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ABSTRACT

We present the first three-dimensional (3D), hydrodynamic simulations of the core convection zone (CZ) and extended

radiative zone spanning from 1% to 90% of the stellar radius of an intermediate mass (3M⊙) star. This allows us to self-

consistently follow the generation of internal gravity waves (IGWs) at the convective boundary and their propagation

to the surface. We find that convection in the core is dominated by plumes. The frequency spectrum in the CZ and
that of IGW generation is a double power law as seen in previous two-dimensional (2D) simulations. The spectrum

is significantly flatter than theoretical predictions using excitation through Reynolds stresses induced by convective

eddies alone. It is compatible with excitation through plume penetration. An empirically determined distribution

of plume frequencies generally matches the one necessary to explain a large part of the observed spectrum. We

observe waves propagating in the radiation zone and excited standing modes, which can be identified as gravity and

fundamental modes. They show similar frequencies and node patterns to those predicted by the stellar oscillation code

GYRE. The continuous part of the spectrum fulfills the IGW dispersion relation. A spectrum of tangential velocity
and temperature fluctuations close to the surface is extracted, which are directly related to observable brightness

variations in stars. Unlike 2D simulations we do not see the high frequencies associated with wave breaking, likely

because these 3D simulations are more heavily damped.
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1. INTRODUCTION

In addition to sound waves, fluid dynamical systems

can have other wave-like solutions for which the restor-

ing force is not pressure but buoyancy. These waves are

commonly referred to as internal gravity waves (IGWs)

to distinguish them from surface gravity waves. They

occur in many stratified systems, such as atmospheres

and oceans, in many of which they have an important

impact on the large scale dynamics. IGWs excited by

equatorial convection were found to be crucial in driv-
ing the quasi-biennial oscillation (QBO) in the Earth’s
equatorial stratosphere (Baldwin et al. 2001). In the

oceans, IGWs excited through the surface wind or tides

cause turbulent mixing when they break (Munk & Wun-

sch 1998).
In stars IGWs have been suggested to play an impor-

tant role in angular momentum transport and chemical
mixing in radiative regions, where other mechanisms are
not efficient. Press (1981) suggested that IGWs in the

sun can cause mixing in the convectively stable inte-

rior and affect the effective radiative opacity by a fac-

tor of two or more. IGW mixing was also suggested as

the cause of lithium depletion in F stars (Garcia Lopez

& Spruit 1991) and in the sun (Schatzman 1993; Mon-
talbán 1994; Talon & Charbonnel 2005).

IGWs are candidates for being the cause of some of the

observed properties of stars that are poorly explained

by current stellar models, such as the internal rotation

structure of stars (Beck et al. 2012; Aerts et al. 2017a),

stellar cores counter-rotating to their envelopes (Triana

et al. 2015; Rogers 2015), or the enhanced mass loss
needed to explain certain classes of core-collapse super-

novae (Quataert & Shiode 2012). Photometric obser-

vations suggest the presence of convectively generated

IGWs in, at least, some massive stars since the observed

velocity spectrum at the surface compares well to that

obtained using numerical simulations of IGWs (Aerts &

Rogers 2015; Bowman et al. 2019).
To understand the role IGWs play in all these phys-

ical situations it is important to know what spectrum

of waves in frequency and wave number space is ex-

cited by convection. Theoretical work characterizing

these spectra mostly focuses on two mechanisms, ex-

citation through the Reynolds stresses of convective ed-
dies or through penetration of plumes. The former ap-
proach was taken by Lighthill (1952), Goldreich & Ku-

mar (1990), Kumar et al. (1999), and later by Lecoanet

& Quataert (2013). All these studies found a power

law dependence in frequency, i.e. proportional to f−α,
with wave frequency f and exponent α. The exact value

of the exponent depended on the profile of the Brunt–
Väisälä frequency at the convective boundary (CB). The

spectrum generated by plume penetration was first stud-
ied by Townsend (1966) in a terrestrial context and later

extended to stars by Montalbán & Schatzman (2000). A

recent semianalytical model for the IGW flux caused by

plumes at the base of a convection zone, as is the case

in the sun, has been developed by Pinçon et al. (2016).

The predicted spectrum takes a very similar functional

form in all these plume-driven cases, which is propor-

tional to exp[−(f/fb)
2], with wave frequency f and the

plume frequency fb.

Multidimensional hydrodynamic simulations gener-

ally do not impose a specific IGW generation mecha-

nism, and are able to follow convection, IGW generation

and propagation directly from the basic equations. Yet

numerical limitations and the extreme scales within

stellar interiors often restrict them to a more dissi-

pative regime than is realistic in stars. Nevertheless,

careful choice of parameters and interpretation of the
results allow us to assess theoretical predictions. Simu-
lations showed that the Li depletion in the sun cannot

be explained by IGWs (Rogers et al. 2006). Similarly

the uniform rotation of the sun’s radiative interior is

not completely caused by IGWs (Rogers & Glatzmaier
2005; Denissenkov et al. 2008). Rogers et al. (2013) per-

formed two-dimensional (2D) hydrodynamic simulations
of IGW generation at the boundary of convective cores
of massive stars. They found that the IGW generation

spectrum is generally much shallower than theoretical

predictions. It shows two frequency regimes with differ-

ent slopes, suggesting different excitation mechanisms

at work. Recent research on breaking of IGWs in the

radiative envelopes of massive stars affirmed the im-

portance of the shape of the wave generation spectrum

(Ratnasingam et al. 2019).

Browning et al. (2004) performed simulations of the

inner 30% in radius of a 2M⊙ star with methods very

similar to the ones used in this work. Their work focused

on convective motions in the core, overshooting, and the

influence of rotation. They do not study IGWs in detail,

but mention their excitation at the convective boundary.

Later work by the same group included magnetic fields

and specifically studied the dynamo in the convective

core (Brun et al. 2005). In contrast, our work specifically

studies IGW excitation and propagation and therefore

includes a much larger part of the radiation zone (up to

90% in radius).
In their work on IGWs in solar-like stars, Alvan et al.

(2014) performed a detailed analysis of wave excitation
and propagation, similar to the one carried out in our

work. The main difference is their work is based on

solar-like stars with a convective envelope and radiative

core, while the opposite is the case in our 3M⊙ star.
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Propagation through a radiative envelope along a falling
density gradient causes wave amplification, which makes

nonlinear behavior more likely in intermediate-mass and

massive stars.

The remaining parts of this paper are structured as
follows: Section 2 describes the hydrodynamic equations

solved and their pseudo-spectral discretization. Sec-
tion 3 discusses the stellar models used as the back-

ground state of the simulations and assumptions on

heating and dissipation needed for numerical reasons.

The general properties of three-dimensional (3D) con-

vection in the core are presented in Sect. 4.1. Frequency
spectra of core convection and their implications for the

generation of IGWs are discussed in Sect. 4.2. The

properties of the overshooting region is the subject of

Sect. 4.3. Section 4.4 treats IGW propagation and the

modes excited in the radiation zone, while Sect. 4.6 dis-

cusses the signature they are expected to leave on the
surface, which could be observed by photometry and

spectroscopy. We conclude in Sect. 5.

2. COMPUTATIONAL METHOD

The simulations presented here are a logical contin-

uation of those of Rogers et al. (2013). One caveat of

their work is the restriction to 2D geometry, which is ex-

pected to yield significantly different behavior of turbu-

lence and also altered wave propagation to some degree

due to the difference between 2D annulus geometry and
a 3D sphere. We extend their method to 3D by using the
same type of anelastic approximation, but discretizing
the horizontal part of the equation in terms of spherical

harmonics instead of sin and cos functions.

We solve the following equations for the deviation
from the reference state (indicated by a bar, e.g., ρ)
given by a hydrostatic stellar evolution model,

∇ · ρv = 0, (1)

∂v

∂t
= −(v · ∇)v −∇P − Cgr̂ + 2(v × ẑΩ) (2)

+ ν

(

∇2
v +

1

3
∇(∇ · v)

)

,

∂T

∂t
= −(v · ∇)T + (γ − 1)Thρvr (3)

− vr

(

∂T

∂r
− (γ − 1)Thρ

)

+
Q

cvρ

+
1

cvρ
∇ · (cpκρ∇T ) +

1

cvρ
∇ · (cpκρ∇T ).

Here, v is the 3D fluid velocity, vr its radial component,
ρ is the background density, γ is the adiabatic index of

the ideal gas equation of state, T and T are the tem-
perature background and fluctuation, κ and ν are the

thermal and viscous diffusivities, Q is the energy release
rate, cv is the specific heat at constant density, g is grav-

itational acceleration, and hρ = ∂ ln ρ/∂r is the negative

inverse of the density scale height. We use a standard

spherical coordinate system with radius r, colatitude θ,
and azimuthal angle φ. The unit vector r̂ points in ra-

dial direction. Rotating stars are set up using a rotating

frame of reference with an angular velocity Ω and rota-

tion axis along ẑ in direction of the pole at θ = 0.

