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THREE-DIMENSIONAL SIMULATIONS OF FREE-ELECTRON LASER PHYSICS *

B. D. MCVEY
Los Alamos National Laboratory, University of Calif.rase, Los Alamos, NM 87545

A computer code has been developed to simulate three-dimensional free-electron laser physics.
A mathematical formulation of the FEL equations is presented, and the numerical solution of the
problem is described. Sample results from the computer code are discussed.

1. Introduction

A computer code has been developed at Los Alamos that simulates three-dimensional free-
electron laser physics. The calculation is based upon the Monte Carlo technique of following
the orbits of individual electrons, and then evaluating the macroscopic current to determine the
interaction with the optical field. For a linear undulator, we assume the usual coordinate system
where z is the wiggle direction, y is the direction of the magnetic field, and z is the axis of the
laser. The electron orbits are determined by numerically solving the relativistic Lorentz force
equation [1]. Included in the electron beam dynamics are the followirg: 1) finite emittance (an
arbitrary initial electron distribution in z, 8, y, 8y ), 2) energy spread (distribution in « ), 3) wiggler
focussing of the electron beam in the y-direction (betatron motion) , 4) and wiggle plane (z-plane)
focussing either due external quadrapoles or due to parabolic pole faces of the wiggler magnets [2].
Multiple optical wavefronts can be followed in the code. Along the z-axis, a finite width near the
center of the optical pulse is modelled . Periodic boundary conditions [3] are imposed vn those
clectrons that slip out of the end of the optical ,mputational box and are re-injected at the front.
The evolution of the optical field is determined by solving the paraxial wave equation [4] with
an .thomogeneous driving term. The driving term is a result of the stimulated emission of the
electron beam in the presence of the optical field. In the context of the periodic model of tha
optical field, the three-dimensional evolution of the sideband instability [5] can be studied. The
computer code was developad to simulate the Los Alamos FEL oscillator experiments. At the end
of the wiggler, the optical field is propagated through an optical resonator cavity to the wiggler

entrance wheie the electron beam interaction is re-initiated. Multiple passes through the wiggler

* This work was performed under the auspices of the U, S, Department of Energy and partially
supported by the U. S. Army Ballistic Missile Defense Organizatinn.
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results in a self-consistent 3-D FEL resonator solution.

The development of computer codes to simulate 3-D FEL physics is of particular importance in
a number of FEL designs. Long amplifier designs (wiggler length many times longer than the optical
Rayleigh range) require optical guiding [6]. The efficiency of electron capture and deceleration in
the optical bucket is sensitive to the cross-sectional profile or diffraction of the optical beam along
the length of the wiggler. Determining the feasibility of using an RF linac to drive an XUV-FEL
(A < 2000A) is dependent upon proper modelling of the electron beam emittance [7]. The small
signal gain curves as a function of wavelength are sensitive to the initial distribution of electrons in
z,f;,y, and B,. Finally for FEL oscillator systems, { D FEL simulations are required to evaluate:
1) the sensitivity of performance with electron-optical beam misalignments, 2) optical beam quality,

and 3) self-consistent resonator optical cavity solutions.

A number of researchers have developed or are in the process of developing computer codes
that simulate 3-D FEL physics [8-13]. Two basic approaches are used to represent the optical field.
The optical field can be represented as an expansirn of normal {Gaussian) modes [12-13], or the
field is represented by a set of discrete values on a planar grid [8-11). In this work, we use the latter
representation. Advantages of this approach are; 1) the generality in representing non-Gaussian
optical field profiles which includes the effects of aperturing the field, 2) compatibility with many
optical codes for use in the design of optical resonators [11], and 3) compatibility with arbitrary
initial electron distributions. The disadvantage of the discrete representation is the attendent
requirement of more computer time. As described in the first paragragh, the 3-D FEL computer
code descrided here was atructured to include as much physics as feasible. As an example, the Los
Alamos oscillator experiments have an elliptical electron beam with an energy spreed, and a broad
(5%) optical spectrum in observed. The 3-D FEL code described here models these effects except
for the overall shape (along z) of the optical pulse. Presently, a full pulse calculation would require

an excessive amoun* of computer ti'ne 8o a comprimize has been made and only the center of the

optica! pulse is mcdelled.

The remainder of this paper is orgainized as follows. In the next section, the mathematical
formulation of the particle and fleld cquations is presented. l.a section 3, the numerical solution

of the problem is described. In Section 4, sample results from the computer code are discussed.
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Finally, some conclusions and discussion are presented in the final section.

