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Abstract

Newly developed 3-D tomographic techniques permit acquisition of quantitative

materials data for input to structure-property models. At the mesoscale, techniques

that enable sampling of larger material volumes provide information such as grain size

and morphology, 3-D interfacial character, and chemical gradients. However,

systematic approaches for determining the characteristic material volume for 3-D

analysis have yet to be established. In this work, the variability in properties due to

microstructure is discussed in the context of a methodology for defining volume

elements that link microstructure, properties, and design. As such, we propose a 3-D

sampling methodology based on convergence of microstructural parameters and

associated properties and design considerations.
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Background

With the dramatic increases in capability of 3-D tomographic techniques in the past

decade [1-11], it is now possible to acquire quantitative information on material struc-

ture for higher fidelity property models. Tomographic data can be acquired across many

lengthscales, using techniques such as atom probe tomography, transmission electron

microscope tomography, focused ion beam serial sectioning, femtosecond laser tomog-

raphy, microtomes, and both benchtop and synchrotron x-ray techniques. However,

protocols for gathering 3-D data, in terms of defining representative volume elements and

statistical sampling approaches, remain poorly defined for most engineering materials

and their corresponding properties.

Simplified volumetric representations of materials are often made in an attempt to

reduce the amount of data being passed into a component design process. Examples

of these volumetric reductions include representative volume elements (RVEs) [12,13],

statistical volume elements (SVEs) [14,15], and statistically equivalent representative vol-

ume elements (SERVE) [16-18]. Criteria for the degree of volumetric reduction are often

linked to continuum modeling assumptions, convergence of a given property, or statisti-

cal representation of specific microstructural features. Existing approaches have defined

specialized RVEs that are augmented sets of sampled volume elements which are stati-

cally selected to be representative, in aggregate. Statistical representative volume element

sampling has been proposed and applied [15,19-21] to materials such as titanium and

fiber composites.
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Engineering materials possess microstructural features across a wide spectrum of

lengthscales that determine the property responses. Figure 1 shows the approximate

lengthscales at which material properties (e.g., elastic modulus, creep, and fatigue) are

controlled and the corresponding volume element size necessary to characterize them.

The range in requisite volume element sizes is rooted in the types, sizes, and varia-

tion in the microstructures that dictate the material property responses. The property

responses can be categorized as one of the following: (1) structure insensitive - properties

mainly being described by the atomistic characteristic of the material, (2) dependent on

the ‘mean’ structure - due the fact that they are dependent on the aggregate microstruc-

tural features and are relatively ‘flaw insensitive’, and (3) having dependence on the

‘extremes’ of microstructures - these are properties that depend on microstructures

that are statistically rare and require very large material volume element sizes, sophis-

ticated combinations of volume element sampling, or may require volumes entirely too

large to quantify. In the case of properties such as fatigue, which may rely on very rare

microstructural features, extreme value statics can be employed [22,23].

Even when employing existing structure-property models, it is still very difficult to

precisely select the correct tomographic volume size for collection of experimental

information that is statistically representative, can satisfy the requirements of homog-

enization theory, and is appropriate for the design of engineering components. We

propose a method to quantitatively define volume elements that can be linked directly to

microstructures/properties/design elements of interest with a finite range over which the

volume element is valid.

The representative volume element

To properly describe material properties and associated constitutive response, it is neces-

sary to select a representative volume element for analysis. Typically, RVEs are defined as

Figure 1 Material properties require differently sized material volume elements to accurately

describe them. Properties can be categorized as one of three types: (1) structure insensitive - properties

mainly being described by the atomistic characteristic of the material, (2) dependent on the mean structure -

due the fact that they are dependent on the aggregate microstructural features and are relatively flaw

insensitive, and (3) having dependence on the extremes of microstructures - these are properties that

depend on microstructures that are statistically rare and require very large material volume element sizes.
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a conveniently sized volume which is smaller than themacroscopic sample of interest, but

large enough to be representative of thematerial as a whole and therefore valid for contin-

uum homogenization assumptions. The breadth of these definitions are well summarized

by Gitman [12], with most falling into one of two categories: (1) microstructure-based

descriptions and (2) mechanics-based descriptors. RVEs often are defined to be of a

volume that is large enough to have constitutive material properties, often only elastic

properties, but small enough to be computationally tractable.

