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Abstract—Small pulmonary nodules are a common radio-
graphic finding that presents an important diagnostic challenge in
contemporary medicine. While pulmonary nodules are the major
radiographic indicator of lung cancer, they may also be signs of
a variety of benign conditions. Measurement of nodule growth
rate over time has been shown to be the most promising tool in
distinguishing malignant from nonmalignant pulmonary nodules.
In this paper, we describe three-dimensional (3-D) methods for the
segmentation, analysis, and characterization of small pulmonary
nodules imaged using computed tomography (CT). Methods for
the isotropic resampling of anisotropic CT data are discussed.
3-D intensity and morphology-based segmentation algorithms are

Henschke

nature of tomographic images, especially those produced in
full-lung scans in which nodules are detected. In such scans, the
resolution in the axial dimension is typically 10-20 times more
coarse than the in-plane resolution. Another reason for the
use of 2-D metrics is that these lesions have traditionally been
detected, measured, and characterized on chest radiographs.
The extension of these 2-D methods to a newer imaging
modality was more intuitive to most radiologists.
Two-dimensional metrics have been used in both refining
nodule candidates in detection algorithms, as well as in the

discussed for several classes of nodules. New models and methodanalysis of identified nodules, toward the prediction of ma-

for volumetric growth characterization based on longitudinal CT

studies are developed. The results of segmentation and growth

characterization methods based orin vivo studies are described.
The methods presented are promising in their ability to distinguish
malignant from nonmalignant pulmonary nodules and represent
the first such system in clinical use.

Index Terms—Classification, mathematical
moments, pulmonary nodules, segmentation.

morphology,

. INTRODUCTION

lignancy. Gigeret al. [2] reported the early use of automated
2-D nodule metrics, including perimeter, area, compactness,
and circularity. Toshiokat al. [3] later added mean density
and variation measures. Texture measures were used by
McNitt-Gray et al. [4]. 2-D nodule segmentation and growth
analysis has also been described [5], [6].

More recently, three-dimensional (3-D) measures of nodule
volume, shape, and surface characteristics have been described
in the literature [7]-[11]. Work has also been reported on classi-
fication systems that rely on nodule feature characterization in

HE pulmonary nodule is a radiographic finding that igontrast-enhanced CT [12], [13].
now of particular importance given the burgeoning interest The advent of multidetector scanners with high resolution and

in early detection of lung cancer using computed tomograpkyst acquisition time have now enabled 3-D analysis of nod-
(CT). Pulmonary nodules may represent a variety of benigfes from both focused scans of a particular region and, to some
disease, necessitating little intervention, to a host of malignaiient, nodules detected in full-lung screening studies. Signifi-
pathologies requiring early intervention to avert mortality. Thgant work is also being done in automatic localization of nod-
expeditious differential diagnosis of these lesions is critical, @fes on repeat CT studies. Browhal. have described a system
the mortality of traditionally detected lung cancer is over 90%ased on fuzzy matching of automatically segmented anatomic
[1]. regions [14]. In the paper by Ko and Betke, following identifi-
Computer vision methods for the analysis of pulmonary nogation of the nodule location in the second scan, volumetric es-
ules in CT scans have, until recently, relied on two-dimensionghates are extrapolated from 2-D diameter measurements and

(2-D) measurements of the single image considered to bgshary classification of size change (decrease, stable, increase)
represent the lesion. One of the issues has been the anisotr@pifetermined [15].

One of the best predictors of nodule malignancy is growth
Manuscript received May 2, 2002; revised May 3, 2003. This workate. Similarly, nodule size is also highly correlated with ma-
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1) Well-circumscribedThe nodule is located centrally in the
lung, without significant connections to vasculature.

2) VascularizedThe nodule is located centrally in the lung,
but has significant vascularization (connections to neigh-
boring vessels).

3) Pleural tail: The nodule is near the pleural surface, con-
nected by a thin structure (“pleural tail”).

4) Juxtapleural A significant proportion of the nodule pe-
riphery is connected to the pleural surface.

A review of 200 nodules in our clinical database revealed
that nearly half of the nodules were vascularized, approximately
one-third were well circumscribed, nearly one-quarter were jux-
tapleural, and a small minority (approximately 1%) had pleural
tails.

Techniques for the segmentation of each of these nodule
classes differ as the varied local geometry is not amenable to
a single method. We may, therefore, formulate mathematical
models of each class and develop separate segmentation
schemes accordingly. In this discussion, it is assumed that the

image under consideration is the 3-D region of interest (ROI)
containing the nodule. The models corresponding to each of
these nodule classes are illustrated graphically along with CT
examples ofn vivo nodules, as shown in Fig. 2.

Nodule Volume Determination
Doubling Time Estimation
VGI Computation

v
Classification

A. Well-Circumscribed Nodule

A well-circumscribed nodule is one that is located centrally
in the lung without significant connections to vasculature, as il-
lustrated in Fig. 2(a), where the nodule region N is distinct from
the surrounding lung parenchyma LP. A CT image representing
the central axial slice of a well-circumscribed pulmonary nodule

In this paper, we describe 3-D methods for volumetrig shown in Fig. 2(b).
doubling-time estimation in small pulmonary nodules seen in The nodule consists of tissue exhibiting a higher X-ray atten-
high-resolution CT images. Previous efforts by our group ifiation and, therefore, voxel intensity, than the surrounding lung
2-D and 3-D nodule segmentation and growth analysis haygrenchyma. We model it by the s&tof voxels in the nodule

been reported [5], [6], [8], [11]. This work was first based Ofhat are greater than or equal to a given intensity thresRald
k-means and gradient-based segmentation techniques and igigfys:

led to improved methods, as well as a variety of measures to
be used in evaluating and improving the accuracy of nodule
segmentation. The 3-D segmentation methods in this paper

are _model-based and implemented with techniques fromg,qc, 4 model would be very sensitive to noise, however, as
mathematical morphology. An overview of the entire syste@y, yoxe| in the ROI meeting the threshold criterion would
developed is illustrated in Fig. 1. be included. A better model would include connectivity be-

tween the voxels in the nodule. For each voxel in the set, there

Il. NODULE MODELS would need to be at least one neighboring voxel also in the set.

The radiographic appearance of pulmonary nodules in C\}{e also excludg the trivial case where the nodule wou!d be_a
images can be described as compact opaque lesions ifpple voxel. This connected_ nodule mod_el could be defined in
attenuation near or slightly higher than that of wate££100 ter-ms of the set of voxels adjacent to agiven V(_)xel, denoteql as
HU). A small pulmonary nodule is (usually) roughly sphericaﬁd-l(”(mv y,2)). Our model for the well-circumscribed nodule is
with a diameter less than 1 cm. The nodule has a density (éwlen the set of connected voxels greater than or equal to a given
attenuation) significantly higher than that of the surroundirigt€nsity threshold as follows:
lung parenchyma. The nodule form may be confounded by
other neighboring/attached structures, including vessels and the
pleural surface. Segmentation and subsequent analysis of thlse= {v(z,y, 2)| (v(z,y,2) > T)
lesions is predicated upon formal models of several distinct A3 n|neadj(v(z,y,2)),neN)}. (2)
classes of pulmonary nodules based on their position in the
lung and surrounding structures. We may define four classesldfere is the possibility that there may be more than one con-
pulmonary nodules as follows. nected componem in the ROI that meets the threshold crite-

Determination of Malignancy Status

Fig. 1. Overview of the system developed.

