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Abstract

We have succeeded for the first time to simulate dynamic phase transition from
metal to vapor. This success is due to the CIP method that can treat solid, liquid and
gas together and can trace a sharp interface with almost one grid. The code is applied
to the formation of crater under theillumination of a short pulse laser. The cratersize
created by 650mJ laser in 8nsec agrees well with the simulation including an
elastic-plastic effect and its depth is 100um which corresponds to anomalously large
cutting speed of 10°cm /sec for 8ns pulse. However, the simulation demonstrates that
evaporation is caused by remnant hot gas during several 100ns and occurs in the
direction of 75 degree in an intermittent and unstable manner leading to a unique
explanation on the angular distribution of debris. Some example of three-dimensional

simulations are also presented.

1. Introduction

The developing speed of computer hardware
is quite fast compared to software technology
because of various innovations in basic tech-
nology. Weneed similarinnovation to accelerate
the developing speed of software. One of them
will be a universal solver for computational
engineering problems. Recent high technology
requires new tools for combined analysis of
materials in different phase state, e.g., solid,
liquidand gas. A universal treatment of all phases
by one simple algorithm is essential and we are
at the turning point of attacking this goal.

For thesetypes of problems such as welding
and cutting processes, we need to treat topology
and phase changes of the structure simul-
taneously. In freezing, condensation, melting
and evaporation, the grid system aligned to the
solid or liquid surface has no meaning and

sometimes the mesh is distorted and even broken
up. To solve these problems with Lagrangean
representation in finite difference, finite element
and boundary element methods will be quite a
challenging task.

Towardthis goal, we take Eulerian-approach
based on CIP'"* method developed by the author
which does not need adaptive grid system and
therefore removes the problems of griddistortion
caused by structural break up and topology. The
material surface can be captured almost by one
grid throughout the computation. Furthermore,
the code can treat all the phases of materials from
solid state through liquid and two phase state to
gas without restriction on the time step from
high-sound speed.

In this paper, we will give a historical
review of the CIP method and its strategy, then
give some examples related to laser interaction
cutting process.
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Fig. 1 : The principle of the CIP. (a)solid line is initial profile and

dashed line is an exact solution after advection,

whose solution (b) at discretized points. (c) When (b)is linearly interpolated, numerical diffusion appears. (d)In the
CIP, spatial derivative also propagates and the profile inside a grid cell is retrieved.

2. CIP Method

In order to attack the problems mentioned
above, we must first find a method to solve the
interaction of compressible gas with incom-
pressible liquid orsolid. For compressible fluid,
elaborate schemes like TVD or ENO proved to be
quit effective in capturing shock waves. However,
since these schemes employ a conservative form
of fluid equations, divergence of velocity which
becomes zero in the incompressible limit cannot
be treatedindependently of the advection part. On
the contrary, incompressible schemes like
QUICK or higher-order upwind schemes com-
bined with improved MAC (Marker and Cell)
procedure can treat divergence-free fluid vorticity
and turbulence. However, these schemes cannot
always treat shock wave as a sharp discontinuity.

We needascheme to treat both compressible
and incompressible fluids simultaneously in one
program to simulate the interaction of gas with
liquid or solid. Fully implicit solvers can treat
this procedure, but the convergence of iteration
in highly distorted state is still a problem.
Recently, we have proposedanew type of scheme
CIP"? to treat shock waves by anonconservative
scheme. By a simple extention, the CIP can be
used for both compressible and incompressible
fluids simultaneously. This code is called the
CCUP?® and can treat incompressible fluid with
full hydrodynamic equations. In combination
with the surface capturing scheme presented
(which will be called "digitizer" here-after) in the
previous paper®, this scheme provides a useful
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tool to describe various physical processes which
were never attacked.

In this section, we review the CIP method
illustrate its principle. The key issues of the CIP
method are in the representation of advection
term and splitted treatment of other terms. By
this separation, the code can be extensible to
compressible and incompressible fluids. Let us
first start with a one-dimensional linear advec-
tion equation.

ZuEoo0 1)

ot g

The solution of Eq.(l) gives a simple trans-
lational motion of wave with a velocity u. The
initial profile (solidline of Fig.1(a)) moves like
a dashed line in a continuous representation. At
this time, the solution at grid points is denoted
by closed circles and is the same as the exact
solution. However, if we eliminate the dashed
line as in Fig.1(b), it is hard to imagine the
original profile and it is natural to retrieve the
original profile like that shown by solid line in
(c). Thus, numerical diffusion occurred when we
construct the profile by the linear interpolation
even with the exact solution as shown in Fig. 1(c).
This process is the first-order upwindscheme. On
the other hand, if we use quadratic polynomial for
interpolation, it suffers from overshooting. This
process is the Lax-Wendroff scheme or Leith
scheme.

