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Abstract In this paper, a three-dimensional semi-idealized

model for tidal motion in a tidal estuary of arbitrary shape

and bathymetry is presented. This model aims at bridging

the gap between idealized and complex models. The ver-

tical profiles of the velocities are obtained analytically in

terms of the first-order and the second-order partial deriva-

tives of surface elevation, which itself follows from an

elliptic partial differential equation. The surface elevation

is computed numerically using the finite element method

and its partial derivatives are obtained using various meth-

ods. The newly developed semi-idealized model allows for

a systematic investigation of the influence of geometry and

bathymetry on the tidal motion which was not possible in

previously developed idealized models. The new model also

retains the flexibility and computational efficiency of previ-

ous idealized models, essential for sensitivity analysis. As

a first step, the accuracy of the semi-idealized model is

investigated. To this end, an extensive comparison is

made between the model results of the semi-idealized

model and two other idealized models: a width-averaged

model and a three-dimensional idealized model. Finally, the
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semi-idealized model is used to understand the influence

of local geometrical effects on the tidal motion in the Ems

estuary. The model shows that local convergence and mean-

dering effects can have a significant influence on the tidal

motion. Finally, the model is applied to the Ems estuary. The

model results agree well with observations and results from

a complex numerical model.
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1 Introduction

Estuaries are regions of large economical (navigation chan-

nels, sand and gas mining, recreation, etc.) and eco-

logical importance. Recently, various contributions (e.g.,

Chernetsky et al. 2010; de Jonge et al. 2012; Winterwerp

et al. 2013; Winterwerp and Wang 2013) have indicated that

tidal characteristics can change significantly due to anthro-

pogenic measures. These changes can endanger safety,

i.e., changes in the surface elevation may cause flood-

ing in the surrounding area, and transport (related to the

changes in the three-dimensional velocity field) or accu-

mulation of sediments and pollutants which leads to poor

quality of water. It is therefore essential to accurately

describe and understand the tidal water motion includ-

ing its response to natural changes and anthropogenic

disturbances.

Different types of process-based models can be

used to gain understanding of tidal motion (Murray

2003; de Vriend 1992, 1991). These models can be broadly

divided into two categories: complex simulation mod-

els and idealized models. A complex simulation model

aims at resolving all known physical processes, using
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state-of-the-art parameterizations of unresolved processes.

Concerning complex model simulations of the Ems estuary,

one can find the studies by Van de Kreeke and Robaczewska

(1993), Pein et al. (2014), and van Maren et al. (2015).

An idealized model on the other hand considers only those

physical processes which are dominant for the phenomenon

under investigation. Idealized models use simplified geo-

metric and bathymetric profiles. The schematizations of

idealized models allow for quick solution techniques, often

analytic, which makes these type of models suitable for

extensive parameter sensitivity analysis.

Idealized models, used to study the tidal motion in estuar-

ies, can be further divided into different categories. Averag-

ing the governing equations over the cross-section results in

one-dimensional models, see Lanzoni and Seminara (1998)

and Valle-levinson (2010) for an overview. Ianniello (1977)

and Chernetsky et al. (2010) developed width-averaged

(2DV) models to gain insight in the vertical flow structure

in the longitudinal direction. The geometry was assumed to

be exponentially converging, while the depth was assumed

constant in Ianniello (1977) and varying in the longitudinal

direction in Chernetsky et al. (2010). Assuming along-

estuary uniform conditions, Huijts et al. (2009) developed

an idealized model to study the water motion in an estu-

arine cross-section, allowing for an arbitrary bathymetry

in the lateral direction. To study the interaction of lateral

and longitudinal flows, Li and Valle-levinson (1999) used

a depth-averaged (2DH) model that allowed for an arbi-

trary bathymetric and geometric profile, but ignored Cori-

olis effects. Winant (2007) developed a three-dimensional

idealized model for tidal motion on a rotating (Coriolis

effects included) elongated (width is much smaller than

the length) rectangular domain with a parabolic bathymet-

ric profile in the lateral direction together with constant

physical parameters and constant density. Winant’s three-

dimensional idealized model is limited to an estuary with

elongated rectangular domain and constant physical param-

eters.

In light of the above, it is clear that currently there is no

idealized model that allows for a systematic investigation

of the influence of arbitrary geometry and bathymetry on

three-dimensional water motion. Therefore, the aim of this

paper is to develop a three-dimensional idealized model for

tidal water motion in an estuary with arbitrary geometry and

bathymetry. The physical parameters are allowed to vary

in the horizontal direction as well. The surface elevation is

obtained from a two-dimensional elliptic partial differential

equation, which is solved numerically using the finite ele-

ment method. The vertical profile of the three-dimensional

velocity can be explicitly calculated in terms of the first

and second-order partial derivatives of the surface elevation,

i.e., the three-dimensional velocity profile is analytic in the

vertical direction.

This model is a first step in bridging the gap between

idealized models and complex models: the model can still

be systematically analyzed to gain understanding of impor-

tant physical mechanisms, but allows for more complex

geometries and bathymetries.

Our three-dimensional semi-idealized model is first

tested by comparing its results with the results of the width-

averaged model of Chernetsky et al. (2010) and the three-

dimensional idealized model of Winant (2007). Extensive

error and convergence analyses are performed to evaluate

the finite element method and various methods to compute

its partial derivatives. Next, the model is applied to com-

plex geometry of the Ems estuary and the influence of local

geometrical effects on the tidal motion is investigated.

The structure of the paper is as follows. The governing

equations of the three-dimensional semi-idealized model

are described in Section 2. These equations are solved in

Section 3. The comparison of the three-dimensional semi-

idealized model with the width-averaged model is presented

in Section 4 and with the three-dimensional idealized model

in Section 5. Using this novel three-dimensional semi-

idealized model, the influence of local geometrical effects

on the tidal motion of the Ems estuary are investigated in

Section 6. Finally, conclusions are presented in Section 7.

2 Model formulation

We consider a tidal estuary of arbitrary shape and

bathymetry (Fig. 1), with x and y denoting the horizontal

coordinates and z the vertical coordinate pointing upwards.

The two-dimensional surface of the estuary is denoted by �.

Note that, since the shape of the estuary is arbitrary, x (y)

need not represent the along-channel (cross-channel) coor-

dinate. The bathymetric profile is denoted by h(x, y), with

the mean depth at the seaward side given by H .

The water motion is governed by the three-dimensional

shallow water equations, including the Coriolis effect. The

estuary is assumed to be partially-mixed or well-mixed.

Following Winant (2007), the equations are scaled and the

physical variables are asymptotically expanded in powers of

a small parameter ǫ = Ã/H , where Ã is the mean amplitude

of the semi-diurnal lunar (M2) tidal wave at the seaward

side. In leading order, i.e., at O(ǫ0), the dimensional system

of equations is given by

ux + vy + wz = 0, (1a)

ut − f v = −gηx + (Avuz)z, (1b)

vt + f u = −gηy + (Avvz)z, (1c)

where f = 2�∗ sin θ is the Coriolis parameter, �∗ =
7.292 × 10−5 rad s−1, the angular frequency of the Earth’s

rotation, θ latitude, g is the gravitational acceleration, and
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Fig. 1 Three-dimensional sketch of an estuary with arbitrary geomet-

ric and bathymetric profiles. The bathymetric profile is shown on a

grayscale. The seaward side (denoted by ∂D�) is shown in magenta

color ( ) and the river side (denoted by ∂R�) is shown in cyan

color ( ). The other boundaries (denoted by ∂N�) are assumed

to be closed walls. The surface of the estuary is discretized using lin-

ear triangles in order to compute the surface elevation with the finite

element method. The constrained nodes (nodes where the surface ele-

vation is known) are indicated by blue diamonds ( ) and unconstrained

nodes (nodes where the surface elevation has to be computed) by red

diamonds ( ). All the interior nodes are by default unconstrained. At

each node in the triangulization of the surface, the vertical profile of

the velocity field can be computed analytically using partial derivatives

of the surface elevation as shown by yellow dashed lines ( ).

