Research Repository UCD

Provided by the author(s) and University College Dublin Library in accordance with publisher
policies. Please cite the published version when available.

Title Three-dimensional speckle size in generalized optical systems with limiting apertures
Authors(s) Ward, Jennifer E.; Kelly, Damien P.; Sheridan, John T.

Publication date 2009-08-01

Publication information Journal of the Optical Society of America A, 26 (8): 1855-1864

Publisher Optical Society of America

Link to online version http://dx.doi.org/10.1364/JOSAA.26.001855

Item record/more information [http://hdl.handle.net/10197/3375

Publisher's statement This paper was published in Journal of the Optical Society of America A and is made
available as an electronic reprint with the permission of OSA. The paper can be found at
the following URL on the OSA website:
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-26-8-1855. Systematic or multiple
reproduction or distribution to multiple locations via electronic or other means is prohibited
and is subject to penalties under law.

Publisher's version (DOI) 10.1364/JO0SAA.26.001855

Downloaded 2022-08-25T14:08:34Z

The UCD community has made this article openly available. Please share how this access
benefits you. Your story matters! (@ucd_oa)



https://twitter.com/intent/tweet?via=ucd_oa&text=DOI%3A10.1364%2FJOSAA.26.001855&url=http%3A%2F%2Fhdl.handle.net%2F10197%2F3375

Ward et al.

Vol. 26, No. 8/August 2009/J. Opt. Soc. Am. A 1855

Three-dimensional speckle size in generalized
optical systems with limiting apertures

Jennifer E. Ward," Damien P. Kelly,” and John T. Sheridan"*

'School of Electrical, Electronic and Mechanical Engineering, UCD Communications and Optoelectronic Research
Centre, SFI-Strategic Research Cluster in Solar Energy Conversion, College of Engineering,
Mathematics and Physical Sciences, University College Dublin, Belfield, Dublin 4, Ireland

*Department of Computer Science, National University of Ireland, Maynooth, Ireland
*Corresponding author: john.sheridan@ucd.ie

Received March 30, 2009; revised June 22, 2009; accepted June 22, 2009;
posted June 30, 2009 (Doc. ID 109400); published July 29, 2009

Correlation properties of speckle fields at the output of quadratic phase systems with hard square and circular
apertures are examined. Using the linear canonical transform and ABCD ray matrix techniques to describe
these general optical systems, we first derive analytical formulas for determining axial and lateral speckle
sizes. Then using a numerical technique, we extend the analysis so that the correlation properties of nonaxial
speckles can also be considered. Using some simple optical systems as examples, we demonstrate how this
approach may be conveniently applied. The results of this analysis apply broadly both to the design of metrol-
ogy systems and to speckle control schemes. © 2009 Optical Society of America

OCIS codes: 070.2580, 030.6140, 110.6150.

1. INTRODUCTION

Coherent laser light reflected from an optically rough sur-
face produces a grainy interference pattern known as
speckle. For a given illumination wavelength and optical
system, this speckle pattern is dependent on the profile of
the rough surface. Measuring variations in the speckle
field (for example, by capturing a series of sequential im-
ages) the user has a noncontact means of monitoring sur-
face changes as external forces and stresses are applied
[1-6]. Speckle size plays a role in determining the reso-
lution and dynamic range of such metrology systems, and
the ability to predict and control speckle size can thus be
used to improve system performance. In speckle photog-
raphy systems, for example, it can be used to match the
speckle and camera pixel sizes, while for speckle interfer-
ometry it is preferable to have many speckles per camera
pixel [7]. In other optical applications such as digital ho-
lography, speckle is treated as a source of noise, and in-
sight into speckle correlation properties may aid in the
development of speckle reduction techniques [8]. It is
known that speckle size depends on the lenses, apertures,
and sections of free space in an optical system. It is also
dependent on the wavelength used and, although not dis-
cussed here, polarization diversity [8]. In this paper,
simple formulas are presented to estimate the lateral and
on-axis longitudinal speckle size (for input circular and
square hard apertures) at the output of quadratic phase
systems described using the linear canonical transform
(LCT) and the corresponding ray-tracing ABCD matrices
[9-11]. The analysis is then extended so that the off-axis
speckle sizes can also be determined in a straightforward
manner, using a set of simple analytical functions.
Lateral speckle size was first investigated by Gold-
fisher [12] by examining the width of the autocorrelation
function of a free space speckle pattern. Later, Leushacke
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and Kirchner [13] derived expressions for the average
speckle width and length following free space (Fresnel)
propagation from both circular and square apertures. On-
axis speckle size in general ABCD systems with soft
Gaussian apodized apertures has been discussed by Yura
et al. [14]. We have previously determined speckle size
numerically in ABCD systems for a 1-D rectangular slit
[15]; however, these results are somewhat awkward to ap-
ply. This paper makes the following additional contribu-
tions: (1) The previous analysis [15] is extended to include
square and circular apertures; (ii) a set of compact ana-
lytical equations that allow straightforward estimation of
the lateral and on- and off-axis longitudinal speckle size
for any general ABCD system is derived, and a simple
technique to apply these formulas to system specific solu-
tions is provided; and (iii) some standard optical systems
are examined to demonstrate the effectiveness of the re-
sulting approach.