For mechanics problems, often RVEs are sized so that the Hill conditions [13,14] are

met. These conditions are met when the property of interest becomes independent of

RVE size, according to one of the following boundary conditions: uniform displacement,

uniform traction, displacement-traction, or periodic. As described by Qidwai [19], RVEs

are commonly estimated by tracking property convergence as a function of increasing

volume element size. They also note that the RVE dataset size often is collected and then

(erroneously) used for many or all material properties. For specific applications, these

definitions are useful, but not in design cases which require many material properties to

be considered.

Limitations of the RVE

Continuummechanics RVE definitions require that a volume element size randomly sam-

pled from the bulk will have uniform material property response. Different properties

have a dependence on microstructures which exist at specific length scales. For exam-

ple, the elastic modulus has a strong dependence on interatomic bonding (atomic scale)

and grain structure/texture (the mean structure at the mesoscale), whereas fatigue life

can have a dependence on distributions of pores or other extrinsic material flaws (the

extremes of structure at the mesoscale). Fatigue life would therefore require a much larger

volume element to be appropriately modeled, as shown in Figure 1. It would then follow

that an RVE size for the property of elastic modulus should not be used for modeling

fatigue life. The discrepancies in types of RVE definitions illustrates the need for a volume

element description that is better linked to the material parameters of microstructures

and properties.

The RVE strategy can become complicated when the microstructures that govern the

property or properties of interest span across lengthscales. In such a case, the RVE would

need to be large to define mesoscale-sized features such as dendrites, grain texture, and

shrinkage pores, while simultaneously having finer-scale microstructural features, such

as precipitates and carbides. This strategy is problematic because it pushes the limits of

the capabilities of existing tomography tools and computational methods. As such, one

would prefer to decouple the fine and coarse resolution systems into separate tomography

experiments. Similar types of decoupled methods have become popular with hierarchi-

cal modeling systems [24,25], although these models often only take average parameter

inputs from each of the RVEs. A distinct benefit of using 3-D datasets for inputs to

microstructure modeling is the ability to directly input microstructure descriptors that

contain more information than single value parameters; examples of this include mor-

phological parameters [26-28], shape parameters [29], and microstructure distribution

functions [30].

New tools for gathering larger volumes of material in situ in a SEMhave been developed

recently [11,31,32]. One such tool, the TriBeam system [11], uses ultrashort femtosecond
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laser pulses to removematerial through a layer-by-layer ablation process. This tool allows

for the gathering of 3-D datasets either using established FIB serial sectioning [3] or by

femtosecond laser ablation, which produces datasets 3 orders of magnitude volumetri-

cally larger in time periods ranging from a few hours to a few days. The access to these

substantially larger 3-D datasets motivates new approaches for probing and analyzing

material volume elements. Here we use datasets generated by this new technique to

address the volume element challenge.

Methods

First, we describe new volume element definitions that connect microstructure and prop-

erty level descriptors with standard modes of component design. Then two sampling

methods are described which (1) bound convergence criteria and the corresponding esti-

mates of variability and (2) compare sampled volume elements from different component

locations. Examples of the application of these methods will be described in ‘Results’

section. The ability of the new TriBeam technique to gather mesoscale-sized datasets

appropriate for a range of mechanical properties is discussed.

Volume element definitions

The representative volume element is not typically clearly defined for microstructural

representation, compared to property representation. As such, we define an infrastruc-

ture that connects the volume element concepts from the materials realm to the design

domain, with emphasis given to building hierarchically on materials descriptors. These

volume element definitions will be described presently, starting with the most funda-

mental microscopic descriptors and then moving up to the macroscopic scale. The most

basic volume elements are defined as microstructural volume elements (MVEs), which

have volumes that scale with the microstructural features of relevance. Examples of struc-

tural features that may constrain the size of the MVE include grain size, precipitate

volume fraction, dendrite spacing, texture, and precipitate size. They can be defined as

average quantities, distributions, or scalar quantities depending on the requirements of

the structure-property models being used. Often, MVEs can be one, two, or n-point

descriptors, which are covered in detail elsewhere [21,33]. Next, there are property volume

elements (PVEs), which are linked to MVEs by existing or yet to be developed structure-

property models and therefore have sizes that scale with the microstructure volume

elements on which they depend. Examples of properties that define the PVE are yield