2. Mathematical Formulation of the FEL Equations

The individual electron equations of motion follow from averaging the relativistic Lorentz force
equation over the spatial period of the undulator {14]. An optical field of the following form is
assumed.

E,(7,t) = E,(F) cos [koz - wt + 8,(7) (1)

where E, is the magnitude and 6, the phase of the optical field both of which are slowly varying
functions of z,y, and 2. For the assumed form of the optical field, the energy equation for the

electrons has the form,

10 = 5 O R B cos v + 04(7) )
Fa=Jolw) - 10, b= oo (2a)

In Eq. 2, ay(F) = (eByu(F))/(inc®k,,) is the normalized vector potential of the wiggier. The 3-D

wiggler field is approximated as [2],

Xm = — i—.(“? cosh(k,.z) sinh(ky,y) sin [/ ku(z)de] (3a)
Bu=-Yxm , ko®=ke’+ky,’ (38)

For linear magnets with no focussing in the z direction, ko, = 0,ky, = k. For parabolic pole
face magnets with equul focussing in the z and y directions, kyz = kuwy = kw/\/2. The electrons
slip behind a fixed point on the optical pulse, a distane §, = " 8,dt - ct after a time interval, ¢.
The diflerential equation describing the slippage has the form,

dé,

a
det) =~ 5,1,—: [1+ 9"—.2'1 +(16a)" + (v8,)] (4)

In Eq. 2, ¢ is the relative phase of the electron wiggle moution to that of the optical field oscillations,
() = / ko(s)ds + kof, (8)

The transverse motion cf the electrons is determined by the following equations consistont with

the assumed form for the wiggler fleld.

aw’ w.’ e
d‘%;) _ 2’; z- . Z5(8,Bi - 8.D}) (8)




d('Yﬂv) _ _awzkwyz €

det) = 2y ¥ ma(PrBa=FaBl) (7)
dz _ dy _
2wt =P 0 qey =P ®)

The quantities BZ, By, and Bj represent external focucsing coils such as a quadrapole set [2,15].
Equations 2, and 4-8 describe the electron trajectories in the presence of an optical and wiggler

magnetic field.

The optical field is driven by the currents deduced from the set of electron equations. From

Maxwell’s equations we derive [16],

E = E,(7) exp[if.(7)] (9a)

., 9E  9'E  3%E
21k05;+5-z—2-+ a—y—z—-S(i“) (Qb)
S(A = (- 3":'“ J‘;—"'F,,e-“*“«))e“o (9¢)

where J is the electron current density and the brackets represent an average of all the electrons
at the position 7.

The above set of equations uniquely define a solution for a given FEL configuration if; 1) initial
conditions on (v, ¥, Bz, z, B,y) are specified for each electron at the entrance to the wiggler, and 2)
boundary conditions are imposed on E at the entrance and along the sides of the wiggler. The mag-
nitude of the electron bearn emittance and a model five-dimensional distribution function defines
the initial conditions on each electron. The model distribution assuined for the results presented
in this paper is product of uncorrelated Gaussians characterized by average (°,82,2°,49,4°) and
rm.s. (v'.82,=',8),y') parameters. The average values allow for electron beam misalignment

fromn the optical axis. For the Gaussian distribution, the electron beam emittance is defined in

terms of the r.m.s. values,
€ = ’fﬂ;zl y €y = "'.B;Vl (10a)

In the y-direction, we assume the beam is matchued for a constant envelope along the wiggler axis.

gl ( M?.’!Sym)* L Al= SN (10b)

raykey ry!
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For the z direction, the initial distribution is sent through an ideal thin lens ‘which focusses the
beam at the center of the wiggler. Figure 1 illustrates the electron beam size through the wiggler

for the parameters listed in Table 1.

At the wiggler entrance and for the initial pass of light, the transverse profile of the electric
field is set equal to that of a Gaussian beam characterized by a wavelength, a focal position, and
a Rayleigh range. Subsequent passes through the wiggler use the electric field profiles generated
on the previous pass after propagation through the cavity. The boundary conditions imposed on
the sides of the wiggler require the electric field to be zero. Typically, the square window used for

the optical field is three times the cize of the electron beam.