The velocity at the surface is depicted by green arrows ( ) and, in

the rest of the water column, by yellow arrows ( )

Av (m2 s−1) is the eddy viscosity. At the seaward side

(denoted by ∂D�), the system is forced with a prescribed

M2 tide,

η = A(x, y) cos ωt, ∀ (x, y) ∈ ∂D�, (2a)

where A(x, y) is the spatially varying elevation amplitude

along this boundary and ω = 2π/T is the tidal frequency of

the M2 tide with tidal period T = 12.42 h. Also “∀(x, y) ∈
∂D�” means for all points (x, y) on the seaward boundary

(∂D�). At the other boundaries, either a no-flux condition

(for boundaries denoted by ∂N�) or a river discharge (for

boundaries denoted by ∂R�) is prescribed. Assuming that

the river outflow gives a minor contribution (only occurring

at first order rather than zeroth order in ǫ), the normal com-

ponent of the volume transport is required to vanish at the

remaining boundaries,

⎛
⎝

0∫

−h

(u, v) dz

⎞
⎠ · n̂ = 0, ∀ (x, y) ∈ ∂N� ∪ ∂R�, (2b)

where n̂ is the local unit normal pointing outwards. As

dynamic boundary conditions, a no-stress condition at the

surface z = 0 and a partial slip condition at the bottom

z = −h are prescribed, i.e.,

Av(uz, vz) = (0, 0), at z = 0, (2c)

Av(uz, vz) = s(u, v), at z = −h, (2d)

where s (m s−1) is the stress parameter which follows from

the linearization of the quadratic friction law (for details,

see Schramkowski et al. (2002) and Zimmerman (1992)).

In the present model, the eddy viscosity Av and the stress

parameter s are assumed to be constant in the vertical direc-

tion and in time. As kinematic boundary conditions, the

linearized boundary condition is applied at z = 0, and the

impermeability of the bottom is imposed at z = −h, i.e.,

w = ηt , at z = 0, (2e)

w = −uhx − vhy, at z = −h. (2f)

3 Solution method

The system of Eq. 1, together with the boundary condi-

tions (2), constitute a closed set of equations that can be

solved for the surface elevation η and velocity components

(u, v, w). Usually, this problem is solved numerically by

spatial and temporal discretization. In the approach pre-

sented below, the tidal motion is solved in terms of tidal

constituents, i.e., without discretizing in time. Furthermore,

the vertical structure of the velocity components is obtained

analytically resulting in a two-dimensional elliptic partial

differential equation (Section 3.1) for the surface elevation

that, in general, has to be solved numerically (Section 3.2).

3.1 Analytical part of the solution method

Since the water motion is forced by an oscillating water

level (2a) and the system of equations is linear, solutions of

the system of equations are of the form

(η, u, v, w) = ℜ{(N, U, V, W)eiωt }, (3)

where ℜ stands for the real part of a complex variable,

and i =
√

−1 is the unit imaginary number. Further-

more, N(x, y), U(x, y, z), V (x, y, z), and W(x, y, z) are

the complex amplitudes of the surface elevation and the

three velocity components, respectively. Substituting (3)

into Eq. 1 gives

Ux + Vy + Wz = 0, (4a)

iωU − f V = −gNx + AvUzz, (4b)

iωV + f U = −gNy + AvVzz. (4c)
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To solve this coupled set of equations, we introduce rotating

flow variables R1 and R2 with

R1 = U + iV and R2 = U − iV , (5)

such that

U = R1 + R2

2
and V = R1 − R2

2i
. (6)

We add Eq. 4c multiplied by i to Eq. 4b and Eq. 4c multi-

plied by -i to Eq. 4b. These give differential equations for

the rotating flow variables:

Rj,zz − α2
jRj = g

Av
LjN, j = 1, 2, (7a)

with differential operators L1 = ∂x + i∂y , L2 = ∂x − i∂y , and

coefficients α1 =
√

i
ω+f
Av

, and α2 =
√

i
ω−f
Av

. Following the

same procedure for the boundary conditions, we get,

AvRj,z = 0, at z = 0, (7b)

AvRj,z = sRj , at z = −h, (7c)

Here, ∂x and ∂y are the first-order partial derivatives with

respect to x and y, respectively. For each j = 1, 2, Eq. 7a is

a linear, second-order ordinary differential equation in the

vertical coordinate z, which can be solved analytically in

terms of the unknown pressure gradients Nx and Ny . The

resulting rotating flow variables read

Rj = cαj
(z)LjN, j = 1, 2, (8)

with vertical structure cαj
given by

cαj
(z) = g

α2
jAv

[
s cosh(αjz)

αjAv sinh(αjh) + s cosh(αjh)
− 1

]
.

Note that through the (x, y) dependency of the depth h, the

stress parameter s and the eddy viscosity Av, the function

cαj
also depends on the horizontal coordinates x and y. Inte-

grating the continuity Eq. 4a from z = −h to z = 0, using

the kinematic boundary conditions Eqs. 2e and 2f, we find

that

∂x

0∫

−h

U dz + ∂y

0∫

−h

V dz + iωN = 0. (9)

To express the depth-integrated horizontal velocity in terms

of the surface elevation, define Cαj
(z) as

Cαj
(z) =

z∫

−h

cαj
(z′) dz′

= g

α3
jAv

[
s(sinh(αjz) + sinh(αjh))

αjAv sinh(αjh) + s cosh(αjh)
− αj (z + h)

]
.

Integrating (8) over the water column from z′ = −h to

z′ = z, results in

z∫

−h

Rj dz′ = Cαj
(z)LjN, j = 1, 2. (10)

Combining (6), (8), and (10), the depth-integrated horizon-

tal velocities can be expressed as

z∫

−h

U dz′ =
z∫

−h

R1 + R2

2
dz′

= Cα1
(z) + Cα2

(z)

2︸ ︷︷ ︸
C1(z)

Nx + i
Cα1

(z) − Cα2
(z)

2︸ ︷︷ ︸
C2(z)

Ny

= C1(z)Nx + C2(z)Ny, (11a)

and,

z∫

−h

V dz′ =
z∫

−h

R1−R2
2i

dz′

=−i
Cα1

(z) − Cα2
(z)

2︸ ︷︷ ︸
C2(z)

Nx + Cα1
(z) + Cα2

(z)

2︸ ︷︷ ︸
C1(z)

Ny

= −C2(z)Nx + C1(z)Ny . (11b)

Substituting (11a) and (11b) in Eq. 9, results in an equation

for the surface elevation:

∇ · [D(0)∇N] + iωN = 0, (12a)

with ∇ = (∂x, ∂y)
T, where the superscript T denotes the

transpose operator, and

D(z) =
[

C1(z) C2(z)

−C2(z) C1(z)

]
. (12b)

The corresponding boundary conditions read

N = A, on ∂D�, (12c)

[D(0)∇N] · n̂ = 0, on ∂N� ∪ ∂R�. (12d)

Equation (12a) is a two-dimensional linear elliptic partial

differential equation with complex coefficient matrix D(0).

This matrix depends on the bathymetric profile h, the eddy

viscosity Av, the stress parameter s, and Coriolis parameter

f , all of which can be arbitrary functions of the horizon-

tal coordinates x and y. Therefore, an analytic solution

of Eq. 12 cannot be obtained in general, and a numeri-

cal approach will be pursued. In Section 3.2, the numerical

solution procedure will be discussed in detail.