This formulation of the anelastic equations includes

self-gravity perturbations Φ to the reference state grav-

itational potential Φ by introducing the reduced pres-

sure P = p/ρ + Φ and co-density C (Braginsky &

Roberts 1995; Rogers & Glatzmaier 2005). This in-
troduces no additional computational effort as long as

the thermodynamic pressure is not calculated. The co-

density takes the form

C = − 1

T

(

T +
1

gρ

∂T

∂z
p

)

. (4)

In their comparison of different variants of the anelas-
tic approximation Brown et al. (2012) also investigated

this variant of the anelastic equations1. They find that

the equations do not conserve energy for non-isothermal

stratifications and suggest the removal of the term pro-

portional to p in Eq. (4) to ensure energy conservation.
While all simulations used for the analysis in Sect. 4

did not contain the Brown et al. (2012) modification,
we performed several test calculations including it. The

modes we find in the radiation zone are not affected by

the inclusion or exclusion of this factor.

Brown et al. (2012) also predict that IGW frequen-

cies are larger by a factor of
√
γ. When comparing the

frequencies generated in our simulations to those gener-

ated with the 1D pulsation code GYRE (Townsend &

Teitler 2013), we find small deviations, initially of the

order of a few µHz (∼ 2% relative deviation) getting

larger at higher wavenumbers, but this
√
γ factor does

not explain the differences. Hence, we are unsure how
this factor manifests itself in our simulations or how that

work extends to these fully nonlinear simulations.
The numerical solution method we choose is similar

to the approach taken by Glatzmaier (1984) and in the

ASH code (Clune et al. 1999) with some different choices

adapted to the application at hand. To implicitly fulfill

Eq. (1) we replace the mass flux ρv by its decomposition
into a poloidal (W ) and toroidal stream function (Z).

These are related to the mass flux by

ρv = ∇×∇×W r̂ +∇× Zr̂. (5)

1 They call this set of equations the RG equations.
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Resulting purely from a curl of a vector this is natu-
rally divergence free. Together with temperature T and

reduced pressure P these form the four unknown quan-

tities we are solving for. They are expressed as a lin-
ear combination of spherical harmonics Yl,m and radius-
dependent, complex coefficients. For temperature this

is

T (r, θ, φ, t) =

mmax
∑

m=−mmax

lmax
∑

l=|m|

Tl,m(r, t)Yl,m(θ, φ), (6)

and its equivalent for the other quantities. This allows
us to compute horizontal derivatives via computation-
ally inexpensive recursion relations and it avoids the sin-
gularities at the poles. As the coefficients of real-valued

quantities fulfill

Tl,−m = (−1)mT ∗
l,m, (7)

only the components with m ≥ 0 need to be stored.

The choice of triangular truncation (lmax = mmax) re-
sults in uniform angular resolution. The method we use

is pseudo-spectral, i.e. the linear terms are computed in
spectral space and the nonlinear terms are computed in
grid space. This approach makes it necessary to chose

the number of grid points in latitudinal and longitudi-

nal direction, Nθ and Nφ, corresponding to the num-

ber of spectral modes. To avoid aliasing errors we set

Nθ = (3lmax +1)/2 and Nφ = 2Nθ. Details on this kind

of spectral discretization can be found in Glatzmaier

(2013). We do not use a spectral basis in the radial

direction to be able to easily adjust the grid to the un-

derlying stellar model. In the present case we have an

increased radial resolution in the convection zone. Ra-

dial derivatives are computed using second-order finite

differences accounting for the nonuniform grid spacing.

We use the implicit Crank–Nicolson method for the
linear diffusion terms to avoid the strict CFL condi-

tion that depends quadratically on the step size asso-

ciated with explicit time-stepping. The nonlinear terms

are calculated using the explicit Adams–Bashforth lin-

ear multistep method, which makes the method second-

order accurate in time. We choose a constant time step
of 1 s, which is well below the CFL condition of the ex-
plicit terms and makes later Fourier analysis of the time

series easier.

The code is parallelized using a domain decomposi-

tion in the radial coordinate only. The communication
involves halo updates for computing finite differences

in the radial direction and all-to-all communication for
solving the linear equations involved in implicit time-
stepping. It is implemented using the message passing

interface (MPI). To alleviate the problem that domains

102 103

number of cores

100

101

sp
ee

d
-u

p

1 thread/task

4 threads/task

5 threads/task

10 threads/task

20 threads/task

ideal

Figure 1. Strong scaling on the NASA NAS Pleiades system
using Ivy Bridge CPUs. The reference for measuring speed-
up is the case of 100 MPI tasks with 1 thread/task. The best
efficiency at 1500 cores is 77% using 5 OpenMP threads per
MPI task.

become small when using many cores we additionally

implement thread-based parallelization using OpenMP,

which starts to be more efficient than pure MPI when

there are less than 3 radial points per task (see Fig. 1).

The achieved scaling efficiency from 100 to 1500 cores is
77% on the NASA Pleiades system.

3. SIMULATIONS

The equations discussed in Sect. 2 rely on a spheri-

cally symmetric reference state for the thermodynamic

variables on top of which the evolution of small per-
turbations is calculated. We use the MESA (Modules
for Experiments in Stellar Astrophysics) stellar evolu-
tion code2 (Paxton et al. 2011, 2013, 2015, 2018) to

produce the reference state. We use the default set-

tings to generate a nonrotating, 3M⊙ zero-age main-
sequence (ZAMS) star of metallicity Z = 10−2. The ex-

act code configuration (inlists) and MESA profiles can

be obtained at this URL3. No convective overshooting

was used. The values of density, temperature, and grav-

ity are adopted unchanged from the model and interpo-

lated onto a grid with 400 cells in the convection zone

and 1100 cells in the radiation zone. The total radius of

the star is R⋆ = 1.42× 1011 cm = 2.05R⊙.

2 The MESA version used was SVN revision number 10000.
3 https://www.mas.ncl.ac.uk/~npe27/igw3d/

https://www.mas.ncl.ac.uk/~npe27/igw3d/


3D Simulations of Massive Stars: I. Wave Generation and Propagation 5

0.00 0.25 0.50 0.75 1.00

r/R⋆

10−8

10−6

10−4

10−2

100

102
ρ
/g

cm
−

3

104

105

106

107

T
/
K

Figure 2. Background stratification of density ρ (solid blue

line) and temperature T (dashed red line) used in the 3D
anelastic simulations. The vertical dotted lines show the
extent of the simulation domain. The radius coordinate is
scaled to the total radius of the star R. The vertical solid
line indicates the convective–radiative boundary.

0.00 0.25 0.50 0.75 1.00

r/R⋆
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Figure 3. Square of Brunt–Väisälä frequency N2 and Lamb
frequencies S2

l (dashed) for the background stratification
from Fig. 2. The vertical solid line indicates the outer bound-
ary of the core convection zone and the vertical dashed lines
are the boundaries of the computational domain of the 3D
simulations.

Figure 2 shows the density and temperature profile of

the stellar model. The radial extent of the 3D simula-

tion domain indicated by vertical, dashed lines is limited

at 1% of the stellar radius to avoid the coordinate sin-

gularity at the core and at 90%, where density drops

below 10−4 g cm−3, covering nearly six orders of magni-

tude in density.4 The Brunt–Väisälä frequency profile,
which governs the propagation of IGWs, is plotted in

Fig. 3. It shows the convective radiative boundary at

13% of the total radius.

For numerical stability we need to increase the ther-
mal diffusivity κ and kinematic viscosity ν beyond their

physical values in the star, κ⋆ and ν⋆, respectively. In
the 3M⊙ MESA model κ⋆ ranges from 107 cm2 s−1 in

the CZ to 1012 cm2 s−1 at the top of the simulated re-

gion (r = 0.9R⋆), and ν⋆ ranges from 60 cm2 s−1 to

5× 104 cm2 s−1. As increased diffusivity and viscosity

would damp convection too strongly in order to reach

a somewhat turbulent state, we increase the luminosity
of the star by a similar factor to balance the increased
damping. In a series of models we explore the effect
of increased forcing and that of using different profiles

for viscosity. These are summarized in Table 1. To

put this into context we compare several characteristic
nondimensional numbers. The Rayleigh number,

Ra =
gQD5

cvκ2νT
, (8)

with a typical length scale D (chosen to be the size of
the convective core in this case), controls the details of

convection and determines if energy transport is mostly
through radiation or convection. This particular form
of Ra is also called a flux Rayleigh number. The stellar

value is 1028, which is more than six orders of magnitude

higher than the values reached in the simulations. This

is the rationale for increasing the energy release. If we

had used the original value of Q, Ra would be approxi-

mately 106, which might even be subcritical. The actual
convection in the star is likely even more vigorous and

plume dominated than that observed in the simulations.

Flows with a high Reynolds number,

Re =
vrmsD

ν
, (9)

develop turbulence, while low values of Re normally

result in laminar flow. Due to the extreme length

scales D ≈ 14%R⋆ and velocities, Re is typically ex-

tremely large in stellar environments, in the current case

Re ≈ 1012. These parameters are not currently possi-
ble in numerical simulations. As can be seen in Table 1

we can only reach values of approximately 102 in the

CZ. However, it is expected that as long as a part of

the inertial range of the turbulent cascade is numerically

resolved, the energy dissipation rate will not change sig-

nificantly at higher Re (e.g., Frisch 1995, Chapter 5).