The layout of the paper is as follows: In Section 2 we
briefly introduce the LCT and use this transform to de-
scribe a speckle field at the output of a general paraxial
optical system. This speckle field deforms as optical ele-
ments within the bulk optical system are moved or
changed. Using correlation techniques we derive a func-
tion that provides a measure of the similarity between
speckle fields originating from the same input field but
propagating through two different LCT systems. We refer
to this measure as the mutual correlation coefficient (of
intensity) and use it to define speckle size. In Section 3,
special cases of the mutual correlation coefficient are ex-
amined individually for different input aperture shapes.
In Subsection 3.A an expression for the first minimum of
the mutual correlation coefficient for 1-D square aper-
tures in generalized ABCD systems is derived and is used
to define our lateral and on-axis longitudinal speckle
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sizes. Subsection 3.B provides a similar analysis for the
circular aperture case. In Section 4 the analyses are ex-
tended to longitudinal speckle observed off-axis. In Sec-
tion 5 some commonly used optical systems are examined.
Speckle size is calculated for these systems, primarily us-
ing the first minimum definition derived in this paper but
also using the full-width half-maximum definition some-
times used in the literature [8,11] for the circular aper-
ture case. Finally, in the conclusion in Section 6, a discus-
sion of the main results is presented.

2. ABCD RAY MATRICES AND THE
CORRELATION COEFFICIENT OF
INTENSITY

A. Integral Transforms and the ABCD Ray Matrix
Notation

Within paraxial scalar diffraction theory, light propaga-
tion can be described using the Fresnel transform (FST)
and the effect of a thin lens by a chirp transform. All such
integral transforms are special cases of the LCT, a three-
parameter class of integral transforms that is typically
defined in terms of the parameters A, B, and D [5,9-11].
By choosing appropriate values of these parameters, the
effect of successive chirp and propagation transforms can
be described using the Collins or ABCD matrix tech-
niques [9]. The advantage of retaining these A, B, and D
parameters throughout a derivation is that the resulting
solutions will be applicable to any paraxial quadratic
phase system (QPS). In Eq. (1) we define the two-
dimensional LCT,

u(%y) = LCT{u(xOJO)}(-’C,y)

1
=_])\_Bff u(x0,¥0)P(X0,¥0)

X I (Dx2-2 Ax?)
ex —_— X~ — ZXX o + AX,
P \B 0 0
‘jﬂ 2 2
X exp —AB(Dy = 2yyo+Ayg) |dxedyy, (1)

where p(xg,yo) is the pupil function in the input plane.
The 2-D LCT in Eq. (1) describes the mapping of a field
u(xg,y0), at an optically rough surface, to the field w(x,y)
at the output of the LCT system. Equation (2) gives the
[(A,B),(C,D)] values in Collins’s matrix form [9] for the
following: Eq. (2a), propagation through a section of free
space or FST; Eq. (2b), a thin lens or chirp modulation;
and Eq. (2¢), a Fourier transform (FT):

1 z
01/ (22)

1 0
~Uf 1) (2b)
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0 1
~1 0/ (2¢)

where z is the propagation distance, f is the focal length of
a convex lens, and the matrices in all the cases we con-
sider have the property AD-BC=1. Matrices that de-
scribe a combination of the above operations can be con-
structed by a simple concatenation of the appropriate
matrices [5].

B. Mutual Correlation Coefficient of Intensity, u;

The mutual correlation coefficient (of intensity) provides a
means of comparing the similarity between two fields. It
is sometimes referred to in the literature as “the norma-
lised autocorrelation function of intensity” [16], or as “co-
variance” [6,14], but in all cases represents a normalized
form of the correlation between two intensity fields that
result from the same input field. The correlation between
the light intensity distributions, I;(x) =|u;(x)|? is given by

R(x,5,ABCD,,ABCD,)
= (Lugep, () Tapcp, @) + [J4(x,X,ABCD,,ABCD,) %,

3)

where J4(x,X,ABCD{,ABCD,) is the mutual field ampli-
tude between two Gaussian, statistically independent
fields [8,16], captured in different LCT domains and lat-
erally displaced at the output by ¥ —x,