strength, elastic modulus, thermal conductivity, and permeability, which will be discussed

as example cases in ‘Results’ section. Contrary to intuition, PVEs are not simply defined

as the maximum size of their dependent MVEs; this will be more rigorously addressed

later in the paper. The design volume element (DVE) is composed of the volume of an

engineering component being designed or alternatively as a sub-region of the component

of interest. For example, an engineering component may be designed to remain elastic

over its entire volume, except for a small volume of material located adjacent to a stress-

concentrating notch. In this event, theMVE and PVE for the elastic modulus would apply

to the bulk of the component and, for example, the yield strength PVE would then be used

to size the notch. Therefore, the DVE is specific to the component and its anticipated

application. A schematic of the relations of the MVE/PVE/DVEs is shown in Figure 2,

with example structure-property models inset within the connectivity between MVE and

PVE, and example MVE and PVE definitions labeled within the boxes.
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Figure 2 Material volume elements can be divided into a hierarchy which is tiered based on their

dependence. On the top tier, examples of selected MVE are shown with their relative expected sizes

(conveyed by box size). On the middle tier are PVEs, which have dependence on MVEs. Next to the arrows

indicating the dependencies are the structure-property relations which model the expected relationship

between the MVEs and the PVEs. Design volume elements are displayed on the lowest level. A DVE is defined

for specific PVEs, over which it has been validated for by means of property convergence. The DVE size will be

determined based on the geometric effects of the components that are being designed.

The volume element definitions presented in this section can be used in the following

two ways: (1) a DVE volume can be defined as the size at which point all MVEs and

PVEs converge; (2) in the event that the DVE is instead limited by the physical design

constrains of the part, then alternately the variability of the MVEs and PVEs applicable

to the design problem can be assessed to provide information for the minimum material

property design limits. In other words, the DVE size limits the problem and therefore the

variability in PVEs at the prescribed size can be evaluated. Examples of these methods

will be given in the ‘Results’ section.

Sampling for convergence size

Two distinct materials sampling methods are presented to define volume elements for

MVEs or PVEs. The first method is used to randomly sample n volumes of equal size

across a range of increasing volume sizes (V1, V2, . . . , Vi) in order to determine the vol-

ume Vc at which microstructure or property convergence occurs, shown in Figure 3. This

method has been applied to materials such as tungsten copper (WCu) composite, using

the MVEs of volume fraction (Vf) and surface area to volume ratio (Sv) for the PVEs of

permeability (K ), and polycrystalline Young’s modulus (E) which is shown in more detail

in ‘Results’ section and in [34]. Convergence of these MVEs or PVEs was determined

using a standard 99% confidence interval bound (to be within 5% of the mean), shown in

Figure 4, and applying statistical hypothesis tests, such as the t test and z test. For exam-

ple, the t test confidence interval (CI) around the sampled volume fraction average, Vf, is

defined as

CI = Vf ± t∗
σVf√
n

(1)
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Figure 3 A sampling method for determining variability of a microstructure or property as a function

of volume element size. The plot in this figure shows the variability in volume fraction measurements for

volume elements ranging in sizes from 5 to 65 µm on edge at 5 µm intervals. In this example, for each discrete

sampling box edge size, 20 samples were collected randomly from within a large (515 × 620× 250 µm) 3-D

dataset of WCu composite [34]. The variability is conveyed as the vertical range of the individual measurements

for a specific volume element size. Surface reconstructions of the WCu interfaces are shown in the corners of

the plot with arrows indicating their corresponding volume fraction measurement on the plot.
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Figure 4 Plots of microstructural and property descriptors are shown for aWCu composite. The

measured microstructure parameters are surface area to volume ratio (Sv) and volume fraction Cu (Vf). The

properties calculated are elastic modulus (E) using the rule of mixtures and permeability (K) using the

Kozeny-Carmen relation (see Equation 2). Convergence of each property is shown for a 99% confidence

interval, which is explained in more detail elsewhere [34]. The variability in K is greater than E, due to its

dependence on both Vf and Sv .
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where σVf is the sampled standard deviation in Vf, t
∗ is evaluated from the t distribu-

tion for the desired confidence index, and n is the number of randomly sampled volumes.