4 Models H7E and H7E-HR were run with an earlier version of
the stellar model, which reached 95% of stellar radius. There is
no qualitative change in the wave spectra of these models.
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Table 1. List of 3D simulations

Modela spectral modes ν/1013 cm2 s−1 κ Q Ω/10−6 rad s−1 Raf Ref Prf tsim
g/d

H6R5 3741b 8 (risingd) 105κ⋆ 106ε⋆ 5 8× 1011 126 60 – 0.02e 38.7

H6R10 3741b 8 (risingd) 105κ⋆ 106ε⋆ 10 8× 1011 126 60 – 0.02e 59.3

H5 3741b 1 105κ⋆ 105ε⋆ 0 6× 1011 468 7 – 10−6e 13.3

H6E 3741b 10 105κ⋆ – 50κ⋆
e

≈ 106ε⋆ (exp.) 0 1012 101 100 – 2e 61.7

H6LD 3741b 10 105κ⋆ – 50κ⋆
e 106ε⋆ 0 1012 100 100 – 2e 58.8

H6LD-HR 14706c 10 105κ⋆ – 50κ⋆
e 106ε⋆ 0 1012 100 100 – 2e 6.5

H7E 3741b 8 (risingd) 5× 1013 cm2 s−1
≈ 107ε⋆ (exp.) 0 2× 109 272 1 – 39e 16.4

H7E-HR 14706c 8 (risingd) 5× 1013 cm2 s−1
≈ 107ε⋆ (exp.) 0 2× 109 272 1 – 39e 33.2

aModel names are built up from the luminosity boosting factor, rotation rate, and angular resolution.
bThis corresponds to angular resolution of 128 (θ) and 256 (φ).

cThis corresponds to angular resolution of 256 (θ) and 512 (φ).

dThe value given is the one in the core. In the envelope ν rises with ν ∝ ρ−1/4. The profile is continuous.
eThe first value applies to the core, the second to the envelope.
fThe definitions are given in Eqs. (8) – (10).

gThis is the total physical runtime of the simulation.

Yet the small scale velocity field will definitely show dif-

ferences, which is a caveat of the presented simulations.

The Reynolds number is another reason for using an in-

creased convective forcing, as using the original value

would result in velocities corresponding to Re ≈ 1.

The Prandtl number,

Pr =
ν

κ
, (10)

is the ratio of viscous to thermal diffusion. In stars it is
typically extremely low, ranging from 10−6 in the core

to 10−9 at the surface. The only way to reach these
values in our numerical simulations would be to increase
κ to very high values, which would damp the waves too

much. As a compromise we settle on Pr around 1 in the
envelope and around 100 in the core in most models (see
Tab. 1). In a few models Pr reaches much lower values of

0.02 or even 10−6 in the envelope, but these are subject

to excessive damping due to too much thermal diffusion.

In most models we increase luminosity by setting the

heating function Q to the nuclear energy generation rate

fromMESAmultiplied by a constant factor. These mod-

els are referred to with a name starting with “HX” for
10X times the stellar luminosity L⋆. For example, “H6”

corresponds to a luminosity of 106 L⋆. In a few models
we used an exponential heating function,

Q = Acvρ exp(−r/rmin)(r − rmin)/R⋆, (11)

with a scaling factor A, which is used to adjust it to

a boosted stellar luminosity. These are labeled with

“HXE” for an exponential heating profile correspond-

ing to a luminosity of 10X the stellar value, and rmin

the innermost radius of the simulation domain.

The thermal diffusivity is treated in a similar way

by multiplying the stellar value with a constant factor,

which was the lowest value that did not show stability

problems. As the increased diffusivity is mainly needed

in the convection zone, we also tried a different approach

where just the CZ is subject to a value of 105κ⋆, while
diffusivity in the radiation zone can be reduced to 50κ⋆.

Both regions are blended using a hyperbolic tangent

function with a width of 5× 109 cm (3.5% of the stellar

radius and 26% of the size of the convection zone). This

was used in models H6E and H6LD. Model H6LD is a

combination of the low diffusivity of Model H6E with

the boosted MESA energy release of model H6.
Important conclusions in this paper are drawn from

spectra. To clarify their interpretation we give an exact

definition here. For a real function E(t) sampled in an

interval [ta, tb] the Fourier transform is

Ê(f) =
1

tb − ta

∫ tb

ta

E(t)e−2πiftdt. (12)

By normalizing with the length of the interval the units

of Ê are the same as those of E, which makes it easier to
interpret the magnitude of components of the spectra.
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H6R10
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H7E-HR

H7E

H6E

H6R5

H6LD

MESA

Figure 4. Root mean square velocity as a function of ra-
dius in the 3D simulations for different luminosity boosting
factors. The dashed line is the velocity estimate according
to mixing-length theory returned from MESA. The surface
convection zone is visible at r ≈ R⋆ in the MESA data. The
region shaded in blue marks the position of the convection
zones in MESA. The vertical dashed line is the radius at
which the spectra from Fig. 11 are computed.

As data from the simulations is sampled at discrete

times t0, . . . , tn−1 with equidistant spacing ∆t, we ap-

proximate Eq. (12) with a discrete Fourier transform

(DFT),

Ê(fj) =
1

n

n−1
∑

m=0

E(tm)e−2πimj

n , (13)

where j takes values from 0 to ⌊n
2 ⌋. Higher values of j

are redundant due the real input data. The correspond-

ing frequencies are fj =
j

n∆t .

4. RESULTS

4.1. Convection Zone

As we have to increase the heating term Q (equivalent

to an increase in luminosity L), thermal diffusivity κ,

and kinematic viscosity ν for numerical reasons, the

convective velocities are higher than those predicted by

mixing-length theory (MLT) using quantities from the

stellar evolution model. Figure 4 compares the angular

average of velocities of the different models to the MLT

value. In the convection zone all our simulations have

velocities one to two orders of magnitude higher than

the MLT value. This causes waves at the convective–

radiative boundary (CB) to be excited at higher ampli-

tudes, which is intended to offset the increased dissipa-

tion within the RZ with the hope of surface amplitudes

being more realistic. The rise of velocity close to the

largest radii is related to the outer boundary condition.

101 103 105 107

L/L⋆

104

105

106

v r
m

s
/c

m
s−

1

3D hydro

∝ (L/L⋆)0.34

MESA

Figure 5. Relation of increased stellar luminosity and rms
velocity in the convection zone. The dotted line is a power
law fit to data from the 3D hydrodynamics simulations. The
MESA value computed from a volume average of the MLT
velocity is plotted for comparison.

The scaling of convective velocities with changing lu-

minosity has been subject of previous studies. Other

hydrodynamic simulations of convection zones in stars

(Porter & Woodward 2000; Viallet et al. 2013; Jones

et al. 2017) find that,

L ∝ v3rms. (14)

This is also the result found using MLT (e.g., Kippen-
hahn et al. 2012). The scaling relation agrees per-

fectly with the observations in our simulations, which

fit vrms ∝ L0.34 (see Fig. 5).

As expected from the stratification of the 1D reference

state, convection immediately starts to develop in the
core. From early times convection is dominated by large

plumes. These plumes often rise until they reach the CB,
but are sometimes dissolved by interacting with large
eddies. Their disintegration at the convective bound-
ary perturbs the stably stratified radiation zone directly

above. This process can be seen in the time series in

Fig. 6.
Figure 7 illustrates the correlation of positive radial

velocity and temperatures higher than the horizontal
average. It shows that in model H6R10 plumes reach
typical velocities of 10 km s−1. Scaling this down to the

rms convective velocities of the actual star using Eq. (14)

yields a rising speed of 0.1 km s−1. Figure 8 shows a 3D

view of the whole star using the same model.
The series of meridional slices in Fig. 6 show an ex-

ample of several plumes hitting the convective boundary
and triggering wave motion in the region above. Be-
tween t = 0 and t = 2.8 h the large plume in the bot-

tom part of the slice splits into two parts, which subse-
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Figure 6. Time series of meridional slices through model H6R10. The color scale temperature shows deviation from the
horizontal mean. The label in the panel indicates time after the first panel. Each panel is separated by 10 000 numerical time
steps.

quently cause small-scale disturbances in the previously

much more uniform temperature field of that region. At

t = 5.6 h a larger plume hits the boundary in the upper

left corner of the convection zone. It spreads out at the

boundary over more than half a hemisphere and causes

Kelvin–Helmholtz-like vortices on its inner side. These

seem to be the cause of many of the small-scale eddies

at the interface, which can themselves drive waves in the

RZ.
Turbulent kinetic energy in the CZ shows a typical

cascade behavior, where most energy is present at low

wavenumbers, i.e. large length scales. Figure 9 shows the

kinetic energy spectrum of several models as a function

of l mode. The energy contained in a single l mode

is computed from the poloidal (W ) and toroidal (Z)
decomposition (see Eq. (5)) with the expression (e.g.,

Glatzmaier 2013, Sect. 10.6.6),

El(r) =

l
∑′

m=0

l(l + 1)

4πr2ρ

×
(

l(l + 1)

r2
|Wm

l |2 +
∣

∣

∣

∣

∂Wm
l

∂r

∣

∣

∣

∣

2

+ |Zm
l |2
)

, (15)

where the primed sum means that the m = 0 terms are

multiplied by 1/2. In all cases most energy is contained

in the low-order modes (l . 5), although the actual peak

of the spectrum varies between l = 1 and l = 3 for the

different parameters.
Although numerical diffusivity limits the inertial

range in these spectra, we can still obtain a power

law slope for each of the models. The slope becomes

negatively steeper with increased convective forcing. In

Fig. 9 we fit the inertial range of each model with power

laws. In the strongly forced models H6LD and H6R10,
in which we see a strong influence of rising plumes (see
Fig. 6), the kinetic energy spectrum drops with l−2.1 or

l−2.3, respectively. This approaches the value predicted

by Bolgiano–Obukhov scaling of l−2.2 for buoyancy-

driven turbulence (Obukhov 1959; Bolgiano 1959). The

more strongly forced models H7E and H7E-HR, show

an even steeper slope in the inertial range, following

l−3.0. This is significantly steeper than the l−5/3 rela-

tion predicted by Kolmogorov (1941), which forms the

basis for theoretical spectra using the eddy excitation

mechanism. This might explain why our simulations

show a different slope in the frequency spectra.