Once the surface elevation N(x, y) is known, we have

to calculate its gradients Nx and Ny to obtain the verti-

cal profiles of the horizontal flow components. The vertical

velocity W is obtained by integrating the continuity equa-

tion (4a) from z′ = −h to z′ = z, together with the aid of
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Leibniz integral rule and the kinematic boundary conditions

((2e) and (2f)), resulting in

W = −∂x

z∫

−h

U(x, y, z′) dz′ − ∂y

z∫

−h

V (x, y, z′) dz′

= −∇ · [D(z)∇N], (13)

with D(z) given by Eq. 12b. This completes the derivation of

the three-dimensional flow profile expressed in terms of the

first-order partial derivatives (for horizontal velocities) and

the second-order partial derivatives (for vertical velocity) of

the surface elevation.

3.2 Numerical part of the solution method

In general, for an arbitrary domain, bathymetry and spatially

varying parameters, Eq. 12 cannot be solved analytically.

Therefore, a numerical approach, the finite element method

(Gockenbach 2006), is adopted. As a first step, Eq. 12 is

written in its weak form,

−
∫∫

�

[D(0)∇Ñ ] · ∇φ d� + iω

∫∫

�

Ñφ d�

=
∫∫

�

[D(0)∇ND] · ∇φ d�−iω

∫∫

�

NDφ d� ∀ φ ∈ �,

(14)

where N = Ñ + ND , ND = A on ∂D� and φ is a test

function belonging to the space of test functions �. Equa-

tion (14) implies that since ND is known, the problem of

finding N now reduces to finding Ñ . Details concerning the

derivation of the weak form can be found in Appendix B.

Next, the software package Triangle (Shewchuk

1996) is used to discretize the domain � using triangles

(Fig. 1). The discretized domain is denoted by �
h̃
, where h̃

is the mean step size (defined as the mean of the length of

all the edges in the discretization of the domain). The total

number of nodes equals n+m with the first n nodes located

in the interior or on the no-flux boundary (unconstrained

or free nodes, denoted by red diamonds in Fig. 1 together

with all the interior nodes) and the last m nodes located on

the seaward boundary (constrained nodes, denoted by blue

diamonds in Fig. 1). Next, the unknown complex surface

elevation amplitude Ñ is approximated by

Ñh̃
(x, y) =

n∑

l=1

Nlφl(x, y), (15)

where φl’s are so-called Lagrange basis functions that equal

one at node l and zero at all other nodes. The coefficients

Nl , l = 1, . . . , n are unknown complex amplitudes. In this

study, we will consider linear and quadratic polynomials as

basis functions.

Next, we substitute the finite element approximation of

Ñ
h̃

(15) in the weak form (14) and choose test functions φ

equal to basis functions φk , k = 1, . . . , n. This results in

a linear system of equations for the unknown Nl’s that can

be solved numerically (see Appendix B for a detailed expla-

nation). Once Ñ
h̃

is known, we can write down the finite

element approximation N
h̃

of N over the whole domain as,

N
h̃
(x, y) = Ñ

h̃
(x, y) + ND(x, y)

=
n∑

l=1

Nlφl(x, y) +
n+m∑

l=n+1

A(xl, yl)φl(x, y). (16)

Once we have computed the numerical solution N
h̃
, its

accuracy is assessed by performing error and convergence

analyses. Denoting the exact solution of Eq. 12a by N , the

error function E
h̃

is defined as

E
h̃

= N − N
h̃
.

The numerical solution N
h̃

converges to the exact solution

N if

||E
h̃
||

2
→ 0 as h̃ → 0,

where || · ||2 is the L2 norm defined in Appendix B. To make

our error measure independent of the size of the domain and

the range of the solution, we define the relative error as

r(h̃) =
||E

h̃
||2

||N ||2
. (17)

The order of convergence p is the rate at which the numer-

ical solution N
h̃

converges to the exact solution N , given

by

p =
log(||E

h̃1
||

2
/||E

h̃2
||

2
)

log(h̃1/h̃2)
. (18)

In general, if polynomial basis functions of order q are

used, the numerical solution N
h̃

converges to the exact solu-

tion N with rate q + 1, provided numerical integrals are

computed accurately enough (Gockenbach 2006). For linear

(quadratic) basis functions, we thus expect second (third)

order convergence of the numerical solution.

To compute the three-dimensional flow components, the

first-order and the second-order partial derivatives of N

have to be computed. Since the surface elevation itself is

obtained numerically using the finite element method, its

partial derivatives have to be obtained numerically as well.

It is therefore essential to determine these derivatives as

accurately as possible to get accurate velocity fields.

The most straightforward way to compute the partial

derivatives is the direct derivative method (from now on

denoted by DD-method) in which the numerical approxima-

tion given by Eq. 16 is differentiated directly, i.e.,

∂a+bN
h̃

∂xa∂yb
=

n∑

l=1

Nl

∂a+bφl

∂xa∂yb
+

n+m∑

l=n+1

A(xl, yl)
∂a+bφl

∂xa∂yb
,
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where a and b are the order of differentiation in the x and

y directions, respectively. When linear basis functions are

used, it is only possible to calculate the first-order partial

derivatives. Hence, the vertical velocity W can not be recon-

structed. For this reason, we use quadratic basis functions.

The quadratic basis functions allow both the first-order and

the second-order partial derivatives to be computed at min-

imum computational cost. Hence, the three components of

the velocity can be computed.

A main drawback of the DD-method is that for each

order of differentiation, the order of convergence of the

resulting derivative decreases by one. For quadratic basis

functions, the numerical solution for N is expected to con-

verge with rate three. The first-order and the second-order

partial derivatives calculated using the DD-method are then

expected to converge with rates two and one, respectively.

In the literature, various methods (Carey 1982;

Zienkiewicz and Zhu 1992a, 1992b; Ilinca and Pelletier

2007) are proposed to recover partial derivatives more

accurately than with the DD-method. For the problem

under consideration, the method proposed by Carey (1982)

only resulted in superconverging (converging faster than

expected) partial derivatives on a structured grid. For

unstructured grids, the method failed to converge. The

method proposed by Ilinca and Pelletier (2007) did not

produce superconverging results even for a structured grid.

The method proposed by Zienkiewicz and Zhu (1992a)

(from now on denoted by ZZ-method) was shown to

produce superconverging results for the first-order partial

derivatives of a numerical solution calculated using linear

basis functions. Here, we will apply the ZZ-method twice to

compute the first-order and the second-order partial deriva-

tives of a numerical solution calculated using quadratic basis

functions. In the literature, no proof exists that using the

ZZ-method recursively gives accurate results.

Apart from the two approaches discussed above, the DD-

method and the ZZ-method, we combine these two meth-

ods to compute the second-order partial derivatives of the

numerical solution obtained using quadratic basis functions.

This new method works as follows. First, the DD-method is

used to calculate the first-order partial derivatives. The ZZ-

method is then used on these first-order partial derivatives

to obtain the second-order partial derivatives. By doing so,

the recursive use of the ZZ-method is avoided. We refer to

this method as the mixed-method.

In summary, the surface elevation in our model is com-

puted using either linear or quadratic basis functions. When

linear basis functions are used, it is only possible to compute

the first-order partial derivatives either by the DD-method

or the ZZ-method. For quadratic basis functions, it is pos-

sible to compute both the first-order and the second-order

partial derivatives. The first-order partial derivatives can

be computed either by the DD-method or the ZZ-method.

For the second-order partial derivatives, either of the DD-

method, the ZZ-method, or the mixed-method can be used.