What made this solution worse ? This is why
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Fig.2 ! A square wave profile after 1000 time steps with CFL=UAt/Ax=0.2. The solid line is an analytical solution and
symbols are numerical solution. (left) original CIP, (center) transformation with tangent function and (right) rational

CIP.

we neglect the behavior of the solution inside
grid cell and merely follow after the smoothness
of the solution. Therefore, we should consider
how to incorporate the real solution into the
profile within a grid cell. We proposed to
approximate the profile as shown below. Let us
differentiate Eq.(l) with spatial variable x, then
we get

@

where g stands for the spatial derivative of f, 3f/
dx%. In the simplest case where the velocity u is
constant, Eq.(2) coincides with Eq.(1) and
represents the propagation of spatial derivative
with a velocity u. By this equation, we can trace
the time evolution of fandg on the basis of Eq.(1).
If g propagates as shown in Fig. 1(d), the profile
after one step is limited to a specific profile. It
is easy to imagine that by this limitation, the
solution becomes very closer to the initial
profile.

If two values of fand g are given at two grid
points, the profile between these points can be
described by cubic polynomial F(x)= ax’+
bxZ+cx+d. Thus, the profile at n+1 step can be
obtained shifting the profile by uAt like

4141, F(x-uAt), g**'=dF(x-uA1)/dx.

£/ =a&’ +bE” +g,& +1,

gl =3aE% + 2b& +g;
a=BitBim Z(fi —fiup)
D? " Dd
b= 3(fiup _fi) _ 28 + 8ip 3)
- D? D
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where we define &=-u At and D=-sgn(u)Ax,
iup=i-sgn(u), since the upward direction depends
on the sign of the velocity(=sgn(u)). An inter-
polation with f and its derivative is called
Hermite spline. However, the key issue of the
CIP scheme is in the way of determining the time
evolution of spatial derivative. We proposed to
determine them from spatial derivatives of Eq. (1)
also. Therefore, the profile even within a grid cell
is determined so as to be consistent with the
equation.

By repeating Eq.(3), we can get the solution
of Eq.(1). One example is shown in Fig. 2 (left).
A small overshooting is unavoidable but does not
grow in time. In most of practical calculation,
this quality is sufficient. However, for the de-
scription of the sharp interface, we need more
accurate solution. We proposed two methods to
improve the solution.

2.1 Digitizer

In some special cases, one need to treat sharp
interface with exactly one grid. There have been
numerous methods proposed for treating interface
between two different materials. These methods
are divided into two groups. In one group the
interface is describedby asurface function, while
in the other group the interface is defined as
surface of a density function® such as VOF
(Volume of Fluid Method). In the former case,
main problem arises from a multi-valued func-
tion when the surface is strongly distorted or even
breaks up. Although this shortcoming will not
arise in the latter case, the numerical scheme to
describe an evolution of the density function
without numerical diffusion is a problem which
needs further - investigation. The level set
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Fig.3 : Injection of heavier liquid into lighter liquid. Equally—spaced 180X 90 Cartesian fixed grids are used.

function® is another interesting example of the
latter case and is worthy of further investigation.
Recently, we proposed a simple method*?”

to treat the density function ¢ with high accuracy

in multi-dimension. For this purpose, we

slightly modifiedthe CIP method describedabove.

We proposed to transform ¢ into F(¢d ). It is

obvious that anew function F(¢ ) also obeys the
same equation as the density function if it is

monotone function of ¢ . We can choose an
appropriate function to ensure monotone and
sharp dis-continuity. In the previous paper, we
chose the tangent function:

Flg) - tan[n‘(qﬁ— %)] (@
and the equation for F

dF JF

-t}-t—+u;";= 0 ®)

is solved. It should be noticed that the equation
to be solved for the spatial derivative is the
derivative of Eq.(5) but is not of Eq.(l) because
the target equation is now Eq.(5). In all the time
steps, only F and its derivative 0F/dx are

calculated and then if it becomes necessary, ¢ is
obtained by the inverse transformation of Eq.(4).
The result with this scheme is shown in
Fig.2(center), where no overshooting appears and
very small diffusion is attained. This is clear
from the definition of tangent function.
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This tangent function is useful to represent
the interface by the density function in which
only digitizedvalues 0 and 1 appear. This scheme
is applied to the injection of heavier fluid into
lighter fluid. In this case, we set the soundspeed
to quite alarge value and hence the process treated
here is almost incompressible although full
hydro-dynamic equations is usedwith the method
described in section 3. The result is shown in
Fig.3. The interface of two fluids has suc-
cessfully been treated by one grid throughout the
computation.