Furthermore, the confidence interval can be expressed in terms of the coefficient of vari-

ation
(

Cv = σVf/Vf

)

. This general methodology of tracking convergence has been used

regularly in problems such as random composites [35], ice cream [36], hydrided Zircaloy

cladding [37], and theWCu composite discussed in this research.

Sampling for rare or site-specific structural features

The second method for sampling is more relevant for properties that require volume

element sizes which are inaccessible due to amismatch between the capabilities of tomog-

raphy and the volume to be sampled or require sampling from site-specific locations.

Examples of rare features that can be interrogated include interconnect defects in elec-

tronics components and porosity in cast metals. Examples of site-specificmicrostructural

features include grain boundaries or specially oriented crystals. Using a tool such as the

TriBeam [11] or a dual-beam focused ion beam (FIB), targeted dataset acquisitions can

be made from multiple locations within a sample, shown schematically in Figure 5.

It is often of interest to collect datasets which are spatially located near design features

which are known to accelerate events leading to failure or be deleterious to local material

properties. Stress concentrators such as notches or cracks are particularly detrimental

under fatigue and static loads [38] where the local structure and properties are of strong

interest. In such cases, one would like to measure the microstructure features and local

properties nearby the geometric irregularity that will be preferentially sampled by the

design feature. It is also important to consider cases where the design-imposed geometric

constraints interrogate a volume that is much smaller than themicrostructure or property

volume elements.

Figure 5 Samplingmethod for use with extremely large property or microstructure volume elements

(MVEs or PVEs). A component can be randomly (or strategically) sampled to find long range variation in

microstructure or to capture ‘rare’ features. In this methodology, a volume element size may be chosen that

is not fully converged but sampled often enough to define the rare events.
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This method of sampling for rare structures was employed to gather large 3-D datasets

from a high-strength steel containing widely spaced titanium nitride (TiN) inclusion

phases that have sizes ranging from 1 to 10 µm at volume fractions of 0.01% to 0.05%.

During crack advance, the TiN inclusions are deleterious to fracture toughness, a material

property which has a large PVE. TiN 3-D datasets were gathered from many loca-

tions on a compact tension sample, collecting different plastic zone-sized volumes that

a crack tip would sample during crack propagation [39]. These datasets were then used,

in aggregate, to measure the various spatial distributions of TiN inclusions in a high-

strength steel and assess how the TiN inclusions contribute to the variability in fracture

toughness.

Results

The MVE/PVE/DVE hierarchy has been designed to connect the existing structure-

property relations (models) with component design architecture. In the following

sections, we demonstrate its use for several sample systems with 3-D data gathered by

femtosecond laser-aided tomography in both the vacuum chamber (TriBeam) and in

ambient laboratory air with optical imaging.

MVE and PVE variability

WCu composite datasets were collected using the TriBeam [11] in less than 48 h with

volumes as large as 615× 525× 250 µmwith a 250-nm slice thickness [34]. The TriBeam

uses a femtosecond laser to ablate sections of material at rates that are 4 to 5 orders of

magnitude faster than the standard focused ion beam source available inmany dual-beam

FIB microscope system. The resulting image stacks from the tomography experiments

are composed of 100s to 1000s of secondary electron images, which were segmented,

registered, and reconstructed in 3-D.

Two different compositionWCu datasets were collected using the TriBeam system [34]

and sampled to analyze the convergence of MVEs and PVEs, shown in Figure 4. Samples

were collected by randomly selecting volumes at 5µm intervals between 5 and 65µm

on the edge for a W-10 wt.% Cu composite dataset and 5 to 160µm on edge for a W-

15 wt.% Cu composite dataset. A total of 20 random samples were taken for each volume

in order to calculate the variability in two microstructural parameters and two material

properties. A sensitivity study was performed to determine the number of samples nec-

essary for variability analysis and the results are shown in Figure 6. These data show that

for n (number of randomly sampled volume elements) greater than 5 to 10, variability

plateaus; therefore, all analyses were performed at 20 samples per volume. Figure 4 shows

the average value of each of 20 samples plotted as solid squares, for both W-10 wt.% Cu

and W-15 wt.% Cu composites, with the standard deviations in the sample sets indicated

with bar lines for volume fraction (Vf), surface area to volume ratio (Sv), permeability (K ),

and polycrystalline effective elastic modulus (E). Themicrostructural or property average

values that the data are converging toward are shown as a horizontal dotted line, while

the converged volume element size (with 99% confidence interval to be within 5% of the

mean) is shown as a vertical solid line. The MVEs (Vf and Sv) converge faster than the