3. Numerical Solution of the FEL Equations

The numerical solution to the equations presented in Section 2 divides itself into three parts;
1) an algorithm for the set of ordinarv differential equations describing the electron motion, 2)
an algorithm for the parabolic partial differential equation governing the optical field, and 3) the
connection between 1) and 2). The electrons are advanced along their trajzctories by various order
(2,3,4) Runge-Kutta algorithms [17]. The Runge-Kutta algorithms were chosen to minimize the
requirements on computer memory, and are compatible with minimal reading and writing of the
electron parameters to disc when performing simulations with a large number of electrons. The
electron initial conditions ar» obtained by using statified sampling [18] of the assumed model dis-
tribution. A finite-difference alternating direction implicit (ANDI) methed [17] is used to conrtruct
a solution to the paraxial wave equation. An increasad accuracy five-point expression is used to

approximate the z and y partials in Eq. 9b.

The connection between the optical field and the electron mr \iun is through the source term
(S(A) in Fq. 9. For a given time stop, the optical field is advinced first using a fourth order
Adams-Bashforth predictor formula [17] to estimate the source function in the time interval. The
clectrons are then advanced using bilinear interpolation to evaluate the electric field at the electron
position from the discrete grid of electric field values. The source function at the new uiine is then
evaluated, and the above process is repeated. An option exists in the computer ccde for a corrector

formmula to be used in recalculating the electric fleld after a time step. This provides a check on
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the accuracy of the above numerical procedure. Usually, a small time step is selected such that the
predictor forinula provides sufficient accuracy. Outside the wiggler, the optical field is propagated

through the resonant cavity using standard fast Fourier transform algorithms [19].

4. Sample Results

Two examples are presented that illustrate some of the results that are obtainable with the
Los Alamos 3-D FEL computer code. The assumed FEL parameters are listed in Table 1. The
parameters are typical of those expected in the ERX experiment [20] at Los Alamos. An untapered
wiggler magnetic field is assumed. The first example is to generate the self-consistent FEL resonator
solution for a single wavefront for the two resonant cavities listed in the Table. The first cavity is
the experimental cavity to be used in the ERX experiments. The second cavity is a near concentric
cavity that is more typical of future higher power FEL experiments. The second example is three-

dimensionsl modelling of the sideband instability.

We consider a thevretical FEL oscillator configuration —hich models the Los Alamos FEL
oscillator experiment. The RF linac produces, typically, two thousand electron micro-pulses which
pass through the wiggler and generate light. We assume perfect synchronism between the electron
beam and the arrival of the light which was generated on the previous pass. In such a configuration,
the optical field builds up from spontaneous ern:ssion to u saturated power level consistent with
the electron beam parameters and the resonant cavity. In the comruter code, the initial optical
wavefront is assumed to be at a power level in the small signal gain regime, however well above
the noise level. The amplitude and phase curvature o1 the initial optical wave front are assumed to
match the empty resonant cavity mode. Figures 2e and b illustr.te the optical field build-up for
the g=.87 cavity in Table 1. The power reaches saturation at a level of 120 Mw. peak for an output
coupling fraction of twenty percent. The oscillations observed on the optical gain curve indicates
that, the initial optical wavefront (empty cavity mode) does not match the self-consistent FEL
resonator field solution. In addition to gain, the electron beam acts like an opticai lens. Shown
in Figures 3a and 3b is the optical phase front after pass number one, and the cross-sectional
amplitude of the optical heam for the last pass (number 60). It is observed that the radius of

curvature of the wave form is narrower 70 cm. at the exit of the wiggler comnpe.red to an input
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radius of curvature of 130 cm. At saturation, the cross-sectional amplitude of the optical beam
is very close to that of a Caussian beam as illustrated in Fig 3b. The period of oscillation of the
optical gain curve can be explained in terms of a unilateral simple lens (21)]. In the Los Alamos FEL
experiments, observations of oscillations in the optical power decay after turn-off of the electron

beam have been attributed to refractive and diffractive effects of the FEL interaction [21].

For the near concentric cavity (g=.993), the optical field builds up to a power level slightly
higher thai: that of the g=.87 cavity. The saturated cross-sectional profile of the optical field
is illustrated in Fig. 4. For the concentric cavity, there is slightly more distortion away from
the reference Gaussian beamn (i.e. there is larger content of higher order cavity modes [8]). The
sensitivity of FEL operation to mirror tilt is illustrated in Table 2. The factor ¢ is defined as the
angle of the optical axis divided by the half angle of the optical beam (¢ = RO, 7w,/(2R — [)A).
For rather large values of ¢ there is reasonably small decrease in the saturated optical power. The
FEL operation seems to be more insensitive to mirror tilt than the simple criterion (¢ << 1.) would

suggest.