The order of convergence of the surface elevation and its

partial derivatives calculated using various methods will be

assessed in Section 4.

4 Comparison with a width-averaged model

4.1 Introduction and geometry

Chernetsky et al. (2010) developed a width-averaged (2DV)

model for an exponentially converging estuary (Fig. 2). The

width is given by B(x) = B0e
−x

/
Lb , with 2B0 the width at

the entrance and Lb the e-folding length scale. The along-

channel coordinate x varies from x = 0 at the seaward side

to x = L at the landward side, with L being the length of the

estuary. The lateral boundaries are located at y = −B(x)

and y = B(x). If Lb → ∞, the exponentially converging

domain becomes a rectangular domain with a constant width

of 2B0.

The governing equations for the 2DV model are obtained

by averaging the three-dimensional continuity and momen-

tum equations (given by Eq. 1a) over the width, using the

appropriate boundary conditions. Similar to the approach in

Section 3.1, the vertical profile of the velocities is calculated

analytically. The velocities themselves are proportional to

the first and second order derivatives of the surface eleva-

tion.

If the bed profile h and physical parameters are allowed

to vary in the along-channel direction, the surface elevation

has to be obtained numerically (which is done using stan-

dard numerical techniques). For a uniform bed profile and

Fig. 2 Sketch of the idealized geometry used by Chernetsky et al.

(2010). The width B varies exponentially as B(x) = B0e
−x/Lb , where

2B0 the total width at the entrance and Lb the e-folding length (blue

solid line, ). If Lb → ∞, the exponential domain becomes a

rectangular domain (blue dashed line, ). The bed profile varies

parabolically in the transverse direction (maintaining a constant lateral

depths of H
y
o at y = ±B) and linearly in the longitudinal direction,

with a depth of H at the entrance (x = 0, y = 0) and H x
o at the end

(x = L, y = 0)
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spatially uniform physical parameters, an analytical solution

of the 2DV model can be obtained.

To reproduce the results of a 2DV model by our 3D semi-

idealized model, the Coriolis parameter f in our model is

set to zero. In addition to that, the bathymetry and physi-

cal parameters are only allowed to vary in the along-channel

direction. The results of the 3D semi-idealized model are

averaged over the width for a fixed longitudinal coordinate

to allow for a comparison of the results obtained with the

2DV model. The one-dimensional width-averaged surface

elevation is calculated from the two-dimensional surface

elevation N(x, y) obtained from the 3D semi-idealized

model as

N̄(x) =
B(x)∫

−B(x)

N(x, y) dy, (19)

with N̄ the one-dimensional width-averaged surface

elevation.

4.2 Validation and convergence analysis

In this section, the results of the 2DV and 3D semi-idealized

models are compared. The convergence properties of the

numerical scheme are also investigated. A channel of uni-

form width (Lb → ∞ limit of exponentially converging

domain) of length L = 50 km and total width 2B = 1000 m,

together with a uniform bed profile of constant depth of

10 m, is considered. The eddy viscosity Av is set to

0.01 m2 s−1.

4.2.1 Surface elevation

In Fig. 3, the surface elevation is compared for different

values of the stress parameter s ranging from a no-slip

condition (s ≫ 1), to a moderate value (s = 0.01 m s−1),

to a free-slip condition (s = 0 m s−1). The domain is dis-

cretized using right-angled triangles with 24 nodal points

in the along-channel direction and 20 nodal points in the

cross-channel direction. For all three values of the stress

parameter, the results obtained with the 3D semi-idealized

model for both the amplitude and the phase of the sur-

face elevation agree well with those obtained with the 2DV

model.

To investigate the convergence properties of the numeri-

cal solution, we systematically increase the number of nodes

using an unstructured grid, i.e., the triangles need not be

right-angled. Results are compared for s = 0.01 m s−1.

With both linear and quadratic basis functions, the relative

error defined in Eq. 17 decreases for an increasing num-

ber of nodes (Fig. 4). For approximately 104.2 nodes, using

quadratic basis functions, the relative error approaches com-

puter accuracy and decreases only slowly afterwards. Note

that for the same number of nodes, the relative error using

quadratic basis functions is at least 100 times smaller than

the relative error found with linear basis functions. The

order of convergence for linear basis functions converges to

2 (Fig. 4b, red line), and for quadratic basis functions, the

order of convergence converges to 3 (Fig. 4b, blue line). For

the number of nodes larger than 104.2, the order of conver-

gence for quadratic basis functions decreases due to the slow

decrease in the relative error related to computer accuracy.

To conclude, the numerical solution for the surface eleva-

tion converges with the expected order of convergence for

both linear and quadratic basis functions.

4.2.2 Flow field

In Fig. 5, the absolute values of the horizontal and verti-

cal velocities from the 2DV and 3D semi-idealized mod-

els are plotted. The domain is discretized using right-

angled triangles with 2000 nodes in the along-channel

direction and 40 nodes in the cross-channel direction.
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Fig. 3 Comparison of 3D semi-idealized and 2DV model results for

the amplitude (left panel) and the phase (right panel) of the sur-

face elevation for different values of the stress parameter. The 3D

semi-idealized model result is shown using black asterisks and the

2DV model result is denoted by the solid black line (-)
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Fig. 5 Amplitudes of the horizontal (left panel) and vertical velocities (right panel) computed using 3D semi-idealized (lower panel) and 2DV

(upper panel) models. The units for the colorbars are m s−1
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Quadratic basis functions together with the mixed-method

are used to calculate the surface elevation and its first-order

and second-order partial derivatives. Figure 5 shows that the

3D semi-idealized model is able to reproduce the ampli-

tudes of the horizontal and vertical velocities of the 2DV

model.

To assess the accuracy of these velocities, the conver-

gence properties of the first-order and the second-order

partial derivatives will be examined. As explained in Section

3.2, only the first-order partial derivatives of the surface ele-

vation can be obtained when linear basis functions are used.

With quadratic basis functions, both the first-order and the

second-order partial derivatives can be computed.

We first consider linear basis functions to compute the

surface elevation. Both the DD-method and the ZZ-method

are used to compute the first-order partial derivative of the

surface elevation in the along-channel direction.

Figure 6a shows that the relative error for the first-order

partial derivative of the surface elevation decreases with

increasing number of nodes for both the DD-method and the

ZZ-method. The relative error for the ZZ-method is approx-

imately ten times smaller than that of the DD-method. Con-

cerning the order of convergence, the ZZ-method converges

at a faster rate than the DD-method. Increasing the num-

ber of nodes shows that the order of convergence for both

methods approaches 1 (Fig. 6b). There is a loss of one order

of accuracy compared to the second-order convergence of

the surface elevation for linear basis functions. Clearly, the

ZZ-method is more accurate than the DD-method both in

terms of the relative error and the order of convergence of

the first-order partial derivatives of the surface elevation.

Considering the quadratic basis functions, the conver-

gence of both the first-order and the second-order partial

derivatives can be assessed. The ZZ-method and DD-

method are applied to compute the relative error for the

first-order partial derivatives of the surface elevation.

Figure 6a shows that the relative error for the DD-method

decreases with an increasing number of nodes. However,

when using the ZZ-method, the relative error decreases up

to approximately 104.2 nodes and then starts to increase.

Ignoring the last two entries of the ZZ-method, both meth-

ods converge with order 2 (Fig. 6b). Unlike linear basis

functions (Fig. 6), there is only a small gain in using the ZZ-

method over the DD-method for calculating the first-order

partial derivatives with quadratic basis functions.