J4(x,%,ABCD,,ABCD,) = (uapcp (¥)uspcn,®),  (4)

where (-) denotes ensemble average and subscript * de-
notes complex conjugation. For notational simplicity in
the following expressions, we perform a 1-D analysis. In
Section 3 we examine both square and circular apertures
and extend the analysis to the 2-D case with appropriate
substitutions of variables. Using the 1-D form of Eq. (1),
the correlation between two displaced fields in Eq. (4) is
given by

1
N 'ﬁf fpz(xo)u(xo)u*(fo)
JMDB 15y

Jjm
><exp|:)\—Bl(D1x2 - 2xx +A1xg)} ,
_.j7T —9 —_— 92 ~
X exp )\?(sz — 2%Xo + AgXp) [dxodXy Y, (B)
2

where the pupil function p(xy) is assumed to be a real-
valued, hard-edged aperture at the input plane. We now
make two simplifying assumptions about the statistics of
the speckle: (i) the speckle field is fully developed and is
delta correlated at the rough surface, i.e., (u(xg)u*X))
=C8lxg—Xy), where C is a constant; and (ii) the intensity
fields (I(x)) and (I(X)) are slowly changing and approxi-
mately equal to each other [8]. Thus a study of
Ja(x,x,z,2) is sufficient to describe the decorrelation of
the speckle field and so the speckle size [13]. We note that
if assumption (i) is not satisfied, the following equations
are valid only in the far field of the aperture [8] Chap. 4.
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Using these assumptions, Eq. (5) can be rewritten as
Jm( Dy D,
Cexp| —| —x? - —&2 .
B "B, ;
p

A
J)\ \J’B IBZ

j’7T X X A1 A2
2
Xexp) —| | =— == |2x0+ | = - = |xp | (dxo-
N \By B, B, B,
(6)

The mutual correlation coefficient (of intensity) is equal to
the absolute value squared of the normalized mutual field
amplitude,

wi(x,%,ABCD,,ABCD,)
Ja(x,%,ABCD,,ABCD,)
\VJa(x,x,ABCD,,ABCD;)J 4 (%,%,ABCDy,ABCD,)

2

(M

Substituting Eq. (6) into Eq. (7) gives
o 2
f p*(xg)explj(axy + mp)1dx

f p*(xo)dxg

where

Equation (8) is the general form of the mutual correlation
coefficient used in this paper to derive speckle size for 1-D
square aperture systems.

3. LATERAL AND ON-AXIS LONGITUDINAL
SPECKLE SIZE

The speckle size for two special and important cases, lat-
eral and on-axis longitudinal speckles, are now derived.
The term lateral refers to speckle width perpendicular to
the optical axis, while longitudinal speckle collectively de-
scribes speckle length coincident (on-axis) and noncoinci-
dent (off-axis) with the optical axis. Mathematical defini-
tions of lateral and longitudinal speckle are used, which
allows analytical solutions of Eq. (8) to be found for both
aperture types. For lateral speckle we assume that the
bulk optical LCT system remains physically unchanged,
i.e., ABCD{=ABCD,; thus 7=0, and Eq. (8) is simplified
accordingly. This corresponds to performing an autocorre-
lation of the speckle intensity pattern and noting the
width of the resulting autocorrelation peak. Finding the
lateral speckle size thus involves answering the question,
how far must we displace the speckle pattern laterally be-
fore the first minimum of correlation occurs? In deriving
longitudinal speckle size, we examine the decorrelation
between two speckle fields produced from the same input
field as the ABCD system parameters are varied. For the
longitudinal case, ABCD{+#ABCD,, however, the output
planes are assumed laterally stationary, e.g., x=X. Fur-
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thermore, for on-axis longitudinal speckle, x=x=0. How-
ever this simplification will not be made until the end of
the derivations so that off-axis solutions to the mutual
correlation coefficient can be explored. The analysis is
first performed for 1-D input square apertures and then
for 2-D circular apertures.

A. Speckle Size for Square Apertures
The 1-D real-valued pupil function for a hard-edged
square aperture is

1 |xol=Ls2
p(xo) = 0, otherwise ’ ©)

where L is the width of the aperture. The full 2-D solution
for the square aperture case involves only a multiplica-
tion of the two orthogonal 1-D solutions. Equation (8) now
becomes

1 L/2 2
ju(x,%,ABCD,,ABCD,) = ‘ Z f explj(azo + m3)]dx,
-L/2

(10)

1. Lateral Speckle Size

Lateral speckle size (speckle width) is defined by the
maximum lateral displacement, x=x, that can take place
before the first minimum of y; is reached. Since only an
autocorrelation of the field must be considered, ABCD,
=ABCD, and 7=0. Simplifying Eq. (10) gives

La)\ |2
9 2 sin| —
2

mp(x,X) = = Ia

1 L/2
Zf exp(jaxo)dxg

-L/2

(11)

The minima of Eq. (11) are located at the points at which
sin(La/2)=0, i.e., when La/2=Nm, where N is an odd
natural number. The first minimum of the correlation co-
efficient of intensity occurs when N=1, giving

L27 _
Eﬁ(x —x) =T. (12)

Thus speckle width, ¢,, is defined as
€, =X—-x=AB/L. (13)

Equation (13) is the general form for speckle width when
a square aperture is at the input plane of the system, and
B is dependent on the specific parameters of the optical
system.