N =A{v(z,y,2)|v(z,y,2) > T}. 1)
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Fig. 2. Four classes of pulmonary nodules. (a) Well-circumscribed nodule model. (b) 5-mm well-circumscribed pulmonary nodule. (c) Vasclraoizy pu
nodule model. (d) 7-mm pulmonary nodule with confounding vasculature. Arrows indicate the location of attached vessels. (e) Juxtapleuradabdf)/®&-mm
juxtapleural nodule. (g) Pleural tail nodule model. (h) 9-mm pulmonary nodule with a pleural tail.

rion. We, therefore, elect to choose the largest of thesé\ggts the nodule will be the largest connected component (meeting
(that which has the largest volume) as follows: the threshold criterion) in the ROI.

Nopax = max A4; ©) B. Vascularized

Measurement of the size and shape of pulmonary nodules
where each of the eligible sets; is defined in an analogousis frequently confounded by the presence of other structures
manner to the definition @V, in (2). Thus, we will assume that nearby or adjoining the nodule. Therefore, a simple two-level
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model based on CT attenuation is insufficient to complete
separate the pulmonary nodule under consideration from thi
other structures, as they frequently exhibit similar densi
characteristics. Fig. 2(d) shows an image of a small pulmona
nodule with surrounding and attached vessels. The attacl
vessels are indicated by white arrows.

A vascularized nodule is one that is located centrally i
the lung, but has significant vascularization (connection
neighboring vessels). Clearly, the use of the well-circumscribed (@)
nodule model for the segmentation and analysis of vascularized
nodules is inappropriate, as that model of connectivity would
include the vascular components as part of the nodule. Instead,
we define a model that distinguishes nodule volume from
connected vessels geometrically.

Consider a model in which the vascularized nodule is the
union of spheres of diametaras follows:

!

(b)
N, = U s(z,y,2)|ds = p. (4) Fig.3. Volume overestimation in a vascularized nodule. (a) Structuring kernel
at the point of vascular attachment. (b) Volume of a spherical cap.
Each of the voxels in each one of these spheres must satisfy
a threshold criterion, as was true for the well-circumscribddrge sphere) and the external boundary. The largest perpen-
nodule model, as well as have no more thgg distance from dicular distance in this cup-shaped volume is shown.akhe
the sphere’s center. The following equation describes sucty@lumeV, is the region between the straight line of lengtand
spheres(z,y, z) centered at voxeh(, y, z), whereD is the Eu- the external boundary, while the volurig is that between the

clidean distance function between two voxel locations: straight line and the dotted boundary of the large sphere. There-
fore, the extraneous cup-shaped volume is simply their differ-
s(e,y,2) = {v(fﬂi:yhzi” (v(@i, yi, zi) 2 T) ence
A (D({%yi?%}v {z,y,2}) < %)} ) Vewt =V = V. (6)

. o ' . . _ Fig. 3(b) illustrates the volume of a spherical cap. The volume
We will additionally define a maximum diametarof any ves as a function of, the radius of the sphere, andthe radius of

sels that may be connected to the nodule volume. If we th L intersecting disk. is
chooseu such that, > A, we ensure that the majority of each 9 '

vessel volume will not be included in the nodule volume. . T 2
— _ 2 _ 42 _ 2 _ 42
This model of a vascularized nodule is illustrated in two di- ¥ (7 @) = 3 (T moa ) (ZT Vit —a ) - ™

mensions in Fig. 2(c). The illustration on the left shows all of . 7 bstitute th iat lues afid
the nodule region N and vessel region V that meet the threéf'ls-'ng (7), we may substitute the appropriate values ¢

olding criterion. The illustration on the right shows how théO derive the volumes df,, andV;, and subsequently. For

nodule volume can be described as the union of circles (Sphetlté%s_tructurmg sphere of radipg?, the volume of the spherical

in 3-D) of diameteru, while effectively ignoring the majority PIS

of the vascular component. The model of a vascularized nodule 5\ 2 5
as a union of translated spheres is closely allied with the noti?p T (g)Q 3 <§> e (/_L)2 3 <§>

of the opening operation in mathematical morphology, whic 312 2 2 2 2
leads to segmentation methods described in Section IV. One of 8)

the issues of interest is the overestimation of nodule volumeaa,{d for the large sphere of radius, the volume of the corre-
the point of vessel attachment, as illustrated in Fig. 3(a). NOéBonding spherical cap is

how the spherical “structuring element” allows the inclusion of a

small amount of the vessel volume (outside the spherical nodule e e
volume). Vo= ry—[r2 - <_> Uy — 4|12 — <_>

For an idealized model of a spherical nodule with a vascular 3 2 2
attachment of diametex, it is possible to formally state the 9)

extent of this volume overestimation. The volume in the extrahe volume of the extraneous cup-shaped region, therefore, can
neous regiorV.; is the difference between the portion (sphetbe determined using (6), (8), and (9). Note that these expressions
ical cap)V,, of the structuring element that extends beyond there general for any size spherical nodules, structuring spheres,
line of length)\ and the spherical caf@ of the spherical nodule and vessel diameters. More specifically, for a particular spher-
volume beyond the same line. These two regions are illustraiedl nodule size and structuring sphere, the contribution of mul-
(in 2-D) in the right-hand side of Fig. 3(a). The extraneous ré¢iple vessels of different diameters can be determined. An ex-
gion Vi is that between the dotted line (the boundary of themple is illustrated in Fig. 4, where a spherical nodule of 8 mm
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Volume overestimation in 8 mm sphere with attached vessel (0.75, 1.00, 1.25 mm) nodule has invaded the pleura oris merely adjacent to it. voxel

o1sl density (intensity) information is rarely sufficient to distinguish
‘ these regions.
0.16F In our model, we would like to consider the nodule region to
S be only that volume that is unlikely to be part of the thoracic
S wall. We define points andb in the 2-D cross section shown in
.§ 012 Fig. 2(e) to be those points of maximum concavity for a given
¢ o1 scale. The notion of scale in the estimation of concavity here
S o8 is quite important, as the pleural surface boundary is likely to
§ . 1.25 mm have local concavities due to image sampling geometry and also
" pathologic or anatomic variation.
0.04
0.02} i D. Pleural Tail
@M‘Q—H : j A second class of pleurally attached nodules are those that