As discussed in Section 3.2, the second-order partial

derivatives can be computed in three ways: (1) DD-method,

(2) ZZ-method, and (3) mixed-method. Figure 7c shows

that the relative error for the DD-method and the mixed-

method decrease monotonically with increasing number of

nodes. The relative error for the mixed-method is approx-

imately a factor 10 smaller than the relative error found

with the DD-method. Furthermore, the mixed-method con-

verges faster than the DD-method. Up to 104.2 nodes, i.e.,

as long as the relative error of the ZZ-method decreases,

the ZZ-method gives the most accurate results both in terms

of the relative error and the order of convergence. How-

ever, the relative error of the ZZ-method starts to increase

when further increasing the number of nodes, which makes

it unreliable for use. All three methods ultimately appear to

converge with order 1.

At this point, it is important to mention that for quadratic

basis functions, the unreliable behavior of the ZZ-method

for computing the first-order and the second-order par-

tial derivatives with sufficiently large number of nodes is

independent of the choice of the bed profile. Similar conver-

gence tests for the ZZ-method were carried out using non-

uniform bathymetric profiles with quadratic basis functions,

resulting in a similar behavior of the ZZ-method.

To conclude, when using the linear basis functions,

the ZZ-method is recommended to compute the first-

order partial derivatives. For quadratic basis functions, the
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direction for quadratic basis functions. The red line shows the results
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mixed-method (only for second-order partial derivatives)

DD-method for the first-order partial derivatives and the

mixed-method for the second-order partial derivatives are

recommended.

4.3 Parameter sensitivity

To investigate the influence of the geometry, the width at the

entrance B0 will be varied in Section 4.3.1, keeping the e-

folding length Lb constant. The influence of the variations

in the bathymetry will be studied in Section 4.3.2. To com-

pute the numerical solution of the 3D semi-idealized model,

the domain under consideration is discretized using an

unstructured triangular mesh with approximately 400,000

nodal points. Choosing such a fine mesh minimizes the

numerical error in the 3D semi-idealized model. The eddy

viscosity Av and stress parameter s are set to 0.01 m2 s−1

and 0.01 m s−1, respectively.

4.3.1 Influence of width at the entrance

To study the influence of the width at the entrance B0 on

the surface elevation in isolation, an exponential domain

of length L = 50 km and an e-folding length Lb = 10 km

together with a flat bed profile of 10-m depth is considered.

The width at the entrance B0 is varied and the width-

averaged surface elevations obtained with the 2DV and 3D

semi-idealized models are compared.

In Fig. 8a, the width-averaged surface elevation (given

by Eq. 19) is shown for different values of the width

B0 at the entrance. For B0 = 2.5 km, both the 2DV and

3D semi-idealized models produce similar results for the

amplitude of the surface elevation. It is important to note

that the one-dimensional surface elevation from the 2DV

model is independent of the width at the entrance (B0).

Because of this, the amplitude of the surface elevation for

any value of B0 will be the same for a 2DV model. As B0

increases, the width-averaged amplitude of the surface ele-

vation obtained with the 3D semi-idealized model starts to

deviate from the results obtained from the 2DV model. This

deviation increases with increasing value of B0. For a width

B0 = 40 km, a deviation of approximately 10 % is observed.

To understand the cause of this deviation, the amplitude

of the surface elevation obtained with the 3D semi-idealized

model is plotted in the horizontal space for different values

of B0. It is clear from Fig. 8b–d that the solution is radially

constant away from the entrance. At the entrance, a constant
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surface elevation has been prescribed, which as it breaches

the radial symmetry, results in the non-uniformity close to

the entrance.

4.3.2 Influence of varying bathymetry

A rectangular channel of length L = 50 km and width

2B0 = 1000 m is considered. A parabolic bed profile is

adopted,

h = H
y
o + (H − H

y
o )(1 − y2/B2), (20)

where H
y
o is the constant depth at the lateral sides (y = ±B)

and H is the maximum depth which is attained at the center

line (y = 0) of the channel. To use the 2DV model, this

bathymetric profile is averaged over the width, resulting in

h̄ = 1

2B

B∫

−B

h dy = 1

3

[
H

y
o + 2H

]
. (21)

In Fig. 9, the water depth at the sides is varied from 1 to

10 m (which is a channel with uniform bed again), and the

difference between the amplitude of the width averaged sur-

face elevation obtained with the 2DV and 3D semi-idealized

models is shown. For H
y
o = 1 m, a difference of approxi-

mately 8 cm in amplitude of the surface elevation towards

the landward side is found. For each value of H
y
o , the dif-

ference in the amplitude increases along the channel. As

H
y
o increases, the difference in the amplitude decreases.

The positive value for the difference of amplitudes show

that the amplitude of the surface elevation from the 3D

Fig. 9 Difference in the amplitude of the surface elevation between

the 3D semi-idealized and 2DV models. The unit in the colorbar is m
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semi-idealized model is always larger than that of the 2DV

model.

5 Comparison with three-dimensional asymptotic

model

5.1 Introduction and geometry

Winant (2007) developed a three-dimensional idealized

model for an elongated rectangular basin of length L and

width 2B. The along-channel coordinate x varies from x =
0 at the seaward side to x = L at the landward side. The

cross-channel coordinate y varies from y = −B at the lower

boundary to y = B at the upper boundary. The term elon-

gated implies that the horizontal aspect ratio α = B/L has

to be small. A no-slip condition is imposed at the bottom

z = −h. This limit is found by taking s → ∞ in our 3D

semi-idealized model. The eddy viscosity Av is assumed to

be spatially uniform. The bed profile given by Eq. 20 is used

(see Fig. 2).

The surface elevation N follows from Eq. 12, but Winant

(2007) uses a different solution method. Assuming that α ≪
1, an asymptotic expansion of N in α is made;

N = N0 + αN1 + O(α2), (22)

and substituted in Eq. 12. This results in a system of equa-

tions for various orders of α, such that the leading order

(N0) and the first order (N1) solutions can be calculated

analytically. The surface elevation is approximated by

N ≈ N0 + αN1 = NWinant. (23)

It is important to realize that the solution NWinant given in

Eq. 23 is not an exact solution of system (12) as O(α2) and

higher order terms are ignored. Therefore, in this paper, we

refer to this model as the 3D asymptotic model.

5.2 Validation

In this section, the 3D asymptotic and 3D semi-idealized

model results for the surface elevation (Section 5.2.1) and

the velocity (Section 5.2.2) are compared. An elongated

rectangular basin of length L = 50 km and total width

2B = 200 m such that α (= 0.002) ≪ 1, is considered. The

default parameter values from Table 1 are used.

5.2.1 Surface elevation

First, the surface elevations for different values of the eddy

viscosities are compared, Av=10−3, 10−2, and 10−1 m2 s−1.

The rectangular basin is discretized using right-angled tri-

angles with 24 nodes in the along-channel direction and

20 nodes in the cross-channel direction. Figure 10 shows

Table 1 Default parameter values used for the comparison of the 3D

asymptotic model and 3D semi-idealized model. A no slip condition

(s → ∞) is imposed at the bottom

Parameter Value

L 50 km

B 100 m

H 10 m

H
y
o 2 m

f �∗/2

Av 10−3 m2 s−1

that the amplitudes of the width-averaged surface eleva-

tions obtained from the 3D asymptotic model and 3D

semi-idealized model appear to agree well.

Note that for the parameter settings considered here, the

Coriolis effects only influence the amplitude of the surface

elevation marginally. This is because the width of the chan-

nel 2B = 200 m is much smaller than the Rossby radius

of deformation R∗ =
√

gH/f ≈ 71 km, which is the

length scale of the cross-channel variations for the surface

elevation.