2. Longitudinal Speckle Size

Longitudinal speckle size is defined by the maximum
change to the optical system that can take place before
the first minimum of y; is reached. The lateral position
remains unchanged for this case; consequently, x=x and
w7 is no longer a function of lateral displacement. In order
to find an analytical solution to Eq. (10), we apply a
change of variable, t=x \m+ al \s"ﬁ, giving
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ABCD,,ABCD ! 1/ i / a
i 1> 9) = Z Z'EXP -J Z’

o \2rm+ L1727 j7Tt2
X j exp| — |d¢

o/ \27m-L\72m 2

2

(14)

Introducing the Fresnel integrals, C(z) and S(z) [13,18],
Eq. (14) can be written as

1 { ma?
— exp —j(7> [Cla+b)-Cl(a-0)

2b
2
+jS(a+b)-jS(a-b)]| , (15)
where a=a/ \s’% and b=L\/7/27. This simplifies to
1
W{[C(a +b)-Cla-b)2+[S(a+b)-S(a-b).
(16)

Equation (16) is the general analytical form of
u(ABCD{,ABCD,) for longitudinal speckle in a 1-D
square aperture system.

%
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For the special case of on-axis speckle, x=0=a=a=0,
and Eq. (16) can be written as

C?(b) + S%(b)
7
since C(=b)=-C(b) and S(-b)=-S(b). The first minimum
of Eq. (17) occurs at b,,;,=1.9115. Substituting for b gives
L\ 7/27w=1.9115. Therefore, the first minimum of the mu-

tual correlation coefficient for on-axis longitudinal speckle
occurs when

17

— = (18)

On-axis speckle length is determined from Eq. (18) by
substituting in system-specific values of A;, Ay, By, and
B,. The application of Eq. (18) to some well-known optical
systems is discussed in Section 5.

B. Speckle Size for Circular Apertures
In this case the 2-D pupil function is given by

1, |rol <Dy2
p(r0)={0’ otherwise ’ (19)

where D is the aperture diameter. The 2-D equivalent of
the mutual correlation coefficient is

2

P2(x0,y0)exp{jl (g + ayyo) + xg +y5) [dacodyg

—x

Ml(x,i’yvy’ABCDl’ABCDQ =

where

2w x  «x 2@y y
a=—|—-—/, ay=—"\>-=1.

Transforming to cylindrical coordinates, xy=rgcos 6, yq
=rysin 0, a,=( cos ¢, and a,=() sin ¢, where

p ) (20)
f f P*(xg,y0)edxody,
[
27 ( T r
(2,2 2. 3%
T'o=\Xp + Y0, Q=\/ax+ay=T(B_2_B_l>7

Eq. (20) becomes

® 27 2
p2(ro)exp{i[Qry(cos O cos ¢+ sin Osin ¢) + a]}rodbdr,

0o Jo 21)

w(r,7,ABCD{,ABCD,) =

© A2
f f p2(ro)rododr
0o Jo
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Employing trigonometric identities and changing the lim-

its based on the definition of the pupil function, Eq. (21)
becomes

2

Dy/2
f f exp[jQrq cos(6 — ¢)]expljmralrododr,
0 0

Dy/2 (2
f f rododr
0 0

Performing the integral in the denominator and normal-
izing the radial coordinate, i.e., ry=2rq,/D,, Eq. (22) be-

comes
2m QDorN
exp| j 2 cos(0— o)
0

2

(22)

TDOI‘N

><exp|:J ]rNdﬁdrN

2
, (23)

1
f Jolgry)expljprylrydry

0

where p=TD%/4, p=QDy/2, and Jy(x) is the zero-order
Bessel function [17]. The integral in Eq. (23) is the
Fourier—Bessel or Hankel transform.