PVEs (K and E), as illustrated by the positions of the vertical lines in Figure 4. Also, the

aggregate-converged PVE size is non-intuitively larger than the largest dependent MVE

convergence size. This result demonstrates the compounding variability that accrues with
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Figure 6 Unit of normalized variability, coefficient of variation for K. Plots showing a unit of normalized

variability, coefficient of variation (CV = σsample

µsample
), for calculated permeability (K) as a function of sampling box

size for sampled sets of size n = 5, 15, 25, and 35. Two WCu composite materials are shown, 10 and 15 wt.%

Cu. The number of samples collected at each volume element box size has little effect on the variability

above n = 5 or 10 samples.

multiple MVE dependence of a PVE. Linking the predicted MVE variability at a specified

PVE size will be shown to be a valuable tool in ‘Discussion’ section.

Error analysis, which is well detailed elsewhere [40], can be also be performed for many

existing analytical structure-property models to determine the uncertainty in a sam-

pled property average. For example, the variability in permeability (K ), as defined by the

Kozeny-Carmen relation,

K =
V 3
f

5S2V
(2)

where Vf is the volume fraction Cu, and SV is the surface area to volume ratio which can

be represented as

σK =

√

(

∂K

∂Vf

)2

σ 2
Vf

+
(

∂K

∂SV

)2

σ 2
SV

+ 2
∂K

∂SV

∂K

∂Vf
σSVVf (3)

where σ terms represent standard deviation and σSVVf is the covariance of the two

MVEs. In Figure 7, the uncertainty has been plotted with and without the covariance

term, σSVVf , which is only necessary for a PVE (e.g., K ) that has MVEs that are code-

pendent (e.g., Vf and SV). Notably, the uncertainty calculation with the covariance term

included has a better fit with the sampled data volume, suggesting that the MVEs of Vf

and SV are both dependent on similar microstructural features and lengthscales, which

is more clearly shown in the standard deviation plots of the same three calculations in

Figure 8. Therefore, error analysis can be used to estimate PVE sizes from MVEs where

the structure-property relation is analytically defined, whereas the PVE size must be

determined by direct measurements of variability in the property from sampled volumes

in all other cases. For example, error analysis requires a different approach in more com-

plicated structure-propertymodeling relations such as numerical simulations of fluid flow

or plasticity models that rely on non-analytical solutions or have stochastic components.

Design volume elements

Design volume elements (DVEs) are component specific. Consider for example the use

of the WCu composite in a non-structural thermal protection application where ablative

cooling via vaporization of Cu is required. Assuming stresses are thermal and well below
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Figure 7 Plot of the average permeability K. Average permeability K is plotted in three different ways as a

function of sampling box edge size, for WCu composites with 10 and 15 wt.% Cu. (top row) The mean

permeability with tails showing one standard deviation. (middle row) The mean permeability with variability

shown using error analysis performed on the Kozeny-Carmen permeability structure-property relation with

and without (bottom row) the covariance term included. The error analysis (bottom) with covariance very

closely describes the variability from the calculated K (top row).

the yield strength of the tungsten phase, the two primary properties of interest would

have elastic modulus and permeability.

A volume element dependency chart similar to Figure 2 can be constructed for the

DVE for the described thermal protection application, shown in Figure 9. This example

shows the magnitude dependence in the amount of variability in the elastic modulus as
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Figure 8 Plot of the standard deviation in the data calculated in Figure 7. Standard deviation in the data
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that the error analysis calculation without the covariance parameter changes the volume at which the PVE

would converge, as shown in the 15 wt.% Cu WCu composite. A 99% confidence interval bound line has

been drawn to indicate when the probably of being within 5% of the population mean, µK occurs.
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Figure 9 Hypothetical DVE hierarchy. A hypothetical DVE hierarchy constructed for a WCu composite that

would be applicable for an ablatively cooled thermal protection application. The variability of each PVE is

compounded by the type of dependencies it has on MVEs. In this example, permeability K is dependent on

Vf and Sv through the Kozeny-Carmen relation and E is dependent on Vf by the rule of mixtures.