(1).2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

spherical kemel diameter (mm) exhibit the so-called “pleural tail sign.” This appears as a small

thin structure of nodule-like attenuation connecting the nodule
Fig. 4. Volume overestimation of an 8-mm spherical nodule with vasculgp the pleural surface, as illustrated in Fig. 2(g). A CT image of
attachments of varying sizes following opening with a spherical kernel. a nodule with a pleural tail is shown in Fig. 2(h). Although it

would be simple to segment the majority of the nodule volume
in diameter(r = 4) has a vascular attachment of varying diby using the vascular nodule segmentation algorithm to remove
ameter(\). Each of the curves in the graph corresponds o athe pleural tail, in these cases, segmentation methods similar to
value of 0.75, 1.0, or 1.25 mm. The graph illustrates the pahose used for juxtapleural nodules should be employed. This
cent overestimation in nodule volume when the diameter @f essential, as the volume of the “tail” is a component of the
the structuring kernel usgg) is varied from 1.25001 (slightly nodule volume and is not to be excluded, unlike similar looking
larger than)) to 2.5 mm. In the worst case\ (= 1.25 mm, vessels might be in vascularized nodules. If the vascular nodule
u = 1.25001 mm), where the structuring kernel is barely larggegmentation algorithm were used, it would be impossible to
enough to detach the vessel, the volume overestimation is Igsantify the growth of that portion of the lesion that comprises
than 0.19%. As the kernel diameter is increased, this value dee tail.
creases logarithmically. Thus, given our model of a vascular-
ized nodule, the union of spherical components, the minimum
volume error in segmentation is achieved when the structuring
kernel is as large as will fit the locally spherical region of the The nodules studied here were initially detected on low-dose

1. | MAGE ACQUISITION AND PREPROCESSING

nodule. screening CT examinations [18], [19]. The tomographic image
data for this study were subsequently acquired using GE High-
C. Juxtapleural Speed and LightSpeed CT scanners using a standard-dose pro-

Peripheral pulmonary nodules often exhibit some degrgg:ol atl: 1 pitch smalllfield of view 1—;.25-mm slice thickness,
of attachment to the pleural surface (on the periphery of tg8d 0.5-mm or better in-plane resolution [20], [21]. The nodule
lung, compressed against the external boundary of the thora&?' fo_r each case was identified by an experienced thoracic ra-
The majority of these nodules can be classified as juxtapleur@Plogist.

These nodules share a significant amount of their surface with
the pleura. For this reason, delineation of the boundary betwefn Anisotropic Data

pleura and nodule can be quite challenging. Most CT data are sampled in an anisotropic space, where
Fig. 2(e) illustrates a basic model of a juxtapleural nodulge resolution in each of the three dimensions is not equal. The

The following four regions are defined: in-plane (z — y) resolution on modern scanners is typically

1) N: nodule region; better than 1.0 mm in both dimensions. The axigl resolu-

2) LP: surrounding lung parenchyma; tion, however, may be anywhere from near 1 mm to as high
3) PS: pleural surface; as 20 mm. A typical high-resolution scan protocol provides
4) TW: thoracic wall region. 0.5-mm in-plane resolution with 1-mm axial reconstructions,

An example of a small juxtapleural nodule is shown iproducing voxels that ar0.5 x 0.5 x 1.0 mm). This poses

Fig. 2(f). In CT images, the nodule and thoracic wall regionseveral problems. First, although high-resolution 2-D mea-
both exhibit high-attenuation characteristics. Therefore, whisgirements can be made in any one of the highly resolved CT
simple thresholding is able to separate the nodule from thkces, 3-D measurements are hindered by the less-resolved
lung parenchyma, it is insufficient to separate the nodule froaxial dimension. Special anisotropic image filters need to take
the outer thoracic region. Anatomically, the pleural surfacésto account the different axial resolution, complicating 3-D
separate the lung volume (containing the parenchyma) aahlysis of the geometry of nodule and vascular components
thoracic wall. When a juxtapleural nodule is present, howevéinat may be presentin any orientation. A second more important
there may or may not be invasion of the pleura. Whether tpeoblem to consider is that of partial-volume effects.
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/ ] The first few terms in the sequence are, 7, 15, 31. For ex-
ample, in the lower left illustration in Fig. o, = 3, s = 8, and

7 b = 15.
/ As the contribution of each boundary pixel to the overall error
/ is bounded by half the area of the pixel, a conservative upper

bound on the error for estimating the area of the circular segment
€ can be expressed as

a
e=b-3 12)

wherea is the area of a pixel. Given that this is a unit circle
[ L] and, therefore, the quadrant has unit area, and that the2é"are
% pixels in the quadrant, the area of each pixel is

Vi an

7 b S

Thus, the error bound for a given valuemofmay be restated as

/ - 1 — 2—2n. (13)

/ the sequence where
7
/ a 1 1
_p I on+l _qy.o9—(2n41) _ - -
€n —bn 2 - (2 1) 2 - on 22n+1 )

(14)

Fig. 5. 2-D area estimation of a segment of a circle. In each of the fofach of the two terms in this sequence converges to zero, with

illustrations, the segment is shown at successively higher degrees of resampm% latter Converging much faster Essentiallynéﬂcreases by
one, the number of boundary pixels basically doubles, while

B. Partial-Volume Problem their size and, thus, their error contribution, is divided by four.

The partial-volume problem describes the quantized discretB!S 1€ads to an error bound that is approximately halved with
spatial nature of the CT image. Consider the following 2-D egach increase in. In three dimensions, the error is reduced by
ample. A quadrant of a unit circlgadius = 1) is perfectly approximately a factor of eight with each increase.in
sampled on a regular grid. Pixels are set if 50% of their ar
corresponds to the interior of the circle. Initially, the quadrant’
is contained within a single pixel. The quadrant may then be di- With this 2-D example, we can see how perfect interpolation,
vided, orsupersampledat any number of regular intervals toor resampling, of the image space can reduce errors in size
define an appropriate sampling grid, but for this example, v@stimation. Supersampling of the data has been implemented
will restrict the number of divisions to be powers of two, withrior to segmentation in our analysis system. In addition, we
n the appropriate exponent of two. The degresesmplingof  supersample in different ratios to produce isotropic data. In
the image, or the supersampling ratids the number of divi- three dimensions, isotropic resampling (supersampling to an
sions of the original pixel size in each of thendy dimensions  isotropic space) allows segmentation decisions to be made on a

super-resolved, or supersampled, grid, allowing more accurate
Sp = 2™, (10) consistent boundary decisions to be made. The intensity in each
image voxel is interpolated to estimate the intensities in each of