1. Lateral Speckle Size

Since only an autocorrelation needs to be considered,
ABCD{=ABCD, and p=7=0. Equation (23) for lateral
speckle is written as

2| 2d4(g) |

, (29

1
w(r,7) = QJ Jolgry)rydry

0

which is the Airy function [17]. The first minimum of this
function occurs at g,,;,=3.832, and since B;=B,,

D07T
(F-r)=3.382. (25)

Therefore the speckle width e, is
€ =T —r=1.22\B/D,. (26)

2. Longitudinal Speckle Size

As before, longitudinal speckle size is defined by the
maximum change to the optical system that can take
place before maximum decorrelation occurs. In this case,
7=r and Eq. (23) is in the form of Eq. (20) in [18]. There-
fore

w(ABCD,,ABCD,) =

i\ [T
2exp(5) ;E (2n+1)
n=0

p ) Jons1(q) ?
.(27)

X (_j)an+1/2( 2

For the case of on-axis speckle, r=0=¢=0; furthermore,
since
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1
1 n=0
={2’ e (28)

0, n>0
Eq. (27) becomes [19]

2 (p
J1/2 = | sinc 2

where sinc(x)=sinc(x)/x. The first minimum of this func-
tion occurs when p,,;,/2=7. Backsubstituting for p gives
the equation from which the system specific definition of
axial speckle size at the output plane can be extracted,

lim
q—0

{Jznu((I) 1
q

2
s (29)

— = (30)

The application of Eq. (30) is discussed in Section 5.

4. OFF-AXIS LONGITUDINAL SPECKLE SIZE

The analysis in Section 3 provides two closed-form equa-
tions to estimate longitudinal speckle length. However
these formulas are valid only for speckle observed on the
principal axis. Off-axis speckles are those observed in any
part of the output plane that is noncoincident with the op-
tical axis. Although the difference in size between on- and
off-axis speckles is small close to the optical axis [8],
speckle length drops off after this central “plateau.”

The analytical solutions for speckle size presented in
Section 3 were derived for the special cases of a=0 (on-
axis speckle with a square aperture) and ¢=0 (on-axis
speckle with a circular aperture). Without these simplifi-
cations, it is not, to our knowledge, possible to extend the
simple analytical formulation to the off-axis case. It is
however possible to numerically determine the relation-
ship between a and b (or p and ¢) at the first minimum of
u1(ABCD{,ABCD5). We proceed, following [15], by iden-
tifying numerically a “boundary of correlation” (BOC)
curve on a contour plot of u;(ABCD{,ABCD;). The points
on this curve represent the first minima of
u1(ABCD{,ABCD:) for all possible values of a and & (or p
and ¢g). We proceed by fitting analytical functions to these
BOC points to provide the user with equations that can be
used to determine off-axis speckle size for apertured
ABCD systems. We also include a “half-maximum” line in
the contour plot to mark where wu;(ABCD{,ABCD,)=0.5
for the circular aperture case. Twice the distance of this
curve from the origin is sometimes used in the literature
to estimate speckle size [8,14,20]. We note that the half-
maximum definition of speckle always predicts a smaller
size than the corresponding first-minimum prediction
[13]. We have also observed that when using the half-
maximum definition, the off-axis decorrelation character-
istics appear to be consistently underestimated for the
longitudinal case.

A. Square Aperture

For the square aperture case, it is easier to first deter-
mine the BOC of wu;(ABCD,,ABCD,) parameterized in
terms of @ and 7, as shown in [15]. This is because the
first minima of u1(ABCD{,ABCD,) are sharper and thus
more easily located numerically when the function is pa-
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a

Fig. 1. Contour plot of u;(ABCD,,ABCD,) for the square aper-
ture case, where the BOC marks the location of the first minima
parameterized in terms of @ and b.

b .
Line 1
2009

o Discontinuity
15 BOC of

u,(ABCD;,ABCD,)

Curve 1(b)
Curve 1(a)

1.0

0.5

Fig. 2. (Color online) Plot of the BOC for the square aperture
case, showing the range of a values for which each segment of the
BOC curve is valid.

rameterized in terms of these variables. Applying the
mappings a— a/ \% and b—L \WT gives the BOC
shown in Fig. 1, where u{(ABCD{,ABCD,) is now param-
eterized as a function of @ and 6. A difficulty still remains
in identifying minima in the range 0.34<|a|=<0.4. Follow-
ing detailed numerical examination, we have found that
in this range, no sharply defined first minima exist. This
can be observed as a discontinuity in Fig. 2 in the region
of these a values. The resulting gap in the numerically
generated data points is fitted with a thin blue line (short
vertical segment near top of figure).

Ward et al.

In the BOC curve in the positive quadrant of Fig. 1, a
relatively flat segment of the BOC is observed, followed
by a longer curve of negative curvature. Given the sym-
metry of the BOC, the curves corresponding to negative a
or b values can be related to those in the positive quad-
rant by a simple change of sign. In Fig. 2, where the dif-
ferent segments of the BOC are identified more clearly, a
slight positive inflection in the flat portion of the BOC is
observed. We therefore give the option of classifying this
segment either as a straight line, “Line 1,” or, if a more
accurate representation is required, as the combination of
two shallow curves, “Curve 1(a)” and “Curve 1(b).” The
longer segment of negative curvature will be referred to
as “Curve 2.” We note that Curve 2 has been extended to
provide values in the region of the discontinuity, i.e.,
where the minima could not be unambigously identified.
In Table 1, the equations descibing each of these curve
fits, the range of a values over which each fit is valid, and
the mean square error between the data and the fits [21]
are given.