5.2.2 Flow field

The rectangular domain is discretized using right-angled

triangles with 200 nodes each in both the along-channel

and cross-channel directions. This relatively large number

of nodes is used to avoid numerical inaccuracies in the

computation of the velocity components.

Quadratic basis functions together with the mixed-

method are used to compute the surface elevation and its

first-order and second-order partial derivatives. Three veloc-

ity components are compared in the cross-channel direction
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depicts the 3D asymptotic model solution and black asterisk depict the

3D semi-idealized model solution
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at a distance x = 25 km from the entrance. It is evident

from Fig. 11 that our 3D semi-idealized model is able to

reproduce all three velocity profiles of the 3D asymptotic

model, even small details in the vertical velocity W have

been reproduced accurately. It is important to mention that

the comparison of the velocity field at other locations is as

good as at x = 25 km.

5.3 Parameter sensitivity

In Section 5.2, the results for the surface elevation and

three flow components from 3D asymptotic and 3D semi-

idealized models were compared for a rectangular channel

whose horizontal aspect ratio α was small (2.0 × 10−3).

In this section, α will be systematically increased and the

difference between the two models will be discussed.

From Eqs. 22 and 23, it follows that

|N − NWinant| = |O(α2)|.

Assuming that the solution of the 3D semi-idealized model

N
h̃

converges to the exact solution N , it follows that

|N
h̃

− NWinant| ≈ |O(α2)|, (24)

which implies that for a channel geometry with horizontal

aspect ratio α, an error of O(α2) is expected provided the

3D semi-idealized solution has been calculated with high

enough accuracy.

To verify Eq. 24, a rectangular channel of length

L = 50 km with different widths at the entrance is consid-

ered, B = [250, 500, 1000, 2000, 4000, 8000, 16000], all in

meters. For each value of B, the rectangular domain is dis-

cretized by refining a coarse grid with approximately 102

nodes to the finest grid with approximately 106 nodes. Lin-

ear basis functions are used to compute the finite element

approximation of the surface elevation. For each value of

B (hence α), the relative error of the surface elevation

between the 3D asymptotic and 3D semi-idealized models

is computed for different numbers of nodes.

Figure 12 shows the influence of α on the accuracy of the

3D asymptotic model. For each α, the relative error becomes

constant after a large enough number of nodes. This con-

stant relative error is proportional to O(α2), thus suggesting

that Eq. 24 is indeed correct. As α increases, the relative

error between the 3D semi-idealized and 3D asymptotic

models increases. For the largest number of nodal points

used in the experiments, the relative error for different val-

ues of α appear to be equispaced. More precisely, there is

approximately a difference of a factor 4 between the error

for each α, coinciding with the fact that the size of the

domain is doubled each time. This clearly demonstrates the

sensitivity of the 3D asymptotic model to the horizontal

aspect ratio.

6 Application to the Ems estuary

Our 3D semi-idealized model allows us to study the tidal

motion in an estuary with arbitrary shape and bathymetry.

As an example, we apply this model to the Ems estuary, sit-

uated on the border of the Netherlands and Germany (Fig.

13). In Section 6.1, the surface elevation of the M2 tide

obtained with the 3D semi-idealized model will be cali-

brated for the Ems estuary. The results for the amplitude

and the phase of the surface elevation are compared with

the results of a complex numerical model (Delft3D) setup

by van Maren et al. (2015). Next, the influence of the local

width convergence on the tidal motion will be investigated

in Section 6.2.

Fig. 11 Comparison of the

amplitude of three flow

components (in m s−1). The

velocities have been plotted in

the cross-section at a distance

25 km from the entrance. The

upper panel shows the velocities

from the 3D asymptotic model

and the lower panel from the 3D

semi-idealized model. Left,

central, and right panels show

the along-channel, cross-channel

and vertical velocities,

respectively
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Fig. 12 Relative error for the

surface elevation as a function of

the number of nodes for different

values of the horizontal aspect

ratio α plotted on log-log scale
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6.1 Calibration

The observational data for the water level in the Ems estuary

for the year 2005 are used from six locations in the estu-

ary, namely Emden, Pogum, Terborg, Leerort, Weener, and

Papenburg (shown in magenta color in Fig. 14). The objec-

tive is to find the parameter values for the 3D semi-idealized

model such that the model results fit the observations for

the water level at these locations best. To this end, the geo-

metric and bathymetric profiles of the year 2005 of the Ems

estuary is used in the 3D semi-idealized model (Fig. 14).

The Coriolis parameter f is assumed to be constant through-

out the estuary i.e., f = 1.166 × 10−4 rad s−1 (latitude =

53.32◦).

The physical parameters such as the eddy viscosity Av

and the stress parameter s are also assumed to be constant

in space. The 3D semi-idealized model is forced with a

semi-diurnal (M2) tide of constant amplitude at the seaward

side (North sea side, see Fig. 14). The domain is discretized

with approximately 200,000 nodes using an unstructured

grid. The amplitude and the phase of the surface elevation

obtained with the 3D semi-idealized model is then scaled

in such a way that they match the observations at Emden.

Next, the optimal values of Av and s are found such that

the mean squared error between the model results and the

observations is minimum, i.e.,

min
Av,s

{
1

2

∑

i

{
(No,i − Nm,i)

2 + 2No,iNm,i

[1 − cos(φo,i − φm,i)]
}}

,

where No,i and φo,i are the amplitude and the phase of the

surface elevation observed at location i, whereas Nm,i and

φm,i are the amplitude and the phase of the surface elevation

obtained with the 3D semi-idealized model. The optimal

values of Av and s are 0.0036 m2 s−1 and 0.0588 m s−1,

respectively.

van Maren et al. (2015) set up a Delft3D model to under-

stand the role of deepening of the channel on the sediment

concentration in the Ems estuary. The authors calibrated

their model using the same data as used in this paper.

Figure 15 shows the observations, results from the 3D semi-

idealized model and results from the Delft3D model of van

Maren. It is evident from Fig. 15 that the 3D semi-idealized

Fig. 13 Map of the Ems estuary

(from Chernetsky et al. (2010))
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Fig. 14 The geometry and bathymetry of the Ems estuary for the year

2005 (left panel). The data for the surface elevation of the M2 tide

is available at six locations (shown in the magenta color). The right

panel describes how the realistic domain is transformed into a symmet-

ric domain. Red asterisks show the boundary points of the transects.

The green dashed line passes through the mid points of these

transects shown by green squares . The width B of the each transect

is divided into −B/2 and B/2 with respect to the middle green line as

shown by blue lines

model is able to reproduce the amplitude and the phase of

the surface elevation at six different locations fairly well.

It is interesting to see that for the amplitude of the surface

elevation, the 3D semi-idealized model fits the observations

at least as accurately as the Delft3D model at all loca-

tions except Pogum. For the phase of the surface elevation,

both the 3D semi-idealized and the Delft3D models fit the

observations equally well.

6.2 Influence of local convergence

We focus on the upper part of the Ems estuary, start-

ing from Knock up to the weir at Herbrum. This part of

the estuary consists of a narrow, meandering channel with

decreasing width towards the landward side. In this section,

the effects of channel convergence and meandering are

investigated.
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Fig. 16 Approximation of the geometry of the Ems estuary. See Fig.

14 (right panel) for meaning of various colors

To study the influence of the local convergence on the

water motion, the channel from Knock to Herbrum is trans-

formed into a symmetric domain bounded by y = −B(x)/2

at the lower boundary to y = B(x)/2 at the upper boundary.

For this, the widths B along many transects in the chan-

nel (red asterisks, Fig. 14, right panel) are mapped to a new

domain bounded by y = −B/2 to y = B/2 (blue lines,

Fig. 14, right panel), with the central line y = 0 passing

through the middle of the channel (green dashed line, Fig.

