- ,

(30)
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Rθ, m(η) =
1

Pr
θ ′′m−1 +

m−1


k=0

[ fm−1−kθ
′
k + gm−1−kθ

′
k] − γ


fm−1−l

l


j=0

f l− jθ
′′
j + gm−1−l

l


j=0

gl− jθ
′′
j

+2 fm−1−l

l


j=0

gl− jθ
′′
j + fm−1−l

l


j=0

f ′l− jθ
′
j + fm−1−l

l


j=0

g′l− jθ
′
j + gm−1−l

l


j=0

f ′l− jθ
′
j

+gm−1−l

l


j=0

g′l− jθ
′
j


,

(31)

χm =


0, m ≤ 1

1, m > 1
. (32)

The general solutions ( fm, gm, θm) comprising the special solutions ( f ∗m, g
∗
m, θ

∗
m) are

fm(η)= f ∗m(η) + c1 + c2eη + c3e−η, (33)

gm(η)= g∗m(η) + c4 + c5eη + c6e−η, (34)

θm(η)= θ∗m(η) + c7eη + c8e−η, (35)

where the constants ci(i = 1 − 8) through the boundary conditions (28) have the values

c1 = −c3 − f ∗m(0), c3 =
∂ f ∗m(0)

∂η
, c4 = −c6 − g∗m(0),

c6 =
∂g∗m(0)

∂η
, c8 = −θ∗m(0), c2 = c5 = c7 = 0.

(36)

IV. CONVERGENCE ANALYSIS

Homotopy analysis method (HAM) is a powerful technique to solve linear and non-linear prob-

lems. HAM involves embedding auxiliary parameters which give the freedom to adjust and control

the convergence regions. The auxiliary parameters ℏ f ,ℏg and ℏθ have vital role for convergence of

series solutions. We plotted ℏ− curves at 10th order of approximations (see Fig. 1a, 1b). Admissible

values of auxiliary parameters here are −0.8 ≤ ℏ f ≤ −0.4,−1.1 ≤ ℏg ≤ −0.7, −1 ≤ ℏθ ≤ −0.5.

Also the HAM solutions converge in the whole region of η(0 ≤ η ≤ ∞) where ℏ f = −0.4,ℏg = −0.7

and ℏθ = −0.5.

Table I demonstrate the convergence of velocities along the x− and y − directions and tempera-

ture. Presented values shows that 15th order of approximations are sufficient for f ′′(0) and θ ′(0) and

16th order of approximations are enough for the convergence of g′′(0).

V. RESULTS AND DISCUSSION

A. Dimensionless velocity profiles

Figs. 2 – 6 show the behavior of ratio of relaxation to retardation times λ1, Deborah number

β, rotational parameter λ, stretching rates ratio α and suction/injection parameter S on both the x−
and y − components of velocity f ′ and g′. Effects of λ1 on velocities f ′(η) and g′(η) are depicted

in Fig. 2. We observed that for increasing λ1 velocity is decreasing in both directions. An increase

in λ1 corresponds to increase in relaxation time it means particle needs much more time to come

back from perturbed system to equilibrium system consequently fluid velocity decreases. Fig. 3

presents the impact of β on the x− and y − component of velocity. The velocity profiles f ′(η)

and g′(η) and related momentum boundary layer thicknesses increase for larger Deborah number β

because increase in retardation time enhances elasticity. Since elasticity and viscosity are inversely

proportional to each other so decrease in viscosity consequently enhances the fluid velocity. Fig. 4
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FIG. 1. ℏ− curves for f ′′(0), g ′′(0) and θ′(0) when λ1= 0.3,Pr= 1.4, β = 0.5, λ = 0.01,γ = 0.1, L =α = S = 0.4.

displays the behavior of velocity profiles for increasing rotation parameter λ. As the rotation param-

eter increases, the velocity profile along the x− direction increases while the velocity profile along

the y − direction decreases. This is because the rotation parameter represents the Coriolis force

which leads to accelerate the fluid motion. Fig. 5 shows the impact of stretching rates ratio on the

velocity profiles f ′ and g′. Increasing values of α indicates that rate of stretching is increasing along

y − direction so that velocity profile g′ is increasing and f ′ shows decreasing behavior. Influence

of suction/injection parameter S on f ′ and g′ is displayed in Fig. 6. Since suction leads to draw the

amount of fluid particles therefore the velocity fields f ′ and g′ are decreased.

TABLE I. Convergence of solutions when Pr= 1.4, λ1= 0.3, β = 0.5, λ = 0.01,γ = 0.1 and L =α = S = 0.4.

Order of approximation − f ′′(0) −g ′′(0) −θ′(0)

1 1.0720 0.6445 1.0340

5 1.0570 1.4740 1.1440

10 1.0320 2.0070 1.1970

14 1.0330 2.1710 1.2080

15 1.0320 2.1890 1.2090

16 1.0320 2.1980 1.2090

18 1.0320 2.1980 1.2090

20 1.0320 2.1980 1.2090
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FIG. 2. Behavior of λ1 on f ′(η) and g ′(η).

FIG. 3. Behavior of β on f ′(η) and g ′(η).

FIG. 4. Behavior of λ on f ′(η) and g ′(η).

B. Dimensionless temperature profiles

Figs. 7–11 show the behavior of Prandtl number Pr, thermal relaxation time γ, stretching

rates ratio α, rotational parameter λ and ratio of relaxation to retardation times λ1 on temperature

profile θ(η). Fig. 7 shows the temperature profile for increasing Prandtl number Pr. For increasing

Prandtl number Pr thermal diffusivity decreases so temperature profile decays. Influence of thermal
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FIG. 5. Behavior of α on f ′(η) and g ′(η).

FIG. 6. Behavior of S on f ′(η) and g ′(η).

FIG. 7. Behavior of Pr on θ(η).

relaxation time on fluid temperature can be analyzed from Fig. 8. There is a decrease in temperature

and thermal boundary layer thickness when γ enhances. This is due to the fact that as we increase

γ particles show non-conducting behavior i.e. particles need more time to transfer heat to its neigh-

boring particles as a result temperature decreases. Fig. 9 shows the influence of stretching rates

ratio α on temperature profile. We observed that temperature decreases when α is increased because
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FIG. 8. Behavior of γ on θ(η).

FIG. 9. Behavior of α on θ(η).

FIG. 10. Behavior of λ on θ(η).

for increasing α fluid velocity increases it means there is less resistance for fluid motion so less

heat produces. Also Fig. 10 depicts that for higher value of rotational parameter λ the temperature

profile θ(η) increases. For increasing values of λ1 fluid velocity decrease which shows that there is

more resistance for fluid flow as a result large amount of heat produces consequently temperature

increases (see Fig. 11).
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FIG. 11. Behavior of λ1 on θ(η).

VI. CONCLUSIONS

Three dimensional flow of Jeffrey fluid by considering Cattaneo-Christov heat flux model over

a porous stretching sheet is studied. Key points are summarized as follows:

• Velocity profiles f ′ and g′ are decreasing functions of ratio of relaxation to retardation times

and increasing function of Deborah number.

• Temperature profile decreases with the increase in Prandtl number and thermal relaxation

time.

• Stretching rates ratio and rotational parameter have opposite impact on temperature profile.

• Influences of embedded parameters is found qualitatively similar in both Fourier and Cattaneo-

Christov heat conduction models.
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