a function of Vf and the variability in permeability with both Vf and Sv. In this appli-

cation, a DVE of size greater than the combined variability of both the elastic modulus

and permeability will be necessary. Using the convergence data shown in Figure 4, then

the DVE volume required for the W-10 wt.% Cu composite would be > 65µm on edge

and the W-15 wt.% Cu composite volume would be > 90µm on edge for convergence in

both properties. However, if a smaller volume is selected, the variability of the properties

can be determined for the specified volume as indicated by the bar widths in Figures 3

and 4. For example, if a DVE was determined to be 60µm on edge in the W-15 wt.% Cu

dataset, then 1 standard deviation from the mean ranges between 0.064 and 0.078, with a

minimum permeability of 0.05. One can imagine that a larger set of properties would be

required in other applications, i.e., yield strength, elastic modulus, fatigue strength, and

permeability in this event the DVE would likely be even larger.

Discussion

RVEs used in design often assume uniform material properties and typically have sizes

based only on mechanics considerations. However, to predict properties with a pre-

scribed degree of confidence, it is important to account for the distribution of each of the

microstructural features that influence the property of interest. Therefore, microstruc-

tural variability, shown in Figure 10, must be included in the property calculation in
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Figure 10 Coefficient of variation for two MVEs and two PVEs as a function of sampling volume. The

coefficient of variation, a unit of normalized variability (CV = σsample

µsample
), is plotted for two MVEs and two PVEs as

a function of sampling volume for WCu composites with 10 and 15 wt.% Cu. A horizontal line is drawn at the

99% confidence interval bound for the sample mean to be within 5% of the population mean (µK ). The

intersection of this confidence interval line and the data points show the converged volume size for the each

MVE or PVE. The PVEs of elastic modulus (E) and permeability (K) converge at rates that are not coincident

with the MVEs of surface area to volume ratio (Sv) or volume fraction Cu (Vf).

order to correctly predict the variability in material response and the lower bounds of

the property. For analytically defined structure-property models such as the permeability

PVE, shown in ‘Results’ section, convergence can be predicted using error analysis (see

Equation 3). Furthermore, variability in microstructure must also be considered when

specific design geometries are introduced, such as notches, which will create higher local-

ized stresses. Mechanics calculations which have included material properties have been

applied in works such as those by Lazzarin and Berto [38], where the material toughness

was incorporated with the standard notched crack tip strain field calculation in order to

resolve fatigue life calculations. We assert that models such as this could be enhanced

with the use of converged material and property volume element calculations, which can

define a range of variability in material parameters that can be directly input tomechanics

calculations such as these.

Large 3-D datasets are often either not computationally tractable or collection is

not feasible experimentally. In either of these situations where the microstructure or

property volume element (MVE or PVE) may not have converged, statistical analysis

can be applied. For average properties, one can apply distribution assumptions (typ-

ically Gaussian) and predict the variability expected for the non-converged dataset.

For example, if a dataset was gathered at a volume smaller than the converged sizes

shown in Figure 4, then the analysis shown in ‘Sampling for convergence size’ section

can be applied with an assumption of a 99% (or other) confidence interval to pre-

dict the approximate volume necessary for convergence. Furthermore, the expected

variability in the measured microstructure or property parameters at the collected

dataset volume element size can be inferred from the confidence interval bounds.

However, this methodology will not be predictive for properties that rely on extreme

value microstructure descriptors, such as fatigue, except in cases where the microstruc-

tural distribution has been well characterized [20,23,41-43]. Finally, we note that the

rapid advancement of 3-D tomography techniques will increasingly enable the collec-

tion of microstructural datasets of large enough volumes to properly bound material
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properties as well as enable the development of improved property models for a range of

materials systems.

Conclusions

Based on the above results, we have derived the following:

• Amethod for categorizing and quantifying volume elements based on
microstructure, properties, and design has been presented (MVE, PVE, and DVE).

• Sampling methods for determining convergence of MVEs and PVEs are presented for
the case of a WCu 3-D dataset.

• PVEs converge (variability decreases to a specified confidence interval) at rates that
are greater than those of their MVE dependencies.

• MVEs and PVEs converge at different rates and sizes; therefore, a volume element
should only be used to model properties for which it has been validated.

• Microstructural volume elements that are smaller than the converged size can be
useful to calculate the expected variability for that volume.
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