2.2 Rational Function CIP

Although the digitizer is useful for density
function or for incompressible fluid, we meet the
problem where density can change in time in each
region separated by sharp interface. Although we
can use the same technique even in this case®, we
had better consider more elaborate method to
eliminate overshooting. We may use MmB
scheme or limiter function. However, we prefer
to use the rational function:

)_ax3+bx2+cx+d

F
(x 1+aBx

©®

where a istheswitching parameter. If a is0,
Eq.(6) is merely the CIP method. When a is1,
it can be convex-concave preserving scheme when

the coefficients are given by

a =|_gi —S+(g,.up —S)(1+ aBD )j/D2
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Fig.4 : The result with implicit CIP, (left—top) CFL=0.5, (right—top) CFL=4.0, (left—bottom) CFL = 10and (right—bottom)

CFL=4with digitizer.

b=SaB+(S—g,)D -aD

c=g+faB, d=f

B= (s~ 8 (au -5)- 1]

S=(t-1)/D 0

where D and iup are already defined in Eq.(3) (see
Ref®® for details). As shown in Fig.2(right),
monotone and convex-concave preserving scheme
is attained.

2.3 Implicit CIP

Another interesting modification of the CIP
method is its implicit version'®. Although it is
implicit, it is directly solved in non-iterative
way. In obtaining Eq.(3), we shift the profile
from the past to the present. On the contrary, the
profile is shifted from future to the present in the
implicit scheme. Therefore, we can replace f and
g by f**' and g*' , and change & to be -&.
Rearranging this result, the
expression:

we obtain

£ = (k+1) 7 ~k(k+ 1) ke - g2 )D
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FR(k+3)2 + (3k + 1)
3
g2 =i +1) [+ (- 23y

~(2k -1)g'} + 6kt ~17) D]
k = —uAYD = 0 ®

Fortunately, only two points are connected
in the CIP method. For example, j and j-1 are
related in case of u>0. Therefore, even in the
implicit solution, we can directly solve it from
the upwinddirection. It is easy to extendit to the
case where velocity changes its sign® . Figure
4 shows the result and demonstrates its stability
and correctness. Surprisingly, combination of
digitizer with implicit scheme gives a very
accurate result even for uAt/Ax=4.

3. Application to Hydrodynamics

We use full hydrodynamic equations for both
compressible and incompressible fluids, which
can be written in a form:

df
dt

>

+(uV)f=g ©
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Fig.5 . The conservation error when the velocity profile
u(x) =1+0.5sin [2n(x—1)270] is used. The er-
ror=sum of p),/ (sum of initial p) X100%. 270 is
the number of grids. Old : non-advection first and
advection second.New : advection first (Courtesy of
T. Aoki).

where f=( p ,u,E) and g=(-p V + u, -V P/

p ,+Qy-PV + u/ p +Qg), where p is the
density, u the velocity, P the pressure, E the
specific internal energy, Qu represents viscous
andstress terms, and Qg includes viscous heating,
- heat conduction and heat source.

The CIP method solves the equations like
Eq.(9) by dividing those into non-advection and
advection phases. A cubic-interpolated profileis
shifted in space in the advection phase as shown
in the previous sections. Then, the non-advection
phase can be solved with finite difference or finite
volume method. It would be useful to show the
conservativyc property 1n this procedure. Figure
§ shows an error occurred when Eq.(9) with scalar

variable p issolvedunderthe given oscillating
velocity field We should remind here that
conservative property increases when the order of
calculation is changed. '

' As shown in the previous papers, we can
trace shock waves cbrrectly with the CIP method
althongh it uses fluid equations written in a
non-conservative form. This success is dueto the
high accuracy of the CIP methodand an improved
artificial viscosity!. Since we are treating
hydrodynamic equations in a non-conservative
form, it is easy to extend it to include both
incompressible and compressible fluids Let us
consider again the origin of the difficulty. Inthe
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Fig. 6 : Equation of state of aluminum.