With this model in place, we may discuss the accuracy of ardee subvoxels in the supersampled space. Thus, each original
measurement of the circular segment as a function of samplinaxel intensity value is responsible for several in the new image
interval (image resolution). The true area of the circular segmeapace, mitigating partial-volume effects in the original data, as a
is /4 =~ 0.7854. In the case where = 0, there is no resam- more precise spatial location of the desired gray-level transition
pling and the area is estimated to be 1.0nAscreases, the area(boundary) can be identified. Fig. 6 illustrates some of the
estimates improve. Fot = 1,2, 3,4, the corresponding areabenefits of 3-D isotropic resampling using a small pulmonary
estimates are 0.75, 0.8125, 0.8125, and 0.7930 (Fig. 5). In thizdule scanned at 0.68 0.68 x 1.0 mm resolution. Fig. 6(a)
figure, pixels that would be considered members of the circle saed (d) depicts transverse and coronal images revealing the
shaded. It can be seen that, as the degree of subdivision ofimdropic nature of the original CT data. Fig. 6(b) and (c)
sampling grid increases, the error in area estimation of the circlempares transverse 3-D shaded surface representations of
decreases. It is also possible to produce bounds for this errottas segmented nodule before and after isotropic resampling to
a function of the degree of subdivision. Consider that the errdr25-mm cubic voxels, respectively. Fig. 6(e) and (f) compares
in area estimation is only the sum of errors in pixels throughe corresponding oblique 3-D shaded surface representations.
which this circle boundary passes, each contributing either bnthis example, the 3-D representation generated following
overestimate or underestimate of the true area. The numbeth# supersampling process [see Fig. 6(c) and (f)] illustrates the
these boundary pixelsin this quadrant is defined as reduction in high-frequency spatial artifacts present in those

derived from segmentation of the original data [see Fig. 6(b)
b, = 2"t — 1. (11) and (e)] due to mitigation of the partial-volume problem.

Isotropic Resampling
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11

d) e)

Fig. 6. Isotropic resampling of a small pulmonary nodule. Original CT image data in: (a) transverse and (d) coronal cross sections illustrati®tiie aaisre
of the data. Transverse and oblique 3-D shaded surface representations of the nodule as segmented (b) and (e) before and (c) and (f) aftangditigpic res

IV. SEGMENTATION estimates of nodule growth, the segmentation should be consis-

tent across multiple scans taken at different times. In growth

Segmentation is the most crucial and also most challenglngt. : o . .
- . . estimation, the absolute error in size measurement is less sig-
step in the analysis of pulmonary nodules from CT imagé

data. A helpful facet of this problem is the high degree ificant than the relat_ive_: error, considering multiple studi_es of

contrast between nodules and the much lower attenuatcline same nodule. This |s_due t(.) the fact that grovvth_ est|mate§
.nar% computed based on size ratios, not on absolute size. For this

r%’ason, the same threshold value should be used in segmenta-

region growing, or perhaps active contour approaches. How-
gion gr 9. orp P 1hp Hon of each of the scans. Important caveats, however, are that
ever, delineation of the nodule boundary with respect to trﬁ(]a

. . e scanner must be well calibrated and the scan protocol (dose
surrounding lung parenchyma is only one of the challenges

Nodules are frequently attached to other structures, includianmd resolution parameters) fixed for the observed attenuation

the local pulmonary vasculature and the pleural surface ay lues in each scan to be comparable.
b Y P It may also be beneficial to attempt a standard thresholding

joining the thoracic wall. The geometry of such attachments licy across nodules in different subjects. This is a more

must be considered in order to successfully segment e:%c ) . .
: ificult problem, however, as mean nodule attenuation varies
type of nodule. We have developed mathematical models an

) . sofmewhat with nodule type. Nonsolid and part-solid nodules
methods for the segmentation of pulmonary nodules in each Of . . : d :
these cases (lesions with mixed solid and nonsolid components), also

known as ground glass opacities, frequently require a much
lower threshold (or more than one) for accurate segmentation
[22]. For the solid nodules considered in this study, a fixed
An important consideration when selecting a threshold félreshold was used. It was determined based on phantom
pulmonary nodule segmentation is that we are interested stidies in which phantoms of known volumes were segmented
only in making a single size determination of the nodule, but Bnd their volumes determined. The threshold that led to the
evaluating its change in size over time. In order to make accuratest accurate and consistent volume measurements was

A. Thresholding



1266 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 10, OCTOBER 2003

selected as the basis for segmentation of the nodules descri
in this paper.

A more general problem with global thresholding method
is that regions of similar intensity may be spatially disparatd
and not represent components of the same object. For exam
nearby vessels or other structures of nodule-like attenuation
be included in a thresholding-based segmentation. Image no
may also be of sufficient intensity to contribute to the output of a
thresholding operation. These structures should not be includég 7. Illustration of 2-D morphological opening on a pulmonary nodule.
. . . . Note the removal of both the connected vessel and certain surface features.
in the nodule region to be considered for further size and shape
analysis.

applications have included time-of-flight magnetic resonance
B. Connected Component Analysis angiogram (MRA) segmentation based on adaptive statistical

One solution to the problem of disparate high-intensity ré€9mentation [30], active shape models for segmenting acute

gions contributing to the segmented nodule volume is the Lgladommal anel;rysmsl [31], and a rt:]ethgd for getect!on an(; |
of connected component labeling and analysis [23]. The useBgasurement ofvascular structures based on a Gaussian mode
3-D connected component analysis allows noise and extranestf3"

structures to be removed from the nodule image data. The resylf '€ 90@! of global vascular segmentation methods is to sim-

of selecting a single connected component is an object thaP|{Y the nodule detection problem. For the characterization of
contiguous in 3-D space. pulmonary nodules using high-resolution data, however, local

In segmentation of pulmonary nodules, several selectigpethods of vascular subtraction are more appropriate. Since

criteria are commonly used in connected component analy§8!y & small subset of the lung volume is normally acquired
These criteria are used to: 1) select the component of greaf8sg Nigh-resolution diagnostic study, global methods tracing
volume; 2) select all components greater than or equal td'§ vascular branches from the pulmonary artery and veins on-
specified volume threshold; and 3) discard components withjf2"d are impossible. Even if high-resolution data of the en-

a specified distance of the ROI boundaries. These three critef{§ [Ung volume is available, this approach would likely be
are used in the following way. impractical. Furthermore, global or semiglobal region-growing
schemes based on voxel intensity alone risk the removal of small

b :ggu?gject of greatest volume in the ROV s typically th'ﬁodules that exhibit vascular connections.

2) In some cases, more than one object of high relativeAS an alternative to global region-growing techniques, we use

: a’local filtering approach based on mathematical morphology.
volume in the ROI may need to be selected. This method is based on the model described in Section II-B.