In order to solve the equations in Table 1, it is neces-
sary to write them as a function of a single variable. From
our definitions, ¢ and b written in terms of the ABCD pa-
rameters are

x\/2/(\B1B3)(B1 - By) (31a)
a= — a
VBoA1 - AsBy

b=L|—|—-—]. (31b)
2\\B, B,

By dividing Eq. (31b) by Eq. (31a) it is possible to rewrite
b in terms of a. The equations in Table 1 can then be ex-
pressed in terms of @ alone and solved. While a different a
value will result from each equation, the acceptable a
value is the one that lies within the range specified for
that equation. By substituting the resulting value of a
into Eq. (31a), the off-axis speckle size can be calculated.
Special cases of @ and b for two simple optical systems are
provided in Table 2. In the examples that are provided, Az
refers to an ouput plane normal displacement and will
provide a result equivalent to the longitudinal speckle
size, €, when the a or b values that result from these
equations lie on the BOC. In order to simplify the expres-
sions in Table 2, the assumption that z> Az was made.
Thus for the Fresnel case shown in Fig. 3(a), z(z+Az)
=22, and for the single-lens case in Fig. 3(b),

Table 1. Equations Describing the Fits to the Various Segments of the BOC, with the Associated Ranges
and Mean-Square-Error Values

Square Mean Square
Aperture Equation: b(a)= Valid Ranges of a Error [21]
Curve 1 1.911 0<a=<0.337 2.814x107*

Curve 1(a) 1.907+0.004 exp(43.748a16%3) 0<a=<0.163 5.178%107°
Curve 1(b) 1.954 exp(-0.261a%903) 0.163<a=<0.337 7.078x 10710
Curve 2 0.086+3.533 exp(—1.448a°57) 0.337<a<w 1.409x 1074
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Table 2. a and b Values for Some Commonly Used Optical Systems That Are Laterally Stationary”

Square
Aperture a bla €,
FST system 2Az Az -L 202 2 :
—X ? 2M2 2% min L
Single lens 2Az x(f1—21) Az fL B Lf op2 )\[f(zd +29)—2125]
system - N [flzg+29)—2125] N [Az1+29)—2125] 2x(f-zy) min fL

“l.e. X=x, where €. is the corresponding off-axis longitudinal speckle size.

input plane output planes
Yo y ¥
" 12
i "t
” Zo o
L Zo+Az |

| 23

(b)

Fig. 3. Schematic representation of (a) a free space optical sys-
tem, (b) a single-lens system.

10

parallel
5 contours

Half
-3 Maximum

-10

-5 0 5
p

Fig. 4. (Color online) Contour plot of u;(ABCD,,ABCD,) pa-
rameterized in terms of p and q, showing the BOC for the circu-
lar aperture case. Dashes in an oval mark the half-maximum
contour.

[z9=[(z9+Az). In Section 5, the procedure used to calcu-
late off-axis speckle size for these systems is applied.

B. Circular Aperture

The contour plot of u1(ABCD,,ABCD,), parameterized as
a function of p and g, is shown in Fig. 4. Using numerical
fitting techniques, equations for the three segments of the
BOC curve and the half-maximum curve highlighted in
Fig. 5 were determined. The equations for the three seg-
ments provide the relationship between p and g at the
first minima of w;(ABCD{,ABCD5) for the ranges and
with the accuracies shown. A difficulty arises in identify-
ing minima in the range 5.1<p <6.55. Following detailed
numerical examination, we have found that in this range
no sharply defined first minima exist. This introduces an
ambiguity regarding the location of the BOC that can be
observed graphically by noting the dashed lines in Fig. 5
or the minima that lie parallel to the contours of
u1(ABCD{,ABCD:) in Fig. 4. To overcome this ambiguity,
we define a straight line to approximate the BOC in this
region, going from the minimum ¢ value of Curve 1 to the
minimum p value of Curve 2. We refer to this line as the
effective BOC line. Table 3 lists the equation describing
each curve, the range of p values, and the accuracy of
each fit. For completeness, curve fits to the half-maximum
contour line are also given. From our definitions, the gen-
eral expressions for p and ¢ in terms of the ABCD param-
eters are

(32a)

Fig. 5. (Color online) BOC for the circular aperture case, show-
ing the range of p values for which each segment of the BOC is
valid.
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Table 3. Equations Describing the Fits to the Various Segments of the BOC, with the Associated Ranges
and Mean-Square-Error Values for the Circular Aperture Case