The deviation from theoretically predicated slopes

might be due to the relatively low Reynolds numbers

reached in the simulations (see Tab. 1). On the other

hand, the case of heating concentrated in a small spher-
ical region is quite different from the plane-parallel,
Boussinesq convection underlying some theoretical mod-
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Figure 7. Equatorial (top row) and meridional (bottom row) slices through the convective core of simulation H6R10. The left

column shows the temperature deviation from the horizontal average, the right column radial velocity.

els and the velocity field is not necessarily isotropic in

this case.

Comparing with previous hydrodynamic simulations

we find that Model H6R10 agrees well with a compara-

ble model from Rogers et al. (2013), who find a bro-
ken power law fit with exponents of −4.8 and −1.9

and a break at l ≈ 10 in a singular-value decomposi-
tion of the frequency and wavenumber spectrum. Au-

gustson et al. (2016) obtain a qualitatively similar spec-

trum in their simulations of magnetic turbulence, with

a low-wavenumber exponent of approximately −3 and a

steeper power law for higher wavenumbers. Their simu-
lations also have a peak in the kinetic energy spectrum

at low spherical harmonic degree, in the range from l = 1
to l = 10. We note that the models of Augustson et al.

(2016) do not have enhanced forcing and yet show a

similar spectrum to those in this work. This indicates

that the spectrum is more dependent on the regime that

nondimensional numbers like Ra and Re are in than the

actual value of convective forcing, as expected.

The inset in Fig. 9 shows the comparison of the high-
wavenumber tail for the simulations H7E and H7E-HR,

which are run with identical parameters except for the

number of spectral modes being used. Their spectra are

almost identical apart from a small bend at the high-

est l values. This suggests that enough of the inertial
subrange of the turbulent cascade is resolved to get the

correct energy dissipation and that the simulations do

not suffer from severe anomalous behavior at the small-

est resolved length scales. The same is true for H6LD

and its high-resolution counterpart H6LD-HR.

As a main concern of this paper are the IGW spec-
tra, we also assess the impact of angular resolution on

these. Figure 10 shows the frequency spectrum of ra-

dial velocity in the radiation zone for the two simula-

tions H6LD and H6LD-HR, where both are identical ex-

cept for latter having twice the angular resolution. We

see that both simulations are very similar, including the

magnitude and position of the modes between 200 µHz
and 300 µHz, the continuous signal between 20 µHz and
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Figure 8. 3D visualization of model H6R10. The color scale shows temperature fluctuations T from the background state T .
An animation of this figure is available at https://www.mas.ncl.ac.uk/~npe27/videos/H6R10.html.

200 µHz, and the low frequency drop due to radiative

damping at 20µHz.

4.2. IGW generation

It is controversial which physical mechanism is most

important for the excitation of IGWs at the CB. The

two common candidates are bulk Reynolds stresses pro-

duced by convective eddies (Lighthill 1952; Goldreich

& Kumar 1990) and plume overshoot (Townsend 1966;

Zahn 1991). Most theories about the effect of IGWs in

stellar interiors (e.g., Talon & Charbonnel 2005; Fuller

et al. 2014) employ the spectrum of IGWs derived

from convective eddies (Kumar et al. 1999; Lecoanet &

Quataert 2013). Therefore our analysis focuses on this

spectrum, but the plume spectrum is considered later.
To study the spectrum of waves generated, we first

investigate the spectrum of motions generated at the

CB. We analyze our 3D data by computing the spec-

trum of kinetic energy density at a radius of 0.07 HP
5

above the top of the convection zone (as defined by the

Schwarzschild criterion). This spectrum is given by,

Êkin =
1

2
ρ̄
(

v̂2r + v̂2θ + v̂2φ
)

, (16)

with the Fourier transforms of the individual velocity

components, v̂r, v̂θ, v̂φ, according to Eq. (13). Figure 11

shows the spectra for different models. For guidance we

show an estimate of the convective turnover frequency

given by,

fTO =
vrms

πrCZ
, (17)

which assumes the largest eddy extends from the center
of the star to the radius of the convection zone rCZ and

it turns at the rms velocity. Panel (b) shows the spectra

multiplied by f to account for integration over d log f ,

which makes it easier to see the regions containing most

5 The pressure scale height is defined as HP = −∂r/∂ lnP .

https://www.mas.ncl.ac.uk/~npe27/videos/H6R10.html
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radiation zone at r = 0.74R⋆. The number of time samples
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energy in the logarithmic plot. We see that, while the

peak is not too far from fTO, the distribution is almost

flat in the low frequency regime.

Clearly, this is a spectrum of motions at this radius
and is not necessarily waves (although see Sect. 4.5).

However, this motion is what drives the waves and if

it has a high-frequency component then high-frequency

waves can be efficiently driven.

At this radius the integrated (i.e. including all har-
monic degrees l) frequency spectrum is nearly flat with

a transition to a more steeply declining power law at

higher frequencies (f & 20 µHz). The spectrum is not

dominated by values at fTO and indeed it is hard to

make out this frequency in the spectrum. However, if

we look at the frequency spectrum at particular length

scales, by selecting individual values of l, we start to see

a sharp transition between the power laws at low and

high frequency as evidenced in Fig. 12.
In this scale-dependent spectrum the break point be-

tween the two power laws depends mostly linearly on

angular degree l and can be approximated with,

s = 4.0 µHz · l. (18)

The slope is not too far from the estimate for the convec-
tive turnover frequency fTO = 7.2 µHz for this model,

considering the uncertainty in the estimate of fTO in

Eq. (17). This fits the conjecture by Rogers et al. (2013)
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that the eddy mechanism efficiently generates waves be-

low this frequency.

It is worth noting that, even in this scale-dependent
spectrum in which the break between power laws cor-

responds to the scale-dependent turnover frequency, the

energy is not concentrated at that frequency. This is in

stark contrast to the theoretical predictions which posit

that the frequency spectrum (within the CZ) is strongly

peaked at the convective turnover frequency.

In a more systematic analysis of the broken power law
fits to the frequency spectrum at the CB in Fig. 13, we

notice that the exponent of the low frequency regime

stays relatively constant for l > 3 at a value of −0.46±
0.07. The high frequency component covers a wider

range of exponents from −3.6 at l = 2 to −6.6 at l = 33.

Both exponents show very little change at higher values

of l. The position of the frequency break point s in

the power law in Fig. 14 on the other hand is rising

with l roughly following the estimate for the convective

turnover frequency from Eq. (17) multiplied by l to ac-

count for the smaller length scales at higher spherical

harmonic degree. For l & 31 we observe a rise in the ex-

ponent of the high frequency range, which is due to the
difficulty in fitting an increasingly smaller part of the
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Ê
k

in
/e

rg
cm

−
3

f−5.1

f−0.3

s = 37 µHz

l = 10

100 101 102

f/µHz

108

1011

Ê
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and the position of the break are indicated next to the fit.
The vertical dashed lines are estimates for the position of the
break from Eq. (18).

curve. This makes the determination of s less certain

as well. The value of s lies within the range between
12 and 200 µHz in our simulations, which is a bit higher

than the range of 10 to 80 µHz in the 2D simulations of

Rogers et al. (2013). This is understandable if the po-

sition of the break really depends on fTO, and in turn

vrms, because the 2D simulations show a lower convec-

tive velocity.
The logarithmic scaling of Fig. 11 makes it hard to

see, which frequencies contribute most to kinetic energy

at the top of the convection zone. To analyze this we

plot the cumulative energy distribution, i.e. the func-

tion of energy contained below a certain frequency. It

is shown normalized to the full energy of the particular
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model in Fig. 15. We see that for models with a heating

rate increased by a factor of 106, roughly 50% of the

energy is below fTO and 50% is above. While the steep-

est increase is around fTO, the distribution of energy

is widely spread in frequency. The shaded area shows

the frequency range around fTO that contains 40% of

energy. In model H7E with a heating rate of 107 times
the stellar value, 80% of the energy is located below

fTO, while model H5 has almost all energy far above its

value of fTO at 0.5 µHz. As discussed earlier we believe
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Figure 15. Cumulative spectrum of kinetic energy density
just above the CZ (r = 2× 1010 cm = 0.14R⋆) normalized to
the value integrated over all frequencies. The vertical dotted
lines represent an estimate for the convective turnover fre-
quency from Eq. (17). The shaded area shows the frequency
span centered around fTO that contains 40% of kinetic en-
ergy for model H6LD.

model H6LD is the best trade-off between an increased

heating rate and increased diffusivity.