3) In segmentation of nodules near other large structur?ﬁe initial morphological processing in our segmentation al-
(e.g., pleural surface), the nodule may not be the object P 9 P 9 9

gorithm consists of an opening operation based on a spherical
of greatest volume. . . ) .
) . . kernel. This kernel is passed over the input data in a convolu-
In these cases, the extraneous object is typically close to {ff, jike filter for both the erosion and dilation steps, followed
adjoining) the ROI boundary.

by connected component analysis to retain the nodule volume

Thus, image thresholding and connected component analygiyy iscard vascular components that were initially disjoint or
can be used for segmentation of pulmonary nodules when theY,« §isconnected via the opening operation.

are of relatively high intensity compared with the surrounding . disadvantage of morphological opening in this applica-

Iurr]lg paredmihyma. Such r:nzthods ﬁre insufficient, ?OWeYlﬁbn is that it has a “smoothing” effect on the nodule surface.
when nodules be:re dattac el to ot erdstructhlires O SIM&fhough the model indicates that the minimum volume error is
intensity (e.g., blood vessels). More advanced segmentatigi}io eq when the structuring kernel is as large as can be con-

techniques are required for isolating the nodule volume in thel%?ned in the locally spherical region of the nodule, the size of

Cases. locally spherical regions comprisimgvivo nodules approaches
. . zerointhe limit. Thus, the structuring kernel that is large enough

C. Morphological Processing for vascular subtraction may also remove nodule surface details,

Methods for nodule segmentation can be developed basedsorh as fine spiculations. As an example, consider Fig. 7. The il-
global and/or local anatomical models. Of particular interest agstration on the left-hand side depicts a pulmonary nodule with
the structures that may abut the nodule, such as pulmonary \@sascular attachment. In the center illustration, the translation
sels or the pleural surface. We have developed specific segmeha circular kernel is shown, depicting a 2-D morphological
tation methods for vascular nodules and for juxtapleural nodulegening operation. In the result shown on the right-hand side,
based on the nodule models described in Section Il and teciotice that while the vessel has been removed (the desired ef-
nigues from mathematical morphology [24]-[26]. fect), some of the surface features presentin the original nodule

1) Vascular Subtraction:Global methods for removing the have been deleted, as they were smaller than the structuring
pulmonary vasculature based on 3-D region-growing tree-tigernel.
versal algorithms and other techniques have been describelvhile the need to remove vessels from consideration is im-
[27]-[29]. Other techniques for vascular segmentation in relatpdrtant, we would prefer not to smooth away the very nodule



KOSTISet al: 3-D SEGMENTATION AND GROWTH-RATE ESTIMATION OF SMALL PULMONARY NODULES IN HELICAL CT IMAGES 1267

(b)

(d) (e)

Fig. 8. Twoin vivo examples of 3-D morphological filtering for vascular subtraction. (a) Basic threshold-based segmentation of a 7-mm pulmonary nodule.
(b) Segmentation using 3-D morphological opening and connected component analysis, resulting in smoothing of nodule surface features af@rSesimgnt
vascular subtraction algorithm preserves nodule surface features. (d) and (e) Second example of vascular subtraction from a 6-mm pulratngrihélpstint

of vascular detachment.

surface characteristics we hope to analyze. To compensate fdn addition, the logicahND operation guarantees that all the
this smoothing effect, we may perform an iterative constrainéelatures that are regrown were present in the initially thresh-
dilation process to “regrow” these features. The entire morpholded image. Fig. 8(a)—(c) illustrates a comparison between the
logical filtering process is as follows: vascular subtraction using a morphological opening and con-
nected component analysis with and without iterative filtering
to regrow surface features. 3-D shaded surface representations
of a small vascularized nodule are shown using different seg-
mentation algorithms.

Fig. 8(a) shows the result of a basic segmentation method
based on thresholding. Fig. 8(b) shows the result of a 3-D mor-
phological opening using a spherical kernel of an appropriate
size to remove the vessels connected to the nodule, as well as
others in the ROI via connected-component analysis. Note that
the surface of the segmented nodule is significantly smoothed
when compared with the original thresholded data. In compar-
ison, Fig. 8(c) illustrates the result of vascular subtraction via
Algorithm 1, which adds the iterative morphological operations
needed to regrow the nodule surface features. Note that the sur-

Following morphological opening with a spherical kernel oface features present in the original thresholded data have been
diameterd, Sy, this technique restores the detailed surface fegestored.
tures of the nodule without regrowing vessels more thaad  Fig. 8(d) and (e) shows another example of vascular subtrac-
voxels from the surface. In the first iteration, the dilation with ﬂon via iterative morpho|ogica| f||ter|ng In this example’ the
sphere of diametef extends the surface at ma&t2 voxels in - major vascular component is removed, in addition to several
the direction of the vessel (as the spherical keshatillonlybe  minor vessels [note the small vessels protruding from the top
replicated where its center exists in the input imageln each  gyrface of the threshold-segmented nodule (Fig. 8(d)]. Again,
subsequent iteration, the surface may be extended by, at m@fd,vascular subtraction was achieved without a significant ef-
half the distance of the previous iteration. The upper bound g5t on desirable nodule surface features.
the growth of each vessel, therefore, is a distancevolxels, as Note that the additional vessel growth allowed by this algo-

Algorithm 1 : lterative Morphological
Filtering
Begin with an initial binary image I
J=(I6S8;)®S;s {Opening using S;}
Connected component analysis
s=d
while s >=2 {Number of useful dilations
J=Ja® S, {Dilation using Ss}
J =J AT {Voxel-by-voxel logical AND
s =s/2
end

can be seen from the following geometric series: rithm introduces more error than derived in Section I1-B. In that
log, d discussion, we considered a simple model where a vascularized
L= Z a ~ d. (15) nodule was represented by the union of translated spheres of

2 a fixed diameter, a model that can be realized with a single
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opening operation. In the more complex algorithm described.J = (I © D) ® D {Opening using D}
here, the use of iterative dilation operations with decreasingK = I —J {Ilmage subtraction }
kernel sizes results in a somewhat larger error at the point ofContinue with iterative morphological
vascular attachment. This tradeoff is made to ensure the accufiltering {Alg. 1}

rate representation of the other nodule surface features.

2) Pleural Surface RemovalA two-stage approach has 1 examples of the pleural surface removal technique are
been developed for the segmentation of juxtapleural nogsonn in Fig. 9. Fig. 9(a) shows a small nodule, approximately

ules. First, the orientation of the pleural surface in the RQ 5 mm in diameter. which is removed from the pleural sur-

containing the nodule and associated section of the thorapiee [see Fig. 9(b)]. The segmentation process was as follows.

wall is determined using 3-D moment analysis [33], [34]. Ifhe method of moments was used to compute the orientation
this process, the ROl is thresholded and standard geomegiGne pleural surface and attached nodule. Once the orienta-
moments of the first and second order, . [p + ¢ + 7 < 1)  {jon of the pleural surface was determined, a disk-shaped kernel
are determined. The 3-D orientation of the ellipsoid of inertigs 34 yoxels (8.5) mm in cross-sectional length was generated
(EOI) describing this region is then computed via the solutiat}, 4 ysed in a morphological opening to identify those voxels
to the systemiz = Az based on these moments where in the thoracic wall not containing the nodule. The pleural sur-

M200 Mi110 Mio01 face component was subsequently subtracted from the image,
A= mi0 mo20 moi |- (16) leaving the nodule and a small amount of pleural surface not
mio1  Mo11  M0o2 identified by the opening operation. The resultant image was