Circular Mean Square
Aperture Equation: g(p) Valid Ranges of p Error [21]
(1.819X 107%)p®+(1.327 X 10~3)p*- 5
Curve 1 0.078p2+3.836 0=p=<4.563 2.619X10
Effective
BOC line -0.813p +6.6558 4.563<p=<6.271 n/a
Curve 2 777l 1 p \2|%3 6.271<p<6.283 3.633x 1074
’ 6.283
Half-Maximum 0=p=<2.79 8.543x 1076

p \2187]05
1.6163{1—(m) }

Table 4. p and q Values for Some Commonly Used Optical Systems That Are Laterally Stationary”

Circular
Aperture p q/p €,
FST system DimAz(1 Dymrdz (1 4r 4Pmin\ [ 2 2
an |22 N|2? D, m \D,
Single lens Dgfzﬂ'Az Dfmr(z;-f)Az 4r(z1-/) N _f(zl+zz)—2122 2
system AN[f(z1+29) — 2125 Mf(z1+29) —2125]? Df T | Df
“Le., F=r, where €, is the corresponding off-axis longitudinal speckle size.
Dynr( 1 1 A, B, 1 z+Az] 39)
=—)| —-— 32b = . 33
=\ \B, B, (32b) C, Dy|T[0 1]

To extract speckle size information using the functions in
Table 1, g is expressed in terms of p, and the equations in
Table 3 are solved to find p. The correct p value must lie
within the range specified for that equation. By substitut-
ing this value of p into Eq. (32a), off-axis speckle size can
be found. The p and g values for some well-known optical
systems are provided in Table 4. In Section 5, our proce-
dure is applied to analyze these systems assuming input
circular apertures.

5. EXAMPLES OF SOME WELL-KNOWN
OPTICAL SYSTEMS

Two specific optical configurations are examined: a free
space configuration, Fig. 3(a) and a single-lens system,
Fig. 3(b). We determine the lateral and on-axis longitudi-
nal speckle size for both cases and examine the change in
longitudinal speckle size for a given offset from the optical
axis. We note that although only the effect of changing the
position of the output plane is examined, the analysis pre-
sented is sufficiently general so as to allow one to deter-
mine the correlation properties of a speckle system in
which any paraxial system component value, i.e., ABCD
parameter, is changed.

A. Free-Space Propagation (FST)

From Eq. (2), the ABCD parameters that describe the
Fresnel-transforming systems shown in Fig. 3(a) before
displacement of the output plane are ABCD{=Eq. (2a),
and following displacement,

1. Square Aperture Case (FST)

Substituting the B values in Eq. (33) into Eq. (13) gives
the following expression for the lateral speckle size
(speckle width):

€, =\2/L. (34)

The corresponding expression describing on-axis longitu-
dinal speckle size can be found by substituting the above
ABCD values into Eq. (18), giving

Az 7.31\

z(z+Az) - L? (35)

Assuming that z> Az, the on-axis longitudinal speckle
size ¢, is given by

€, =Az="T7.31\(z/L)%. (36)

Both Egs. (34) and (36) agree with the results in the lit-
erature [13]. Using the example of an optical system with
z=20 cm, L=10 cm, and A\ =633 nm, the speckle width at
the output of the system is €,=1.266 um, while the on-
axis longitudinal speckle size is €,=18.5 um.

We now examine the change in longitudinal speckle
size for speckles observed off-axis. We use the same sys-
tem component values as above but now consider x
=-2 cm in the output plane. For the FST in Table 2, b
=-La/2x, and the equations in Table 1 can now be writ-
ten as a function of ¢ only and solved numerically. The a
value resulting from Curve 2 is 0.541, which is within the
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specified range, i.e., 0.390<qa <. Substituting into a
=-x2Az/\z? from Table 2 allows us to solve for Az at the
point of decorrelation. In this case the off-axis lonigtudi-
nal speckle size is €,=9.263 um, which is approximately
half that of the predicted on-axis speckle size given above.
In Fig. 6 we plot ¢, as a function of displacement from the
optical axis over the range 0 <x <16 cm for the square ap-
erture case. The gap in the data points arises due to the
discontinuity discussed in Subsection 4.A.

2. Circular Aperture Case (FST)
Substituting the ABCD values from Eq. (33) into Eq. (26),
the speckle width is

€ = 1.22\z/D,. (37)

The corresponding expression governing the on-axis lon-
gitudinal speckle size, Eq. (30), is

Az 8\
—_— =, 38
z(z+Az) D(Z) (38)
and therefore e, is given by
€, = Az = 8\(2/D,)?, (39)

in agreement with [13]. For an optical system with z
=20 cm, Dy=10 cm, and A=633 nm, the speckle width at
the output of the system is €.=1.545 um, while the on-
axis longitudinal speckle size is €,=20.256 um. The
equivalent on-axis longitudinal speckle size using the
half-maximum definition is €,=16.96 um.