14, right panel). The resulting data set is shown in Fig. 16

(red asterisks). We call this domain the scattered domain. It

is important to note that the scattered domain is similar to

the realistic domain except that the meandering effects in

the scattered domain have been ignored.

First, this data set is fit with an exponential function given

by

B = B0 exp(−x/Lb),

where 2B0 is the total width at the entrance and Lb is the

e-folding length.

The optimal values of B0 and Lb fitting the data are

calculated using the least square method and are given as

B0 = 543.9 m, Lb = 24.5 km. The corresponding domain

is shown in Fig. 16. It is also possible to fit the data with

a polynomial function. From Fig. 16, it is evident that a

9th degree polynomial function fits the width data more

accurately than the exponential function.

The values of the eddy viscosity Av and the stress param-

eter s, found during the calibration process in the previous

section, are used. To understand the influence of geometri-

cal effects in isolation, a uniform bed profile is considered.

Water depth of 15 m is chosen such that the amplitude of

the surface elevation exhibits a similar trend as shown in

Fig. 15a. The system is forced with a semi-diurnal (M2)

tide with an amplitude of 1.42 m at Knock. The domain is

discretized using an unstructured grid with approximately

200,000 nodes. Linear basis functions together with the ZZ-

method are used to compute the surface elevation and the

horizontal velocities.

Figure 17a shows the amplitude of the surface elevation

along the middle line (shown in green color in Figs. 16 and

14) for different schematization of the domain. It is evi-

dent that with the exponential domain, the amplitude of the

surface elevation throughout the domain is underestimated.

Using the polynomial function of 9th degree to approximate

the width compares well in the first 30 km, further upstream,

the amplitude is slightly underestimated. The results with

the scattered domain shows the same behavior. This devia-

tion between the realistic and scattered domains is probably

due to the meandering effects. Similar behavior is observed

for the phase of the surface elevation.

Next, we look at the amplitude of the depth-averaged

horizontal velocity which is defined as

√
¯|U |2 + ¯|V |2,

where Ū and V̄ are the depth-averaged along-channel and

cross-channel velocities, respectively and | · | denotes the

absolute value. Figure 17b shows that the results for the
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Fig. 17 Left panel shows the amplitude of the surface elevation and right panel the depth-averaged horizontal velocity along the middle of the

channel for different types of channel domains
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Fig. 18 Absolute value of the

horizontal velocity along the

middle of the channel for

different types of channel

domains. The axes are same in

all the plots. The units in the

colorbars are m s−1

depth-averaged horizontal velocity with exponential domain

deviates significantly from the results with the realistic

domain. The domain constructed with a 9th degree poly-

nomial captures the overall behavior of the depth-averaged

horizontal velocity profile throughout the domain. It is inter-

esting to see the agreement between the results obtained

with the scattered domain and the realistic domain. The

scattered domain is able to accurately reproduce the depth-

averaged horizontal velocity at the entrance and the end of

the channel.

To understand the influence of different channel domains

on the vertical structure of the flow, the absolute value of

the horizontal velocity, which is defined as
√

|U |2 + |V |2,

where U and V are the along-channel and cross-channel

velocities, respectively, is plotted along the middle of the

channel. Figure 18 shows that the scattered and polynomial

domains are able to reproduce the overall behavior of the

horizontal velocity of the realistic domain. It is interesting

to see that smoothing the scattered domain with a polyno-

mial function also smoothes the contour lines of the velocity

in the vertical direction, capturing the main features. The

exponential domain on the other hand clearly seems to miss

the information throughout the domain, especially at the

entrance. This is also observed in Fig. 17b.

7 Conclusions

A three-dimensional semi-idealized model for the tidal

motion in an estuary with arbitrary geometric and bathy-

metric profiles has been developed. This model is intended

to bridge the gap between idealized and complex simula-

tion models by retaining the advantages of the idealized

models (developed to obtain insight in physical mecha-

nisms, well suited to perform quick sensitivity analysis),

but removing one of its weak points (namely the require-

ment of idealized geometry and bathymetry). In this model,

the three-dimensional velocity field is expressed in terms

of the first- and second-order partial derivatives of the sur-

face elevation. The surface elevation itself follows from

a two-dimensional linear elliptic partial differential equa-

tion which is solved numerically using the finite element

method. Linear and quadratic polynomials are considered

as basis functions for the finite element approximation of

the surface elevation. Concerning the accuracy and con-

vergence properties of the newly developed model, we

found a second-order convergence with linear basis func-

tions and a third order convergence with quadratic basis

functions. With linear basis functions, ZZ-method proposed

by Zienkiewicz and Zhu (1992a) gives the most accurate

results for the first-order partial derivatives of the surface

elevation. With quadratic basis functions, direct differentia-

tion (DD-method) of the finite element approximation of the

surface elevation is recommended for the first-order partial

derivatives. For the second-order partial derivatives, a new

method known as the mixed-method, which is a combina-

tion of DD-method and ZZ-method, is shown to work the

best.

To investigate the influence of geometry and bathymetry

on the tidal characteristics, the results obtained with the

three-dimensional semi-idealized model are compared to

those obtained with a width-averaged model developed by

Chernetsky et al. (2010). For an exponentially converg-

ing estuary with a flat bed, the deviation for the surface

elevation between the width-averaged model and the three-

dimensional semi-idealized model increases with increasing

width at the entrance. For an estuary with constant width

and parabolic bed profile in the lateral direction, the width-

averaged model underestimates the amplitude of the surface

elevation for all values of the lateral water depths. The

comparison between the three-dimensional semi-idealized

model and the three-dimensional asymptotic model devel-

oped by Winant (2007) for an elongated rectangular channel

shows that the absolute difference in the surface elevation
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obtained with these two models increases for increasing hor-

izontal aspect ratio, and is proportional to the square of the

horizontal aspect ratio.

To assess the influence of a more complex geometry on

tidal propagation, the Ems estuary is considered. First, the

three-dimensional semi-idealized model is calibrated using

the observed geometry and bathymetry of the Ems estuary

for the year 2005. Concerning the amplitude and the phase

of the surface elevation of the M2 tide, a good agreement is

found between the observations, the model results of three-

dimensional semi-idealized model, and the model results of

a complex numerical model (Delft3D) setup by van Maren

et al. (2015). The model suggests that approximating the

geometry of the Ems estuary with an exponential function

gives unsatisfactory results for the surface elevation and the

horizontal velocity compared to the results with the realis-

tic geometric profile. When approximated with a function

that captures the local convergence effects (in this case, a

9th degree polynomial) of the Ems estuary, a good agree-

ment with the results obtained with realistic geometry was

found. It is therefore recommended to consider local geo-

metrical effects when using simplified geometry to model

tidal motion.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix A: Scaling analysis

The water motion is described by the three-dimensional

shallow water equations. Using the Boussinesq approxima-

tion and hydrostatic balance, the system of equations can be

written as,

ux + vy + wz = 0, (25a)

ut + uux + vuy + wuz − f v = −gηx − g

ρo

(η − z)ρx

+(Ahux)x + (Ahuy)y + (Avuz)z, (25b)

vt + uvx + vvy + wvz + f u = −gηy − g

ρo

(η − z)ρy

+(Ahvx)x + (Ahvy)y + (Avvz)z. (25c)