The orthonormal basis of eigenvectergproduced in the solu- then segmented using iterative morphological filtering using a
tion of this problem points in the directions of each of the prirspherical kernel of 5 voxels (1.25 mm) in diameter to remove the
cipal axes of the EOI. The eigenvalugsare used to determine remaining elements not belonging to the nodule volume. An ad-

the lengthsl; of the three principal axes ditional example of this segmentation method on a 4-mm nodule
3y is shown in Fig. 9(c) and (d).
Li=2V\ - ¢ ———. (17)  3) Algorithm and Parameter SelectiorGiven the four
ATV AoAi A classes of pulmonary nodules, the user should select the

Using the eigenvectors, we can determine the Euler angles (ralforithm appropriate to each class. The vascular subtraction
pitch, and yaw) describing the orientation of the nodule and thalgorithm may be used both on vascularized nodules, as well
racic wall) as functions of their projections on ti&Z, X Z, and as on those that are well circumscribed, as they represent the

XY planes, respectively, trivial case of vascularized nodules where the vessel diameters
oll — cos—! projy vz \ ign (va(y)) (18) are below the effective resoll_Jtion of the image. _Similarly, the
= o8 [vs] sign(v2(y pleural surface removal algorithm can be used with both juxta-
_ L { Projx 20 pleural nodules, as well as those with a pleural tail. Selection
pitch = cos™ (T) -sign (vo(2)) (19)  of the appropriate parameters for both the vascular subtraction
0 algorithm and the pleural surface removal algorithm is critical
yaw = cos™ ! (M) - sign (vo(y)). (20) to obtaining accurate nodule volume estimates. This topic will
[vol be addressed in Section IV.

This method is used to determine the angles describing the ori-
entation of the pleural surface at the point where the juxtapleural V. VOLUMETRIC DOUBLING TIME ESTIMATION
nodule is attached. Once this orientation has been determined, a
structuring kernel is generated with the appropriate size and di- Growth Model
entation (as determined bfy; and the dimensions of the ROI) Growth of early lung cancers is commonly modeled as an
such that an opening operation using this kernel can be use@tponential growth process [35]-[37]. The tumor volurhean
detect the majority of the pleural surface and chest wall, whilee expressed as a function of the initial voluiie
excluding the nodule. This kernelis disk-shaped (a cylinder with V = VoMt

.. . . o = Vp€ (21)
an elliptical cross section) and large enough so that it will fit only
within the chest wall region and not the nodule portion of th@here the exponential coefficiehtmay be defined with respect
image. 3-D image subtraction is then used to remove these #xthe noduledoubling time(the time in days required for the
ternal structures from the original image. Lastly, the remainirfgmor to double in volume) as
pleural components not detected in the opening operation are \ = In2 22)
removed using an application of Algorithm 1. The complete DT
method is described as Algorithm 2.

B. Doubling Time

Algorithm 2 : Pleural Surface Removal Given two volumetric measurements of the lesion taken
Begin with an initial binary image I days apart, we may estimate the doubling time using the fol-
Determine Ol’ientation Of the p|eura| |Owing expression:
surface 2. At
Generate a disk-shaped kernel D, ori- DT = (23)

ro

ented parallel to the pleural surface In (Vl)
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(b)

(© (d)

Fig. 9. Shaded surface representations of two juxtapleural nodules: (a) and (c) before and (b) and (d) after application of the pleural surfféeehréqaa

This expression compares directly with that used in the tradirese are the presence of motion artifacts due to respiration and
tional 2-D analysis of nodule growth based on diametric methe cardiac cycle. Quantification of these sources of error would
sures on chest radiographs or single CT slices. In the 2-D casguire a large study ah vivonodules, and is beyond the scope
there is an additional factor of three in the denominator (diarof this paper.

eter varies as the cube root of volume) as follows: In this analysis, we will considerto be the rms percent error
In2- At in volume measurement, as determined experimentally. For this
DTop = @ (24) model, it is sufficient to use the rms percent error for a given
Dy nodule size rather than the maximum error, as we are estimating

Variation in slice selection, scanner/patient alignment, amde underlying variation of the measurements rather than a con-
asymmetric lesion growth are three factors that limit theervative maximum error bound.
accuracy of 2-D estimates of nodule doubling time. The volumetric doubling-time calculation is a nonlinear func-
3-D computer methods for the volumetric determination afon of two volumetric measurements, which we will assume to
nodule doubling times have been successfully used in the dit uncorrelated. In addition, it depends on the difference in time
ferentiation of benign from malignant lesions [11]. Of principabetween scanat, which may introduce additional error as fol-
importance in this process, however, is the accurate reproducifpl@s:
segmentation of the nodules in each sequential scan.

In2- At
] ] DT = f(Vl,VQ) =—— (25)
C. Error Estimation In ({_1)
We may estimate the variance of volumetric doubling-time ) ) ) i
estimation as a function of the error in each volume estimat&'® €rror in a nonlinear functiop = f(z1, ..., z,) of un-

¢ for a nodule of a given size in each scan. This can be 0ré)_rrelated variables can be estimated based on the variances of

termined experimentally using phantom studies [11] or altef@ch variable. The exact (‘jifferential [38] of

n_atively usingin vivo_nodules with repegted imaging. While dy = ?—fd:rl + ﬂdﬂ:z Tt f?—fda:n (26)
simple phantom studies allow us to quantify the effect of several 11 02 Oz,

sources of error (e.g., partial volume, threshold selection), théeads to the argument that the variance in the function may be
are other sources that are not taken into consideration. Amasgimated by a sum of the contributions of the variances of each
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(b) ©

Fig. 10. Segmentation of a synthetic vascularized nodule using the vascular subtraction algorithm and structuring kernels of increasin @iatetet;
(b)d = 5; and (c)d = 12.

@

variable [39]. This is known as Gauss’ law of error propagatioand the rms error in doubling-time estimation is, therefore,
The variance in the nonlinear function above (if aj/lare un- simply the square root of (29). Thus, given an empirical

correlated) is estimate ofe, the rms error in volume measurement as a
) of \? ) of \? ) of \? ) function of nodule size (it will be different fo¥; and V5)
oy = (d_7~1> o T (d_7"2> P (W) oz,- and an estimate of, (which should be less than one day),

27) we may estimate the variance and rms error of a particular

. ) ) doubling-time estimate produced by our method.
In other words, the change (variance) in the function due to mea-

surement error (as given by the exact differential) can be ex-
pressed as a function of the variance in measurement of each
variable. We may, therefore, use this method to determine the Isotropic Resampling
variance of a particular doubling-time estimate, given estimate
of the variance in each measurem&n V5, andAt.