Comparing these numerical spectra to theoretical

spectra is not straightforward as clearly the former

include wave motion as well as overshooting motion

(although see Sect. 4.5). However, one can trace dif-

ferences between theoretical IGW spectra to differences
in the assumed convective spectra. While the theo-
retical wavenumber spectrum (following Kolmogorov

1941) has some observational basis, the frequency spec-

tra supposed in the theoretical analysis of Kumar et al.

(1999) and Lecoanet & Quataert (2013) – based on the
assumption of Kolmogorov scaling of eddy sizes and

their corresponding turnover times – do not. Yet it is
this frequency spectrum in the CZ that determines the
frequency spectra of excited IGWs.

For example, theoretical spectra do not efficiently gen-

erate high-frequency waves because of the assumption
that most of the convective energy is concentrated at
the convective turnover frequency. If the energy of con-

vection itself is not limited to a narrow band around the
convective turnover frequency, there is no reason to sup-
pose that the IGW frequency spectrum would be. More-

over, if the CZ has high frequencies then it can efficiently

generate waves of high frequency. Therefore, based on

comparisons of CZ spectra one can see two important

issues arise between theoretical and numerical results
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that would affect the IGW spectra: (1) for an integrated
spectrum, energy is not concentrated at the convective

turnover frequency, but is spread among a wide range

of frequencies; and (2) frequencies higher than fTO are

clearly present with significant energy within the convec-

tion zone. We also note that while Kolmogorov scaling

may be the appropriate description for isotropic turbu-
lence in a Boussinesq box, it is wholly unclear that it is
appropriate for spherical configurations with a centrally

peaked heating term, such as stars.

Kumar et al. (1999) mention that they deliberately

ignore wave excitation by plumes due to limited infor-
mation on their properties. As the flow pattern we ob-

serve in the simulations is obviously dominated by large

plumes, it is natural to compare the spectra to theory

of IGW excitation by plume penetration. Montalbán

& Schatzman (2000) developed expressions for the IGW

spectrum generated by plume penetration at the bottom
of the solar convection zone. It is based on the plume

model by Rieutord & Zahn (1995). They explicitly cau-
tion against its use at the top of a convective envelope

because of the typical importance of radiative cooling

there, characterized by a low Péclet number (Pe ≈ 1).

This argument does not apply here, where Pe & 104.

For comparison, the stellar value in the core is Pe & 106.
Therefore, for lack of a dedicated theory, we apply their

model to our spectra.
The frequency dependence of the energy spectrum is

determined by the plume timescale tb, which is often ap-

proximated by the ratio of plume velocity vpl and plume

incursion depth ∆p. The corresponding frequency is

then,

fb ∼ vpl
∆p

. (19)

The predicted energy spectrum takes the form (Mon-

talbán & Schatzman 2000),

E(f) ∝ exp
(

−(f/fb)
2
)

, (20)

where we absorbed all factors depending on radius and

wavenumber into the proportionality constant. We

choose to work directly with the expression for kinetic

energy instead of wave flux because the spectrum is
taken right at the top of the CZ, where a conversion
to flux is not straightforward.

A combination of plumes with different timescales can

be fit to the simulation spectra. Figure 16 shows fits

with one and three values of fb. This shows that the

plume spectrum as described by Eq. (20) generally fits

the shallow power law in the low-frequency regime very
well, even with a single plume frequency (red line). With
just three plume timescales (orange line) it is possible

to fit most of the spectrum. Assuming plumes are dis-
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Figure 16. Kinetic energy spectrum on top of the convec-
tion zone of model H6LD. The dashed lines show the the-
oretical spectrum for plume excitation from Eq. (20). The
red line is the case of a single plume frequency fb. The or-
ange line is a combination of three different frequencies. The
cyan line is using a plume frequency distribution following
Eq. (21).

tributed so that their frequencies follow an exponential

function with a low frequency cut-off, allows us to fit the

whole spectrum apart from the high frequency turnoff

(cyan line). This heuristic expression has the form,

A

∫ ∞

c

e−fb/αe−(f/fb)
2

dfb (21)

where the shape of the exponential is given by α =
11.0 µHz and the low-frequency cut-off is c = 1 µHz. It

should be noted that similar fits can be obtained with

other steeply declining functions (e.g., a power law with

a negative exponent) for the plume frequency distribu-

tion.

To acquire an estimate for typical plume length and

time scales from our simulations, we study the process of
plume incursion in more detail. Figure 17 shows a Carte-

sian projection of temperature perturbation at the CB
in two different cases. In the left panel a large plume hits
the boundary exciting waves at a large range of phase

angles, including very steep angles. A representation of

excitation through eddies is shown in the right panel. It

results in much smaller phase angles. Both cases are re-

markably similar to 2D simulations (Rogers et al. 2013,

Fig. 4).
The large plume of Fig. 17 is studied in greater detail

in Fig. 18 to extract its size, velocity, and penetration

depth. The Brunt–Väisälä frequency N2 (Panel (d)) is
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significantly reduced in the overshooting region above
the original convective boundary. This coincides almost
perfectly with the penetration depth of the plume, which

can be identified by vr approaching 0 (Panel (b)) and a

discontinuity in T (Panel (c)). The penetration depth

is ∆p = 0.4HP from the original convective boundary.

The maximum plume velocity is vpl = 7.8 km s−1. This

allows us to estimate a plume incursion time tb ∼ ∆p

vpl
=

2.2 h, which corresponds to a frequency fb of 128µHz.

The lateral extent of the plume b can be defined as the

region of positive vr in Panel (e). It has a value of

b = 1.4× 1010 cm in this case. This is also sometimes

used to compute the plume timescale, which results in

a value of 56 µHz here. As it is easier to extract from
simulations in a systematic way, we stay with the first

definition using ∆p in the following analysis.

We apply this estimate of the plume frequency sta-

tistically to all plumes in simulation H6LD. For each

longitude and latitude, and each output snapshot (ev-

ery 1000 s) we determine if there is a rising plume and in

that case compute a plume incursion depth and plume

velocity. The criterion for a plume is that vr is positive

at the position of the convective boundary. The incur-

sion radius rp is then defined as the radius at which vr
first becomes negative along a line at this particular an-

gle. The penetration depth is calculated as the distance

to the convective boundary ∆p = rp− rconv. The plume
velocity vpl is the highest value of vr between the top

of the convective boundary and rp. Using the estimate

for the plume frequency from Eq. (19), we compute the

probability density function (PDF) of fb throughout the

simulation (Fig. 19). It rises sharply to its maximum at

15 µHz and then drops roughly following an exponential

distribution. An exponential fit to the data does not per-
fectly match the values found when fitting Eq. (21). The

parameter α is too high by a factor of 3. Yet considering
the simplistic definition of fb, this still makes a strong

argument for an exponential distribution of plume fre-

quencies as the explanation of a large part of the kinetic

energy spectrum at the top of the convection zone and

hence, the IGW frequency spectrum.
To understand the effect of increased forcing and dif-

fusivity we follow the discussion of plume lifetimes of
Pinçon et al. (2016). They argue that plume velocity

scales with luminosity as vpl ∝ L1/3 which is consistent

with the scaling of the convective velocities from Eq. 14.

A luminosity increased by a factor of 106 would thus re-

sult in vpl increased by a factor of 100. The penetration

depth ∆p is not expected to be strongly affected by the
change in forcing (see end of Sect. 4.3 for an estimate).

The effect of radiative thermalization, while strongly

increased due to the higher value of κ in the simula-

tions, is still negligible as the timescale trad ∼ ∆p/κ

is of the order of two years, much longer than any

observed plume lifetime. The turbulent timescale in-

side the plume tturb ∼ b/vpl, with the lateral plume
size b. Assuming that b is not strongly affected by in-

creased forcing, similar to ∆p, this means that plume

frequency fb = 1/tb scales like vpl ∝ L1/3. In model

H6LD (L = 106L⋆) this results in fb being too high by

a factor of 100.

4.3. Convective overshoot
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Figure 18. Close-up view of the plume in the left panel of Fig. 17. It was plotted against radius r and angle φ to show
the convective boundary as flat. The color coding in panel (a) signifies the temperature deviation T from the reference state.
Panels (b) and (c) show the vertical profile of radial velocity vr and T along the center of the plume (vertical dotted line in (a)).
The solid line in Panel (d) is the vertical profile of the square of the Brunt–Väisälä frequency N2 computed from the current
temperature profile (initial value as dashed line). Panel (e) is the horizontal profile of vr at a fixed radius (horizontal white
line, position of radial maximum of vr) in Panel (a). The additional y-axis on the left shows the distance from the convective
boundary in units of pressure scale height HP .