Fig.7, we plot the iso-temperature contour of
Aluminum automatically generated from the
semi-analytical formula. In the gas phase where
density is sufficiently low, the pressure is in
proportion to the density. Therefore, we may
solve the density first in Eq.(9) and then after
temperature is obtained, we use EOS(equation of
state) in Fig. 6. However, near the solid density
of 2.7g/cm?,the pressure rises very sharply. If we
use the same procedure there, the pressure can
change easily by 3-4 orders of magnitude even
with small error of density around few tens of
percent. Therefore, the strategy to solve the
density first is broken in this area. This is the
reason why the universal treatment of solid,
liquid and gas is a difficult task. In attacking this
problem, the physicist in incompressible fluid
invented an interesting technique. We will trans-
late the strategy they used from a different view
point andreconsider the technique. If the pressure
is very sensitive to the density, we had better

v solve pressure at first. This means that we should

rotate Fig.6 by 90 degree. If we have a way to
solve pressure at first, then we get density very
accurately at the solid density. Since the pressure
is proportional to density in the gas phase, this
strategy does not harm the solution there either.
Then how to realize this strategy ? Our method
starts with the thermodynamic relation:

{33
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ar

)AT
P

(10)
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Fig. 7 : Density contour of aluminum illuminated by laser light. Time sequence is 50, 100,300 nsec.Filamentary structure

explains the experimental results.

where A p=p**'-p * and represents profile after
advection. The same expression is used for p
and T. Therefore, if A p and AT are predicted,

AP can be obtained since dp/dp, Jp/IT are
already given from EOS. The advantage of the
CIP is the separate treatment of the non-
advection term. Therefore, we can limit our
discussion here to the non-advection term only.
We should note that this merit is quite important
to get the final result. Then we get

Ap=—-p*V-u"*1At
p*C AT =P V-u"At (11)

where Cy is the specific heat for constant volume.
The velocity u®! in above equations can be
eliminated by using the equation of motion:

(12)

(Au:u‘&?-u*)we obtain the equation for p**'*'?

nyl % R

V(%Vpn+1] S it +VA:1
p A(pC§+ pm )
PC,T

, (13)
where Pr=T(dp/dT), . Cs’<(dp/dp);

Thus velocity u"*'can be calculated by
Eq.(12) and then the density p **'is by Eq.(11).
It is very important to note that in Eq.(13), p  is
inside the derivative on the left-hand side. Atthe
interface between materialshaving large density

difference, the continuity of acceleration V¥V p/
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p is very important becausethe denominator p
can change by several orders of magnitude in one
grid. Equation (13) guarantees the continuity
of Vp/p for incompressible (V. u=0) and
steady state. By this procedure, we can treat all
the material at once by simply changing its
equation of state. We note again that this
property is a consequence of the separate
treatment of advection and non-advection terms,

otherwise the continuity of V p/ p is not
guaranteed and a large density can not be traced.

Figure 7 shows melting and evaporation of
aluminum under the illumination of laser light,
where the density changes from 2.7 to 10 g/cm?®.
Aluminum solid is treated as an elastic-plastic
material initially and then changes to liquid and
vapor during phase transition. This change is
simply realized by the equation of motion. This
example shows the high ability of the code to
describe asharp interface andto berobust enough
to treat both compressible and incompressible
fluid simultaneously.

The experiment was performed at the
Institute of Laser Engineering, Osaka University
regarding the x-ray source development®: a YAG
laser of 650mJ in 8nsec is used to obliquely
illuminate an aluminum slab target with an angle
of '45degree to the target normal. Final crater
dépth and shape agree quite well with the
simulation in Fig.8 and seems to be anomalous

because the cutting speed is 100 gm/ 8nsec~
10%cm/sec if this crater should have been created
during laser pulse. Since the speeds of sounnd
wave and elastic wave inside aluminum are order
of 10°cm/sec, the cutting speed is much larger
than these speeds. Is this speed physically
possible? It is interesting to note that the crater
is not formed during the laser pulse, but it
develops gradually in the time scale of several
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Fig. 8 : Debris distribution. 0 degree corresponds to the
target normal. The histogram shows the experimental
result, while circles and triangles show the accumu-
lated mass from the simulation at 490ns and 90ns,
respectively.

100ns well after the laser pulse ended as shown
in Fig.8. The very high temperature plasmamore
than a few tens of eV produced by the 8ns laser
pulse and most of them expands from the target.
However, some of them still stay near the target
for long time after the laser pulse because of
recoil force from expanded plasmas and act as heat
source to melt aluminum metal in the time scale
of several 100ns.

When the plasma temperature becomes less
than melting temperature around 290nsec (the
time is measunred from the laser peak), the stress
of aluminum whose strength is 0.248Mbar and
yield strength is 2.2976kbar is recovered and no
distortion occurs after that time. This yieldstress
is quite important to determine the final crater
size. Without yield strength, the crater develops
further even after 490ns and the depth becomes
more than 300 ym although less difference is
seen at the beginning around 90ns.