Starting from (25), we form the exact differential of thel”

VI. RESULTS

SPhantom experiments were performed to determine empir-
ical values of our ability to reproducibly measure nodule volume
based on isotropically resampling anisotropic CT data. Several

function 12 In2- At experiments were done using small nodules imaged using CT
d(DT) = —d(At) + ————d(W1) data having 0.2 mmx 0.2 mmx 1.0 mm voxels. The data were
In (%) Vi <1n (VT) ) isotropically supersampled to 0.25-mm isotropic voxels using
i trilinear interpolation. The results of these experiments have

i In2- At d(V3). (28) been reported [11]. Briefly, measurements of 50 acrylic spheres
22 of two diameters (3.96 and 3.20 mm) revealed that estimates of

V‘2<1n (i) ) nodule volume could be made to within 2% rms error. In addi-
Jion, an experiment using deformable synthetic nodules scanned

Using the law of error propagation, the variance in do o X
before and after deformation indicated that, even in the presence

bling-time estimation is then

9 of great variation in morphology, volume could be reproducibly
2 measured to within 3% rms error.
9 In2 9 In2- At 9
P = In (% ot A\ e B. Segmentation
(%) v(m())
! A sensitivity analysis was performed to assess the effect
2 of two parameters of the vascularized nodule segmentation
—1n2. At ) algorithm (Algorithm 1): the gray-level threshold and the
——————— | oy,- (29) structuring kernel diameter. Scans of the 50 acrylic nodule
V2<ln (:_>> phantoms were segmented using varying thresholds and the
! resulting mean volume measurements calculated. A standard

Interestingly, the variance ab7" is not the appropriate error threshold was determined as that which produced the least
bound in this application. We would prefer, instead, to estimaf@riance from the expected volume of the spheres. We observed
the rms error of the measurement, which is equivalent to theat variations in the threshold around the standard value
standard deviation or the square root of the variance. F8r resulted in variation in nodule volume by somewhat less than
measurements of variahle these are equal to 0.2%/HU for the 3.96-mm spheres and somewhat less than
0.5%/HU for the 3.20-mm spheres. A similar experiment was
(30) performed on 21n vivo pulmonary nodules using the vascular
subtraction algorithm and a fixed structuring kernel diameter.

rms ernor= o =
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In this case, the variation of the error was similar for nodules 15 S°9mented volume as a function of vessel and kernel diameter

similar size to the phantoms and smaller for those of larger si
due to the smaller proportion of surface voxels.

The diameter of the structuring kernel used in Algorithm
affects both the initial morphological opening of the scene, be
also the sizes of kernels used to regrow the surface featus
The most important consideration when choosing the kernel So 103t

is that the sizes of nodules and vessels vary, as describet% 9,=0254,
our vascularized nodule model (Section 1I-B). In particular, tFg

cross-sectional diameter of attached vessefsdm our model) € 1.02f

may vary considerably from case to case. Still, although we m_:gf J/\ﬁ\/ d,=0.20d

(0]
§
o 104r d =0.30d
v S

choose a kernel of diametérsuch that it is likely to be larger &
than most vessels, overestimation of the appropriate kernel 5§ 1.01F
may lead to overestimation of the nodule volume at those poit® 040d
where considerably smaller vessels were attached. This re 0.05d”
tionship was expressed mathematically in (15), where the upj 1o o1 02 03 04 05 06 ’ 07 °
bound on “regrowth” of a vessel is bounded by the diameter kernel size (d) as a fraction of sphere diameter (d_)

the structuring kernel. A complete expression for this overes-

timate was derived for the spherical vascularized nodule modfé. 11. Dependence of vascular subtraction as a function of vessel diameter
in (6) (8) and (9) d, and kernel sizé for spherical synthetic nodules of diameter.

d =0.15d
v S

d =
\%
d =

Here, we illustrate graphically for a 3-D synthetic model. In
this example, a synthetic nodule was constructed having adia™  percentage of correctly segmented in vivo nodules by kernel diameter
eter of 25 voxels with an attached vessel of 5 voxels in diamete 10—+ 71— —
Given our standard 0.25-mm isotropically resampled data, th
would correspond to a nodule diameter of 6.25 mm and vess
diameter of 1.25 mm, well within the typical range in this study_é 80

=

Using this synthetic nodule, the diameter of the structuring -,

element used in Algorithm 1 was varied and the resultant seg
mentations evaluated visually and numerically. Given the chaa 6or
acteristics of the iterative vascular subtraction method, there e2 5ol
the following three regions in which values of this paramete

may fall:

90

cor

f
»
o

T

W
o
T

* d: too small—the vessel is not removed;

* d:inanacceptable range—the vesselis correctly removes 5o\

* d: too large—the vessel is removed, but regrown to a si¢
nificant degree.

centage o

101

I I I I I I | I

Three examples from this experiment are shown in Fig. 10. | % 1 %5 3 4 5 6 7 8 9 10 11 12 13 14 15
the left image(d = 4), the kernel is too small to remove the Kernel diameter (voxels)
vessel in the initial morphological opening. In the center image,
the kernel is in the acceptable range for a proper segmentatﬁm 12.  Dependence of vascular subtraction on structuring kernel diameter in
(in this cased = 5). In the right image, the kernel is somewha?e9mentingn vive pulmonary nodules.
too large, resulting in a significant amount of vessel “regrowth.”
An experiment was performed to assess the behavior of tidentify that range of kernel sizes that leads to good nodule seg-
segmentation technique using synthetic vascularized nodulesn@ntation for a wide variety dh vivo nodules.
sphere with vessels of varying diameters). These models werdo this end, an additional experiment was performed to test
segmented using kernels of increasing size, and the degre¢hefdependence of the vascular subtraction technique on struc-
volume overestimation recorded. Fig. 11 shows the relatiigring kernel diameter in 2ih vivopulmonary nodules. For each
volume of the segmented nodule model as a function of vessedule, the diameter of the structuring kerid&las varied from
diameterd, and kernel diameted. Each of these parametersl to 20 voxels. In each of the resultant segmentations, the degree
are expressed with respect to nodule spherical diamdgtdthe to which the vessel or vessels (most nodules had more than one
data for each vessel diameter are shown beginning with thascular attachment) were removed was evaluated. A nodule
kernel size that is sufficiently large to exclude the vessel.  segmentation was considered to be “correct” when its volume
These data show that, although the degree of volume overess within 5% of the best segmentation possible, as determined
timation increases with kernel size (over the minimum diametby the reviewing radiologist.
required to exclude the vessel), the effect is still within 4% for Fig. 12 illustrates the result of this experiment. The graph
kernels as large as 60% of the diameter of the nodule and &tows the relationship between structuring kernel diameter and
vessels as large as 30% the nodule. Still, the overall goal isth@ percentage of nodules correctly segmented. Recall that, for




1272 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 22, NO. 10, OCTOBER 2003

TABLE |
In Vivo NODULE DOUBLING TIMES BASED ON CHANGE IN VOLUME AND AREA MEASUREMENTS

Case | At | do Volume Area DT Status
(mm) (mm?) (mm?) (days)
to [ @ to [ @ Volume [ Area