The treatment of convective–radiative boundaries

(CB) in 1D stellar evolution codes is a long-standing
problem. It can have a significant impact on the evo-
lution and nucleosynthetic signature of stars by mixing

of species beyond convective regions. Hydrodynamic

simulations in two or three dimensions promise insight

based on first principles and have been subject of pre-

vious work (e.g., Freytag et al. 1996; Rogers et al. 2006;

Meakin & Arnett 2007; Jones et al. 2017; Cristini et al.
2017). There is no single accepted definition of the over-

shooting depth in terms of angular averages of 3D quan-

tities. For better comparability between different stellar

parameters the overshooting depth is usually stated in

multiples of the pressure scale height HP above the
convective boundary as defined by the Schwarzschild or

Ledoux criterion. Both criteria are equivalent in the

case studied here because the star is chemically homo-

geneous.
The statistics of velocities and penetration depth ∆p

from Sect. 4.2 can also be used to make statements on

the size of the overshooting region. Figure 20 shows the

PDF of plume penetration depth in model H6LD. The

distribution at low ∆p is relatively flat until it peaks at
0.54HP . Beyond that it drops following a power law

with exponent −1.4. This is consistent with the picture
in Panel (d) of Fig. 18, where N2 is affected by pene-

tration up to a value of approximately 0.5HP . 95% of

plumes penetrate no further than 0.695HP , which is the

value we will use as the boundary of the overshooting

region in Sect. 4.5.
Figure 21 shows the distribution of updrafts and

downdrafts in the overshooting region (0.42HP above
rconv). The PDF is peaked in Lorentzian shape at
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computed using Eq. (19). The red, dashed line is an expo-
nential fit to the high-frequency (fb > 210 µHz) end of the
PDF. The inset shows a zoom on the peak of the PDF.
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incursion depth computed from simulation H6LD. The dis-
tribution peaks at 0.54HP above the convective boundary.
The region after the peak was fitted with a power low with
an exponent of −1.4.

−0.2 km s−1. The inward velocities are distributed in

a smaller range, −10 km s−1 at most, than the outward

velocities, which extend up to 25 km s−1.
Our use of an increased convective forcing and ther-

mal diffusivity raises the question of the validity of these

results for the actual stellar values. In his study of con-
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Figure 21. Probability density function (PDF) of vr
0.42HP above the top of the convection zone in model H6LD
(blue line). The blue shaded area signifies standard devia-
tion over all time steps. A Lorentzian (green line) was fitted
to the central part of the distribution. A power law (yellow
line) and an exponential function (red line) were fitted in the
regions of positive vr. The inset plot shows a log-log plot of
the same data.

vective penetration in stellar interiors Zahn (1991) found

a simple scaling law for the size of the penetrative region

(see also, Rogers et al. 2006),

∆2
p =

3

5
HPHκf

ρv3pl
Ftot

, (22)

with the scale height of thermal diffusivity Hκ =

−d ln r/d lnκ, plume filling factor f , and total energy

flux Ftot. As κ is only multiplied by a constant in

the radiation zone, Hκ is identical to the stellar value.
The same is true for HP and ρ. While the simulations

have an increased Ftot, we found the scaling Ftot ∝ v3

(Eq. (14) and Fig. 5). This means the penetration depth

in the simulations and in the star only vary by a factor

of
√

fsim/f⋆, which we expect to be a number not too

far from unity.

4.4. IGW propagation

Convective motions in the core generate IGWs at
the CB, which propagate through the cavity of posi-

tive N2 in the radiation zone. To visualize the excited

frequencies and the change of the wave spectrum with

radius, we compute the frequency spectrum of vr sam-

pled at several longitudes around the stellar equator

at all times for all radii and show it as a heat map

in Fig. 22 for model H6LD. In the convection zone
(r . 2× 1010 cm = 0.14R⋆) we note the presence of

all frequencies with a clear dominance of the range be-

low 50 µHz. This is reflective of the large range of
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Figure 22. Frequency spectrum of radial velocity at the
equator of model H6LD for all radii. The values were com-
puted by sampling 8 points at different longitudes and aver-
aging over the absolute value of the Fourier transform.
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Figure 23. Frequency spectrum of vr in simulation H6LD
at different radii integrated over all l. These are line plots
of the spectra shown in Fig. 22 at several radii. The black
dashed line is a theoretical prediction for the frequency de-
pendence of vr from Lecoanet & Quataert (2013). The light
blue dashed line is a power-law fit to the simulation data in
the range 60 µHz to 150 µHz at r = 0.87R⋆.

timescales of convective motion (see Sect. 4.2). In the
radiation zone frequencies up to 300 µHz are excited.

Low-frequency waves are strongly damped and only fre-

quencies above 40 µHz reach the top of the simulation

domain. This is qualitatively in agreement with linear

theory, which predicts that lower frequency waves expe-

rience stronger damping (e.g., Kumar et al. 1999). The
exact position of this lower cut-off depends on the value

of κ as well, which is why the present simulations can-

not predict it quantitatively. Figure 23 shows line plots

of the same spectrum at different radii. It shows that

the spectrum in the RZ at low frequencies (. 20 µHz)
does not reach the numerical noise level, as would be

expected by the excessive numerical diffusion at this fre-

quency, but turns flat at a higher value. The figure also

indicates the expected frequency dependence of vr from

theoretical work by Lecoanet & Quataert (2013), which

is f−3.25 for the radial velocity of waves excited at a dis-
continuous N profile. We see that the simulated spec-

trum is much flatter than this prediction, following f0.8.
The steep drop around 200 µHz for r > 0.8R⋆ is due

to the limit imposed by the Brunt–Väisälä frequency at

these radii.

Strong vertical features are visible in Fig. 22. These

are peaks in the spectrum which are present at the same
frequency at all radii in the radiation zone. This iden-

tifies them as standing waves. Their frequencies are
determined by the cavity they resonate in and can be
computed numerically using the stellar oscillation code

GYRE (Townsend & Teitler 2013).

It is hard to disentangle individual modes because the

contributions of several wave numbers overlap, but due
to the horizontal discretization of the simulations using

spherical harmonics it is simple to extract a spectrum
for particular l and m modes. The panels in Fig. 24

show the frequency spectrum for the modes l = 2 and

l = 4. Here, the radial order of the individual stand-

ing modes can be clearly identified by the number of

radial nodes. The strong mode at 210 µHz without any
nodes is a fundamental mode or f mode. The other vis-

ible modes show an increasing number of nodes with

decreasing frequency. This identifies them as g modes

(e.g., Aerts et al. 2010, Sect. 3.5). We computed ex-

pected mode frequencies with GYRE6 for comparison.

They are labeled in the figure using the Eckart-Osaki-

Scuflaire-Takata scheme (e.g., Aerts et al. 2010), where

negative numbers indicate g modes, 0 is the f mode, and
positive numbers are p modes. In the case of l = 2 we

find quite good agreement for the g modes (at least up

6 We used version 5.1 from the GYRE web page.
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Figure 24. Frequency spectra of radial velocity vr for all radii. The vr values were sampled at several points on the equator
and computed only for angular degree l = 2 (top panel) and l = 4 (bottom panel). The data were extracted from model H6LD.
The vertical lines at the top are the expected mode frequencies computed with GYRE. The modes are numbered using the
Eckart-Osaki-Scuflaire-Takata scheme, where positive numbers are p modes, negative numbers are g modes, and the f mode is
identified by zero. The length of the lines is varied purely for better readability.

to g4) and the f mode, especially considering that our

3D simulation has a slightly different resonant cavity

due to the different equation of state and outer bound-

ary compared to the 1D MESA model. As expected

there are no p modes as the chosen set of equations (see
Sect. 2) does not include the physics of sound waves. For

l = 4 (lower panel of Fig. 24) the g1, g2, and g3 modes

match very well, while the identified f mode is within a

few µHz of the expected frequency of the p1 mode ac-

cording to GYRE. This is probably coincidental as the

discrepancy between 3D hydrodynamics and GYRE gets

even larger at higher wave numbers. The identification

of modes by counting the number of nodes in the RZ is

illustrated in Figure 25, which shows the radial change
of vr amplitude of particular frequency components cor-

responding to the standing waves. The amplitudes were

computed by projection on a complex phase angle of the

Fourier transform at the radius with the maximum ab-
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Figure 26. Wave amplitude in vr for the l = 6 mode
at three different frequencies from simulation H6LD. The
dashed lines are the theoretical prediction using radiative
damping and pseudomomentum conservation from Eq. (23).
This curve uses the enhanced values of thermal diffusivity κ
from the simulation instead of the stellar values.

solute value in the RZ. The g2 and g3 show nodes at

the top of the overshooting region, which is ignored for

the mode identification.

Linear theory predicts amplification of waves moving
along a decreasing density profile through pseudomo-

mentum conservation (e.g., Bühler 2009). At the same

time thermal diffusivity damps the wave. Ratnasingam
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Figure 27. High-frequency regime of the spectrum of vr in
simulation H6E at all radii integrated over all l components.
The white line is the Brunt–Väisälä frequency N/2π. We see
that the signal in the radiation zone is approximately limited
to the region where 2πf < N , with the notable exception of
f modes (strong vertical features) going beyond that limit.

et al. (2019) give an expression for the linear wave am-

plitude based on Press (1981) and Kumar et al. (1999).
The amplitude of the radial velocity follows

vr ∝
(r0
r

)3/2
√

ρ0
ρ

(

N2 − ω2

N2
0 − ω2

)1/4

exp(−τ/2), (23)

with

τ =

∫ r

r0

dr
κ [l(l + 1)]

3/2
N3

r3ω4

√

1− ω2

N2
, (24)

using ω = 2πf and the starting radius of wave propa-

gation r0 with its corresponding density ρ0 and Brunt–

Väisälä frequency N2
0 . We extract the amplitude of vr

at several frequencies for a particular l mode and show it
together with the theoretical prediction from Eq. (23) in

Fig. 26. We see that the waves generally follow amplifi-

cation through the
√

ρ0/ρ term and are hardly affected

by radiative damping, except for the low frequency case,

as expected.