The plasma heated crater formation leads to
other interesting phenomena. Since the plasma
acts not only as heat source but also as pressure
source, the dynamic expansion of evaporated
material at latertime is strongly modified. Since
a high pressure region is just in front of the
evaporation surface, the vapor is forced to flow
bypassing through a narrow channel between the
metal surface and this pressure source. Therefore,
the vapor preferentially flows toward a cir-

cumference with alarge angle to the target normal.

This effect is the exactly the same as that
obtained in the experiment. Figure 8 shows a
distribution of debris from the targets. The
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histogram is the experimental result and it was
drawn from 2000shots accumulated. Clearly there
exist two peaks around O and 75degree. As in
Fig.7, the plasma expands directed normally to
the target at early time t<90 ns andthis expansion
is a bulk part of the laser-heated plasma. As
already stated, this expansion causes recoil force
to the hot plasma surrounding aluminum surface.
This main part of the expansion creates a peak at
O degree. The triangles in Fig.9 show the
distribution calculated from the time integration

of mass flow p uup tot=90ns. At an early stage
t<90ns, no peak appears around 75degree. On the
other hand, the expansion at later stage t>90nsec
is limited to the sideward direction as stated
before and creates the peak at 75degree. Therefore
accumulated distribution up to 490ns shown by
circles in Fig.8 increases mainly at 75degree.
Simulation also predicts furtherinteresting
behavior. The expansion at t<40nsec is quite

uniform becauseits temperatureis quite high ~
a few tens of eV. The experiment supports this
result and the debris around O degree is very fine
andindistinguishable with an optical microscope.
On the other hand, the simulation result at
t=290nsec shows some filamentary streams
flowing from the surface. The experiment also
supports this result and the debris at 75degree
consists of 1 to 20 ym sized particles. Since the
simulation is two-dimensional axisymmetric, we
cannot estimate the particle size but we can
suggest the origin of the filaments.

The evaporated gas at later time must flow
through a very narrow channel to the cir-
cumference and therefore this narrow channel
creates thermal insulation layer between metal
surface and heat source. Then heat flow is
instantaneouly suppressed reducing evaporation.
If the evaporation is suppressed, the narrow
channel disappears and the heat source directly
contact the metal surface. Thus the heat flow
from heat source to metal surface is recovered
causing again evaporation and the formation of
narrow channel of thermal insulation layer.
Repeating this process, the intermittent evap-
oration occurs andthe filamentary streams appear
as shown in Fig.7. Although the detailed time
evolution is not seen from Fig.7, the animation
picture shows that, during flight to vacuum,
condensation occurs from low density clouds to
well defined filaments seen in Fig.7 at 290ns.



4. Three-Dimensional Results

Fig.9

Fig. 10

There are many applications of this scheme.

We will show here some ofthe typical examples.
One of the features of the code is the high ability
" to trace an interface. In all the simulations given
in this paper have been performed in a Cartesian
fixed grid system. In Fig.9, a solid rotar is
rotating just abovethe water surface. InFig.10,
acrylic block is illuminated by CO0, laser whose
spot is moving from top-right to bottom-left in
time by scanning a surface. In the middle, we also
plot density contour to show behavior of the
evaporated gas.

References

[1] H.Takewaki, A.Nishiguchi and T.Yabe :
Comput. Phys. 61 (1985) P.261.

[2] T.Yabe et al. : Comput.Phys.Commun. 66
(1991) P.219.

J.

31

Trans. JWRI, Vol. 25(1996), No.2

[3] T.Yabe and P.Y.Wang : J.Phys. Soc.Japan,60
(1991) P.2105.

[4] T.Yabe and F.Xiao : J.Phys. Soc. Japan 62
(1993) P.2537.

[5] C.W.Hirt and B.D.Nichols :J.Comput.Phys.
39 (1981) P.201.

[6] S.Osher and J.A.Sethian :J.Comput.Phys. 79
(1988) p. 12

[7] F.Xiao and T.Yabe :
I0I.

[8] F.Xiao, T.Yabe and T.Ito : Comput.Phys.
Commn. 93 (1996) p. 1.

[9] F.Xiao et al. : Comput.Phys.Commn. 94
(1996) p.103.

[10] M.Ida and T.Yabe :
(1995) P.21.

[11] T.Yabe and F.Xiao :
(1995)p.45.

[12] F.Xiao et al. : Comput. Model. & Sim. Eng.1
(1996) P.235.

[13] T.Yabe et al. : Research Report NIFS
(National Institute for Fusion Science)
Series, NIFS-417, May(1996).

Shock Waves 4 (1994) P

Comput.Phys. Comm. 92

Nucl.Eng. &Design 155