1 36 6.9 106.9 | 135.7 | 36.5 36.6 104 9700 Malignant

2 20 9.3 239.8 | 313.8 | 65.9 74.1 51 78 Malignant

3 69 5.4 141.3 | 184.8 | 18.1 25.7 177 90 Malignant

4 71 6.5 265.2 | 4664 | 32.6 66.9 87 46 Malignant

5 33 5.5 62.5 85.3 250.1 | 341.2 | 73 49 Malignant

6 745 | 3.9 89.0 1664 | 11.4 28.3 826 378 Non-malignant
7 35 7.4 70.0 70.9 280.1 | 283.4 | 2030 135 Non-malignant
8 35 7.2 54.6 56.3 218.5 | 2253 | 798 532 Non-malignant
9 84 4.1 36.2 36.2 13.0 14.9 33700 288 Non-malignant
10 225 | 4.0 41.5 37.6 12.2 11.8 -1570 -2840 | Non-malignant
11 61 7.1 208.6 | 219.3 | 38.9 46.3 846 164 Non-malignant
12 70 8.4 2079 | 2222 | 524 53.6 731 1520 Non-malignant
13 306 | 5.8 91.5 156.2 | 25.6 34.1 396 494 Non-malignant
14 128 | 4.2 49.6 65.6 14.0 17.5 318 265 Non-malignant
15 140 | 11.9 507.8 | 494.3 | 109.8 | 106.1 | -3610 -1890 | Non-malignant
16 111 | 4.6 36.7 26.7 146.9 | 1069 | -242 -161 Non-malignant

a given nodule and set of attached vessels, there are usualtiiese parameters and recompute the segmentation. This proce-
range of values of that lead to a correct segmentation. dure is typically sufficient to produce an accurate segmentation
In these results, we may note that over 80% ofitheivo of the large majority of nodules, as described above. Our current
vascularized nodules were correctly segmented by using a fixdelrelopment efforts include methods to automate the selection
structuring kernel diameter of six voxels (1.5 mm). The graptf segmentation parameters based on initial analysis of nodule
also exhibits a somewhat bimodal appearance. Inspectionsife, location, and vascular geometry. For example, given an es-
the data reveals that, while the majority of vascularized notimate of the diameter of the nodule and each of the attached
ules studied were connected to vessels smaller than 2 mmvéssels, the appropriate diameter for the structuring kernel in
diameter, there was an additional group of nodules with largdse vascular subtraction algorithm can be determined.
vascular components, resulting in the secondary peak -at
10. Therefore, although a static structuring kernel size may be
chosen that yields reasonably good results over a wide rangéofGrowth Assessment
nodules, a better approach s to choose a structuring kernel of the
appropriate size for a particular case. When manually selectingihe first experiment performed to evaluate our dou-
the appropriate kernel size for each case, all but one (95%)@iNg-time-estimation methods was designed to compare the
the nodules in this experiment were correctly segmented. In tHigferences in doubling-time estimates based on 2-D areal
last case, manual editing of the nodule boundary was necesg¥igl 3-D volumetric measurements. The 3-D measurements
to produce a correct segmentation. were made using the techniques outlined in this paper. For
The success of the pleural surface removal algorithm is song@mparison, doubling times were also computed based on the
what dependent on the geometry of the nodule ROI. This is daeea of the axial slice of maximum cross-sectional area in each
to the fact that estimation of the orientation of the nodule—pleuf@dule based on the same 3-D segmentation used to produce
interface is based on moment calculations involving the thredhe volume measurements.
olded ROI. In experiments performed onih&ivojuxtapleural Two high-resolution CT studies were obtained for each of
nodules, Algorithm 2 was able to perform a correct segmentts (five malignant, 11 nonmalignant) small pulmonary nodules.
tion in 13 (72%) of the cases. When a user was able to mdrhese included three well-circumscribed nodules, nine vascu-
ually specify the orientation of the disk, the results improvedhrized nodules, three juxtapleural nodules, and one pleural tail
allowing for correct segmentation in 15 (83%) of the casesodule. All cases for this study were taken from our lung cancer
In the remainder of the cases, manual segmentation was gereening program. Information regarding the size of the overall
quired. These cases were located in the lung apices or whEegly Lung Cancer Action Project study, as well as the preva-
the assumption of local planarity of the chest wall is less valitence of nodules and malignancy, has been reported in the litera-
Overall, the results are promising in that they offer a consisire [18], [19]. The nodules were classified as malignant by cy-
tent automated segmentation technique for the majority of jutologic or histologic diagnosis, whereas the nonmalignant nod-
tapleural nodules seen in this study. ules were classified by a specific benign diagnosis on cytology
In the implementation of our system described in this pap@r, by exhibiting no radiographic change over more than two
the parameters for both the vascular subtraction and pleural sggrars. Each of the cases were segmented using the techniques
face removal algorithms are set to default values that have belscribed in Section IV. Manual adjustment of the kernel size
seen to produce the best results on the wide range of nodulesd for vascular subtraction (Algorithm 1) was deemed neces-
tested. When the segmentation results are unacceptable to theaey by the radiologist in two cases, as was adjustment of the
viewing radiologist, the user has the ability to alter the values ofientation of the disk for Algorithm 2 in one case.
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The initial diameter of each of the nodulestgt d, was de- [4]
termined as the average of the major and minor principal axes
of the ellipse of inertia describing the segmented nodule in the
slice of maximum cross-sectional area. This measure was usep]
instead of the average of the three principal axes of the EOI de-
scribing the entire nodule, as it more closely corresponds With[e]
traditional radiographic assessment. The median diametgyr at
Jo was 6.2 mm. The time interval between the scansanged

from 20 to 71 daygmedian= 36 days for the malignant nod- [
ules and from 35 to 745 daymedian= 111 days for the non-
malignant nodules. The results are shown in Table I. (8]

Volumetrically determined doubling times for the malignant
nodules ranged from 51 to 177 days. Doubling times for most
malignant nodules range from 30 to 400 days, and these casd$l
were all well within this range [40]. Similarly, doubling times
for the nonmalignant nodules ranged from 318 to 33 700 days
for growing nodules and from 242 to—3610 for those nodules 10]
that were found to have reduced in volume on repeat examiné—
tion. With the exception of Case 14, all nonmalignant nodules
had doubling times consistent with benignity. [11]

Doubling times based on maximum cross-sectional area did
not agree as well with previously reported values for pulmonary
malignancy. Four of the nonmalignant cases had doubling time&2!
that fall within the range of those for typical lung cancers.

[13]
VIl. CONCLUSION

3-D methods can be used in the effective segmentation ara4]
volumetric measurement of small pulmonary nodules imaged
using high-resolution CT. We have described algorithms we
developed for the different morphologic classes of pulmonaryis]
nodules, including well-circumscribed, vascularized, and
juxtapleural nodules. [16]

Experiments were performed to assess the ability of the 3-D
methods to estimate nodule growth rate and were shown to be
more accurate than those based on 2-D measurements. Volyh,
metrically determined estimates of nodule doubling time in ma-
lignant nodules were consistent with those reported in the lit-
erature. All but one of the nonmalignant nodules had doublin
times typical of benign species.

Further development of these methods is currently underway,
including studies of the effect of varying scan parameters oig,
doubling-time estimates, as well as clinical validation on larger
datasets. With improving CT resolution, we hope to improve our
ability to estimate nodule growth rate and study other nodule

18]

characteristics such as shape and density distribution. [20]
[21]
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