Generally the match between the GYRE predic-
tions and data extracted from 3D hydrodynamics is

quite promising, considering that both approaches make

slightly different assumptions about the physics. Even

with the high thermal diffusivity needed for the simula-

tion we can see wave amplification. We might be able

to observe wave breaking in future simulations which

extend to regions closer to the surface at much lower

densities.

4.5. Nature of the signal in the radiation zone

Although a visualization of the temperature field in

the radiation zone such as in Fig. 8 suggests a wave na-

ture of the flow field, a more rigorous analysis is needed
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to prove the motions are indeed IGWs excited close to
the convective boundary or by nonlinear interaction in

the RZ. IGWs are naturally limited to frequencies below

the Brunt–Väisälä frequency, i.e. ω < N with ω = 2πf .

In Fig. 27 we show the high-frequency part of the spec-
trum of vr at all radii. The white line in the figure indi-

cates the local Brunt–Väisälä frequency. We see that the
bulk of the signal in the RZ is constrained to the region
ω < N . Beyond this frequency there is a sharp drop in

the amplitude which is consistent with IGW nature. A
notable exception are the strong f modes (e.g. at 320,
330 and 340 µHz) going beyond that limit, which does
not contradict this interpretation because these modes

are not subject to the frequency limit.

In the locally Boussinesq but globally anelastic ap-

proximation IGWs follow the dispersion relation (e.g.,

Press 1981),
k⊥
k

=
ω

N
. (25)

Here, k⊥ is the horizontal wave number, kr the radial

wave number, and k =
√

k2⊥ + k2r the magnitude of the

total wave vector. We verify this relation for individual
values of angular degree l and frequencies because the

resulting velocity field is a combination of many indi-

vidual waves. The horizontal wave vector can easily be

computed for a given l by

k⊥ =

√

l(l + 1)

r
. (26)

The radial wave number is not as straightforward to de-

rive because the wave length changes with radius as the

Brunt–Väisälä frequency varies. An additional compli-

cation is that the wavelength becomes comparable to the

stellar radius above r ∼ 0.5R⋆, which makes an accurate

determination very hard.

We determine the radial wavelength λr for each in-
dividual frequency by finding the peaks of vr along

a ray in the radial direction and calculating the dif-

ference between them. For this we employ the rou-

tine signal.find_peaks from the scipy Python pack-

age (Jones et al. 2001–), which finds isolated local ex-

trema and is resilient to small numerical noise. As there
are only very few wave cycles along the total radius of
the star, we use a cubic spline to interpolate the wave-

lengths at every radial coordinate. Several other meth-

ods proved unsuccessful in this particular case: using

a radial Fourier transform with a sliding window is in-

accurate, as there are only few wave cycles per win-

dow; calculating the radial derivative of the phase of

the spectrum works well except for regions where the

phase is poorly defined when the amplitude is close to

0. This makes this method inapplicable to determining

the wavelength in standing modes. The simple method
of measuring the distance between peaks and interpo-
lating the found wavelengths is the most robust.

Using this method we calculate the radial wave num-

ber kr = 2π/λr for every frequency at every radius to

check how closely Eq. (25) is fulfilled. The two panels in

Fig. 28 show this for l = 2, 4, 10, 20. White regions indi-
cate a match of the dispersion relation, red regions have

a too large k⊥, blue regions have a too small k⊥. All

components show no match in the very low frequency

range (. 10 µHz), which is expected to be totally dom-

inated by diffusion at all radii. Just above the over-
shooting region at 0.2R⋆ we find excellent agreement

at higher frequencies, which we interpret as waves be-
ing emitted from the convection zone over a large range
of frequencies. Due to the increased thermal diffusiv-

ity needed for numerical reasons, low-frequency waves

cannot propagate far into the RZ. This is evidenced by

the increasing size of the non-IGW (red) region at the

low-frequency end.

The higher l values show a remarkable phenomenon.
At r & 0.4R⋆ in the low-frequency region which should

be completely dominated by damping (f . 70 µHz for

l = 10) a signal appears which matches the dispersion

relation. This cannot be explained by waves originat-

ing from the convective boundary because there are no

waves of these frequencies present at lower radii. A plau-

sible explanation is that these are generated by nonlin-
ear interaction of low l waves in the middle of the RZ.

These secondary waves reach frequencies from 10 µHz to

100 µHz.

The ability of the discretization to resolve IGWs is

checked in this context as well. For given values of k⊥
and N we can calculate a frequency below which the ra-
dial IGW wavelength would not be resolved by at least
10 grid points in the radial direction. This frequency
forms the lower limit for resolving IGWs at a given ra-

dius in this simulation. The limit is indicated as a ma-

genta line in Fig. 28. The lower limit is highest close to
the convective boundary, where N is lowest.

Another limit on wave resolution is imposed by diffu-
sion. As a rough estimate for the minimum wave length

of waves not dissipated by diffusion and viscosity we use,

max(κ, ν) ∼ λ2

τd
=

(2π)5r2f4

N3l(l + 1)
, (27)

with the IGW wavelength λ = 2π/k and the diffusion

time τd = λ⊥/vg. This uses the magnitude of the group
velocity,

vg =
∂ω

∂k
=

rω2

N
√

l(l + 1)
. (28)
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Figure 28. Verification of the IGW dispersion relation in Eq. (25) for simulation H6LD. The color map shows (k⊥/k)/(ω/N),
which is close to 1 if the relation is fulfilled (white regions). Red regions indicate a too large value of k⊥, blue regions a too low
value of k⊥. The magenta lines indicate the region left of which waves are resolved with less than 10 grid points per wave length
in radial direction. The yellow line is the estimated upper limit of frequencies dominated by diffusion according to Eq. (27).
The horizontal dotted line is the boundary of the overshooting region determined in Sect. 4.2 at 0.695HP beyond the original
convection zone.

Solving this equation for f leads to the yellow colored
line in Fig. 28. As expected, we can see that motions

below this frequency largely do not fulfill the dispersion
relation. This proves that the radial resolution in our
simulations is sufficient to resolve waves with frequencies

above 30 µHz in the most energy bearing wave numbers

(l . 5).

While this analysis gives a good overview of the fre-
quencies, wave numbers, and radii where the dispersion

relation is fulfilled well, it is also important to see what

fraction of the kinetic energy is actually contained in

the wave motions. To compute this we filter the Fourier

transform of the velocity components v̂r, v̂θ, and v̂φ to

only include values at frequencies and radii, where k⊥/k
is close to the IGW dispersion relation ω/N . The filtered

velocities are,

v̂filtr,θ,φ =







v̂r,θ,φ if ω
N

1
Ccut

< k⊥

k < ω
NCcut,

0 otherwise.
(29)

The kinetic energy computed from these velocities is
then identified as the energy in IGW motions EIGW.

Figure 29 shows the ratio of this energy to the un-
filtered kinetic energy integrated over angular degrees

l ≤ 10. We do not include frequencies below the limit

definitely dominated by diffusion (Eq. (27)) in this anal-

ysis. As expected, we see almost no energy is in IGWs

from the center up to the top of the overshooting region

at r = 0.2R⋆, which matches the previously determined

position from Sect. 4.2 as indicated by the vertical dot-
ted line. In the RZ it rises to 90% when applying the

error margin Ccut = 1.3. The fraction of kinetic energy

in IGWs drops beyond r = 0.4R⋆. The main cause of

this is the uncertainty in determining λr at large radii,

where λr approaches R⋆ and our method of measuring

the distance between peaks breaks down. Another rea-

son is the growth of the low-frequency, red regions in

Fig. 28, which arises because of the limited range of



3D Simulations of Massive Stars: I. Wave Generation and Propagation 23

0.2 0.4 0.6 0.8

r/R⋆

0.00

0.25

0.50

0.75

1.00
E

IG
W

/E
k

in

1.2 1.3 1.5 2.0

Figure 29. Fraction of energy in IGW motions in simula-
tion H6LD after applying the filtering process from Eq. (29)
at different radii for angular degrees l ≤ 10. The energy
computed from the filtered velocities EIGW is compared to
the original kinetic energy Ekin for these values of l. We do
not include frequencies below the limit definitely dominated
by diffusion (Eq. (27)). The line colors represent different
error margins Ccut around the expected dispersion relation.
The vertical dotted line is the boundary of the overshoot-
ing region determined in Sect. 4.2 at 0.695HP beyond the
original convection zone.