As a last example, the 3-D FE'. code was run with 16 optical wavefronts to investigate the
side-band instability in three dimensions. The parameters of Table 1 with the g=.87 cavity were
assumed. The simulation was started at a reletively high on axis optical ictensity (I, = 10%w/cm?)
with a ten percent white noise. For these conditions, the sidebaud spectrum is well developed in a
relatively small number of passes. Figures ba-c illustrate the amplitude, phase, and specirum of a
section of optical wavefront (.084 cm. wide) over a z cross-sectional cut of the optical beam after
200 passes through the FEL. Strong amplitude and phase modulation is observed, and the spectrum
has significant content in longer wavelength (lower) sidebands. The one striking feature is that
the wavefront amplitude and the spectrum appear Gaussian in z. Furthermore, the phase fronts
are parabolic which suggests good optical benm quality in the presence of the sideband instability.
This result is consistent with the experimental observations in the Los Alamos FEL oscillator
experiments [22]. There are two probable reasons for the good optical beam quality obsurved in
Fig 5. First, the output coupling is only two percent for these simulation results. With only
two percent of additional light generated per pass, there is a minor change in the established

findamental Gaussian mode of the cavity. Sccond, the electron beany is relatively small compared
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to the width of the optical beam. The gain of light is largest on axis where most of the electrons
see the same electric field and have the same asynchrotron period. As it propagates through the
cavity, the light diffracts from the axis to fill out the Gaussian mode. Shown in the last figure is the
electron energy extraction efficiency as a function of pass number. For a single optica! wavefront,
the theoretical maximum extraction efficiency is 1.25 percent. This value of extraction is close to
the initial peak observed in Fig. 6. At this point, a majority of the electrons undergo one half
of a synchrotron oscillation. As the optical field in the cavity continues to increase the extraction
decreases as the electrons begin to fill the phase space of the optical field bucket. Finally as the
sideband develops, the optical power begins to increase. The development of the sideband is seen
to enhance the ~lectron extraction efficiency for the untapered wiggler. A result which is consistent

with experimental observations [23].

5. Conclusious and Discussion

We have presented a description and sample results from a computer code that simulates
three-dimensional FEL physics. The orientation of the code development was toward modelling
the relavent physics in the Los Alamos FEL oscillator experiments. This includes an electron beam
with a finite emittance and elliptical cross-section, and a relatively broad optical field spectrum.
The sample results presented here are preliminary (especially the sideband calculation), however
the examples illustrate a number of questions that may be addressed with a 3-D simulation code.
The utility of 3-D simulations of a FEL configuration is dependent upon the computer time needed
for the calculation. A major and continuing effort has been made to select numerical algorithms
and to properly structure the formulation in order to optimize performance on the CRAY computer
systems.

The author hes benefited from many discussions with members of the Los Alamos FEL program,

C. J. Elliott, D. Fcldman, J. C. Goldstein, K. Lee, B. E. Newnam, and R. W. Warren.
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Table 1

FEL parameters used in the simulations.

Parameter:
e.zctron beam,
energy

energy spread
current
emittance
wiggler,
magnetic field
wavelength
length

optical,
wavelength
cavity 1:

mirror positions
mirror curvature
cavity 2:

mirror positions

mirror curvature

Value:

42.6869
1%
100. A.

3. x 16~ * cm-rad

3. kG.
2.73 cm.
100. cm.

10um.

g=.87

-369.2, 322.6 cm.
—380., 335. cm.
g=.993

-1200., 1200. cm.
—1204., 1204. cm.



Table 2

FEL peak power as a function of mirror tilt.

6m €

0. prad 0

5. .35
10. .70
15. 1.05
20. 14

Power
140. Mw.
131.

111.

80.

44,



Figure Captions

Figure J.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 8.

Electron beam transport through the wiggler. The solid line is the z-width and the dotted
line the y-width of the beam.

Build -up of optical power in the resonator. 2) peak power in the cavity, b) percent gain per
pass through the cavity.

a) Electric field phase profile after pass 1, b) the electric field amplitude prefile au saturation
for the g=.87 cavity.

The electric field amplitude profile at saturation for the near concentric cavity.

The optical profiles for multiple wavefronts. a) the optical pulse amplitude, b) the optical
phase, and c) the optical spectrum.

The electron extraction 2fficiency as a function of pass number for the sideband simulation of
Figure 5.
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Figure 2a
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Figure 2b
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Figure 3a
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Figure 3b
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Figure 4
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OPTICAL PULSE SPECTRUM
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