It is assumed that the estuary is partially to well mixed

such that the density can be approximated as ρ :=
ρ(x, y, t). Ah is the coefficient of horizontal mixing. To

scale the equations, the following dimensionless variables

are introduced;

t∗ = ωt, f ∗ = f/ω, (x∗, y∗) = (x, y)/L,

(z∗, h∗)=(z, h)/H, u∗ =u/U, v∗ =v/V, w∗ =w/W,

η∗ = η/A, ρ∗
x = ρx/|ρx |, ρ∗

y = ρy/|ρy |,

where asterisk (∗) denotes the dimensionless variables and

ǫ=A/H ≪ 1, where A is the amplitude of the surface ele-

vation and H is the mean depth at the seaward side, L is

the typical length scale, U = V = ǫωL, and W = ǫωH

are the typical scales of tidal velocities. In the above scal-

ing, gradients of the density are scaled instead of the density

itself. This is because it is the variation in density that

drives density-driven currents. The primitive equations in

dimensionless form reduce to:

u∗
x∗ + v∗

y∗ + w∗
z∗ = 0,

u∗
t∗ + ǫ(u∗u∗

x∗ + v∗u∗
y∗ + w∗u∗

z∗) − f ∗v∗

= − gH

ω2L2
η∗

x∗ − gH |ρx |
ρoUω

(ǫη∗ − z∗)ρ∗
x

+ 1

ωL2

[
(Ahυ

∗
x∗)x∗ + (Ahu

∗
y∗)y∗

]
+ 1

ωH 2
(Avu

∗
z∗)z∗ ,

v∗
t∗ + ǫ(u∗v∗

x∗ + v∗v∗
y∗ + w∗v∗

z∗) + f ∗u∗

= − gH

ω2L2
η∗

y∗ − gH |ρy |
ρoV ω

(ǫη∗ − z∗)ρ∗
y

+ 1

ωL2

[
(Ahv

∗
x∗)x∗ + (Ahv

∗
y∗)y∗

]
+ 1

ωH 2
(Avυ

∗
z∗)z∗ .

We also assume that the horizontal mixing is much

smaller compared to the vertical mixing (Winant 2007),

i.e., AhH
2/AvL

2 ≪ 1. With this assumption, x and y

momentum equations further reduce to,

u∗
t∗ + ǫ(u∗u∗

x∗ + v∗u∗
y∗ + w∗u∗

z∗) − f ∗v∗

= − gH

ω2L2
η∗

x∗ − gH |ρx |
ρoUω

(ǫη∗ − z∗)ρ∗
x

+ 1

ωH 2
(Avu

∗
z∗)z∗ ,

v∗
t∗ + ǫ(u∗v∗

x∗ + v∗v∗
y∗ + w∗v∗

z∗) + f ∗u∗

= − gH

ω2L2
η∗

y∗ − gH |ρy |
ρoV ω

(ǫη∗ − z∗)ρ∗
y

+ 1

ωH 2
(Avv

∗
z∗)z∗ .

Using typical scales for the density gradients in partially

to well mixed estuaries, we find that
gH

ρ0Uω
∇ρ is of order ǫ.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Next, we expand the unknown variables. u∗, v∗, w∗, and η∗

in the small parameter ǫ,

u∗ = u∗
0 + ǫ1u∗

1 + O(ǫ2),

v∗ = v∗
0 + ǫ1v∗

1 + O(ǫ2),

w∗ = w∗
0 + ǫ1w∗

1 + O(ǫ2),

η∗ = η∗
0 + ǫη∗

1 + O(ǫ2).

Substituting the asymptotic expansions in the dimension-

less equations results in the following leading-order system

of equations,

u∗
0,x∗ + v∗

0,y∗ + w∗
0,z∗ = 0,

u∗
0,t∗ − f ∗v∗

0 = − gH

ω2L2
η∗

0,x∗ + 1

ωH 2
(Avu

∗
0,z∗)z∗ ,

v∗
0,t∗ + f ∗u∗

0 = − gH

ω2L2
η∗

0,y∗ + 1

ωH 2
(Avv

∗
0,z∗)z∗ .

In the dimensional form, the system reads

u0,x + v0,y + w0,z = 0,

u0,t − f v0 = −gη0,x + (Avu0,z)z,

v0,t + f u0 = −gη0,y + (Avv0,z)z.

For the sake of simplicity, we remove the subscript 0 from

the variables, i.e., (η0, u0, v0, w0) = (η, u, v, w). Similar

treatment can be given to the boundary conditions.

Appendix B: Weak formulation

To solve the system (12) to obtain the surface elevation, the

finite element method is adopted (Gockenbach 2006). As a

first step towards the finite element method, a weak form of

system (12) has to be derived. To this end, define L2(�) and

H 1(�) function spaces as

L2(�) = {φ such that ||φ||2 =

⎛
⎝

∫∫

�

|φ|2
⎞
⎠

1/2

< ∞},

H 1(�) = {φ ∈ L2(�) such that φx, φy ∈ L2(�)}.

Assume that there exists a function ND in H 1(�) such

that ND = A on ∂D�. Then, the function Ñ = N − ND

vanishes over ∂D� and N = Ñ + ND . Define a function

space � for test functions as

� = {φ ∈ H 1(�) such that φ = 0 on ∂D�}.

Multiplying Eq. (12a) by φ ∈ � and integrating over the

domain � gives,
∫∫
�

{∇ · [D(0)∇N ] + iωN} φ d� = 0,

⇒
∫

∂D�

[D(0)∇N ] · n̂ φ︸︷︷︸
=0

d� +
∫

∂N �∪∂R�

[D(0)∇N ]·︸ ︷︷ ︸
=0

φ d�

−
∫∫
�

[D(0)∇N ] · ∇φ d� + iω
∫∫
�

Nφ d� = 0,

⇒ −
∫∫
�

[D(0)∇N ] · ∇φ d� + iω
∫∫
�

Nφ d� = 0,

⇒ −
∫∫
�

[D(0)∇(Ñ + ND)] · ∇φ d� + iω
∫∫
�

(Ñ + ND)φ d� = 0,

⇒ −
∫∫
�

[D(0)∇Ñ] · ∇φ d� + iω
∫∫
�

Ñφ d�

=
∫∫
�

[D(0)∇ND] · ∇φ d� − iω
∫∫
�

NDφ d�.

(27)

Equation 27 is the weak formulation of system (12). The

solution N = Ñ + ND obtained after solving the Eq. 27

is called the weak solution of system (12). This equation is

solved numerically.

Let Ñ
h̃

denote the finite element approximation of Ñ

defined on the discretized domain �h̃ (see main text) as

Ñ ≈ Ñ
h̃

=
n∑

l=1

Nlφl, (28)

where Nl
′s are unknown complex coefficients, φl

′s are so-

called Lagrange basis functions. Now, substituting Eq. 28 in

Eq. 27 and choosing φ = φk , k = 1, . . . , n gives

n∑

l=1

Nl

∫∫

�

[−D(0)∇φl] · ∇φk

︸ ︷︷ ︸
[S]k,l

+
n∑

l=1

Nl iω

∫∫

�

φl φk

︸ ︷︷ ︸
[M]k,l

=
∫∫

�

[D(0)∇ND] · ∇φk−iω

∫∫

�

ND φk

︸ ︷︷ ︸
[F]k

, ∀k=1, . . . , n.

which can be compactly written as

(S + M)N = F,

where S, M ∈ C
n×n are called the stiffness and mass

matrices, respectively. F ∈ C
n×1 is the forcing vector

and N = {N1, N2, . . . , Nn}T ∈ C
n×1 is the unknown vec-

tor consisting of complex surface elevation amplitudes at

unconstrained nodes. Once N is known, we can write the

numerical approximation of N over the whole domain as

N(x, y) ≈ N
h̃
(x, y) =

n∑

l=1

Nlφl(x, y)

+
n+m∑

l=n+1

A(xl, yl)φl(x, y).
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