IGWs due to high numerical diffusion. At even higher

radii, r & 0.7R⋆, we notice an increase in the IGW en-
ergy fraction, which is likely due to the increased frac-

tion of secondary waves, as discussed earlier.
This analysis makes us confident that the motions in

the RZ are indeed of IGW nature to a significant frac-

tion, with the exception of very low frequency motions

dominated by numerical diffusion. We see evidence for

secondary generation of waves within the RZ.

4.6. IGW surface signature

The observed brightness variations in O stars have

been suggested as signatures of convectively excited

IGWs (Aerts & Rogers 2015). Their spectrum is likely
linked to that of tangential velocity close to the sur-

face of the star (De Cat & Aerts 2002; Tkachenko et al.

2014). Figure 30 shows a spectrum of latitudinal ve-

locities from model H6LD (orange line). These are less

affected by numerical influence from the boundary con-

dition than the azimuthal velocities. This is compared

to a spectrum obtained from 2D simulations of a 3M⊙

star from Rogers et al. (2013) (blue line). We see the
same low-frequency power excess in range from 2d−1 to

6 d−1 and a similar drop in amplitude below 2 d−1 as

in the 3D simulations. We also plot photometric obser-

vations (Blomme et al. 2011) with an amplitude ratio
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Figure 30. Frequency spectrum of tangential velocity at the
equator of model H6E close to the outer boundary of the sim-
ulation domain (r = 0.89R⋆). Just the velocity in θ direction
(i.e., aligned in southern direction at the equator) is used, as
the φ velocity is subject to boundary artifacts. The 2D spec-
trum from Rogers et al. (2013) was scaled to match the 3D
spectrum. It was started with an initially uniform rotation
of 1.1 d−1 using a different, but similar 3M⊙ reference state.
The spectrum of brightness variations of HD46966 is from
CoRoT observations (Blomme et al. 2011; Aerts & Rogers
2015). The empirical conversion factor between velocity and
brightness variations is 1mmag (km s−1)−1 (De Cat & Aerts
2002; Aerts & Rogers 2015).

of 1mmag (km s−1)−1 (De Cat & Aerts 2002; Aerts &

Rogers 2015) for comparison.
The same low-frequency power excess shows in the

spectra of temperature fluctuations in Fig. 31. It is ex-

pected to be the dominant cause of photometric vari-

ability in observations. In the spectrum integrated over

all l values (top panel) this excess makes it hard to dis-
tinguish individual excited mode frequencies, expect for

one mode at 210 µHz (18.1 d−1), which is part of the
l = 2 component. In the spectra for individual l val-

ues, several modes can be identified, corresponding to

those in Fig. 24. This decomposition also makes it clear

that the low-frequency power excess is a combination of

the power excesses in different l components, each con-

tributing to a small frequency range. The lack of signal

at low-frequencies in numerical simulations is due to the

high numerical diffusivity and not expected to be phys-

ical. The amplitude of the waves is expected to increase

as they propagate from r = 0.89 R⋆, where the spectrum

was computed, to the surface. According to pseudomo-

mentum conservation it should increase by a factor of

380.
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Figure 31. Frequency spectrum of temperature fluc-
tuations T from the reference state at the equator of
model H6LD close to the outer boundary of the simulation
domain (r = 0.89 R⋆). The different panels show different
values of angular degree (l) as indicated.

The low-frequency power excess is also found in obser-

vations of stars with a convective core (Bowman et al.
2019). In the simulations it is caused by the high density

of high radial order, low-l g modes and because most en-
ergy in the CZ is at low l values (see Fig. 9). The drop in

amplitude below 2 d−1 on the other hand is in disagree-

ment with observed photometry (Blomme et al. 2011;
Aerts et al. 2017b, 2018; Bowman et al. 2019). This

disagreement is likely caused by the increased thermal
diffusivity in the simulations (both in 2D and 3D) which

damps low-frequency waves more strongly than in stellar
interiors. Another possibility is the lack of differential

rotation in our 3D model. Rogers et al. (2013) found
that differential rotation between core and envelope in-

troduces a significant low frequency component in the

spectrum. At higher frequencies above 10 d−1 the 2D

simulations drop more slowly than the 3D simulations

and show many excited modes. This is possibly due to

the lack of wave breaking brought about by the high
thermal diffusivity and viscosity needed in our present
set of 3D simulations.

5. CONCLUSIONS AND OUTLOOK

We showed the first 3D simulations of convection in

the core of an intermediate-mass star, with a convective
core and radiative envelope, that also include a large

part of the radiation zone (RZ). The simulations us-
ing the anelastic equations (i.e., removing the physics of
sound waves) and a spectral discretization using spher-

ical harmonics were run using a realistic reference state

from the stellar evolution code MESA. For numerical

reasons the simulations were run with increased thermal

and viscous diffusivity. To compensate for the increased

wave damping this produces we increased the luminos-
ity of the star causing higher velocities in the convective
core. We do this in the hope that wave velocities at the

surface of the star are more realistic.

We see wave patterns in the RZ, which are identified

to be standing g and f modes with frequencies similar to

those predicted by the oscillation code GYRE. Although

there are differences, they are not of the sort predicted
in Brown et al. (2012) and are dependent on the l and

m values of the spherical harmonics. These differences

are likely due to slightly different physics (e.g., equation

of state, outer boundary condition) and changes in the

temperature profile at the top of the convection zone

due to overshooting.

Apart from the standing modes the simulations also
show a continuous signal in the RZ between frequencies

of approximately 20 µHz and 200µHz. An analysis of

the dispersion relation (see Fig. 28) identifies the physi-

cal mechanism as IGWs. The decline of this continuous

spectrum with frequency is markedly smaller than the-

oretically predicted values for excitation purely due to

convective eddies (see Fig. 23).
An analysis of the kinetic energy distribution over

spherical harmonic degree l shows a spectrum which

peaks at a low value of l and then declines with a power

law with an exponent in the range from −2 to −3 in

the inertial range. This is closer to the theoretical value

for Bolgiano–Obukhov scaling (−2.2) of buoyancy dom-

inated convection than to the Kolmogorov value (−1.6)
of isotropic turbulence. We do not have enough informa-

tion to get a conclusive answer on the realized scaling in



3D Simulations of Massive Stars: I. Wave Generation and Propagation 25

convective stellar cores. This should be studied further
in detailed simulations of just the core. These slopes

are measured at the top of the CZ, which is subject to

convective overshooting, and therefore do not directly

match the IGW spectrum. Yet they show what energy

is available for wave excitation at a given frequency. The

slope in the inertial range is similar to that observed in
other 2D or 3D simulations of core convection (Rogers

et al. 2013; Augustson et al. 2016).

The broken power law structure of the frequency spec-

tra of kinetic energy above the convection zone is similar

to those obtained in the 2D simulations of Rogers et al.

(2013), suggesting the mechanism driving the bulk of

this spectrum does not fundamentally change with di-

mensionality. It is likely that bulk Reynolds stresses

induced by convective eddies contribute more in higher

Reynolds number flows, but this would still only affect

the low frequencies (f < fTO) and hence, have little im-
pact on angular momentum transport or mixing within

the bulk of the RZ (Shiode et al. 2013; Kumar et al.
1999; Lecoanet & Quataert 2013).

Excitation by plume penetration is obviously involved

as can be seen in the temperature and velocity fields

(see Fig. 7). It can explain the excitation of higher fre-

quency waves and the extracted distribution of plume
frequencies fits a large part of the simulation spectrum.

One may argue that the plume penetration depths, and
hence, frequencies generated are too large. However,
at least in the theory by Zahn (1991), this penetration

depth scales like the velocities cubed divided by the total

flux, a number which is the same in the simulations as it

is in the star. The production of high-frequency waves is

extremely important for explaining the photometrically

observed brightness variations at high frequencies (see
Fig. 30). They are likely underestimated in our simula-

tions due to high dissipation preventing wave breaking.

Stochastic brightness variations caused by velocity

and temperature fluctuations at the stellar surface have

been inferred to be caused by IGWs in massive stars

(Aerts & Rogers 2015; Aerts et al. 2017a, 2018; Bow-

man et al. 2019). We extracted frequency spectra of
these quantities from the simulation close to the stel-

lar surface. General features are a low-frequency power

excess and the presence of standing modes at low l har-

monics. This is in agreement with the findings of 2D

simulations (Rogers et al. 2013), which match observa-
tions in the power bearing range, but lack both ampli-

tudes at very low frequencies (due to excessive radiative

damping) and high frequencies (possibly due to lack of

wave breaking from overdamped waves).

The simulations presented in this article show the fea-

sibility of hydrodynamic modeling of convectively ex-

cited IGWs and their propagation through a large part

of the radiative zone using a consistent numerical treat-

ment. In future work employing more computational

resources the limitations forcing us to use unphysically

high diffusivities and luminosities can hopefully be over-

come to achieve more realistic wave amplitudes through-

out the interior and at the surface, and hence more
realistic angular momentum transport. More realistic
physical parameters in the simulations combined with
coverage of a wider range of stellar models will also al-

low us to make quantitative predictions of the expected

signature of IGWs in asteroseismological observations.
The general similarity of our results with those of pre-

vious 2D simulations encourage us to consider those re-

sults with less reservations due to their dimensionality

and to use 2D simulations as a tool in the future to

quickly cover a wider parameter range in models than is

possible with 3D simulations.
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