We now examine the change in longitudinal speckle
size for speckles observed off-axis at r=+2 cm in the out-
put plane. For the FST case in Table 4, g =4rp/D,. Using
this expression, the equations in Table 3 can be written as
a function of p only and solved numerically. The p value
resulting from Curve 1 is 3.801, which is within the speci-
fied range O0<p=<4.563. Substituting this into p
=[(Dg7'rAz)/4)\](1/22) from Table 2, the value of Az at the
point of decorrelation can be found. At r=2 cm from the
optical axis, off-axis longitudinal speckle size is e,
=12.254 um. In Fig. 7 we plot ¢, as a function of displace-
ment from the optical axis over the range 0 <r=<16 cm for
this circular aperture case.

& 0111!;2 N /Discontinuity
14 %
FST

10 Single-lens

system

0 4 8 12
x (cm)
Fig. 6. (Color online) Longitudinal speckle size €, as a function

of displacement x from the optical axis for a square aperture FST
and a single-lens system.
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Fig. 7. (Color online) Longitudinal speckle size €, as a function
of displacement r from the optical axis for a circular aperture
FST and a single lens optical system.

B. Single-Lens System

Using the matrix concatenation method described in Sub-
section 2.A, the ABCD parameters that describe the
single-lens systems in Fig. 3(b) before and after displace-
ment of the output plane are

1—22/f 22+21(1—22/f)
ABCD1={ Y 1- 2 f , (40a)
and
z9+ Az ( 22+Az)
1- zZo+Az+2z| 1-
ABCD, = f f

-1f 1-z/f

(40Db)

In what follows, we assume ziz9=z1(z9+Az) and fz,
=flzo+Az).

1. Square Aperture Case
In this case the lateral speckle size is given by

A 29
€x=z Z9+21 1—?) (41)

and on-axis longitudinal speckle size by

[f(Zl +29) —2122]2

e,=Az=7.31\ (42)

The procedure for determining off-axis speckle size fol-
lows that used for the Fresnel system. Figure 6 plots lon-
gitudinal speckle size as a function of off-axis displace-
ment x for the square aperture case when z;=8 cm, z,
=12 cm, L=10 cm, and A\=633 nm.

2. Circular Aperture Case
For this case the lateral speckle size is given by

1.22\ 29
€. = DO 29tz 1—7 (43)

and the on-axis longitudinal speckle size by
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{f(zlﬂz)—zmr
€=Az=8\| ————— | . (44)
Dof

In Fig. 7, the longitudinal speckle size is plotted as a func-
tion of off-axis displacement r for the circular aperture
case when 2z;=8cm, 2zs=12cm, Dyg=10cm, and A
=633 nm.

6. CONCLUSION

The correlation properties of speckle fields at the output
of paraxial optical systems with hard square and circular
apertures at the input are examined using the mutual
correlation coefficient of intensity. Formulating this corre-
lation method using the linear canonical transform, (LCT)
allows us to derive general analytical formulas for lateral
and on-axis longitudinal speckle size. A “boundary of cor-
relation” (BOC) curve, defining the first minimum of the
mutual correlation coefficient for all cases of longitudinal
speckle was generated using a numerical search algo-
rithm. Applying the resulting analytical fits to the various
BOC curves, off-axis speckle size can be determined for
such systems. Analytical fits to the half-maximum con-
tour are also provided for the circular aperture case. The
approach presented provides a general method for calcu-
lating speckle decorrelation and thus size in a practical
way for a large class of paraxial optical systems.

The results of this paper are of particular significance
to any application in which control over speckle size is de-
sirable. The sensitivity and dynamic range of speckle me-
trology systems, for example, is highly influenced by
speckle size. Also, with recent developments in nonimag-
ing speckle photography configurations [3-5], speckle cor-
relation characteristics in generalized optical systems are
particularly topical.

Finally, we note that in the derivations presented in
this paper, fully developed speckle is assumed, and the
correlation extent of the field at the input plane is defined
as sufficiently small that it can be adequately represented
by a delta function [8]. It is, however, possible that these
conditions are only approximately satisfied under certain
experimental conditions. In such instances a more in-
volved examination is required; see, for example, Section
4.5 [8]. Experimental verification remains necessary in
order to fully assess the validity of the techniques pre-
sented. Such a study should indicate the suitability of the
first minimum of the correlation coefficient of intensity as
the most appropriate method of defining speckle size.

ACKNOWLEDGMENTS

We acknowledge the support of Enterprise Ireland and
Science Foundation of Ireland through the Research In-
novation Fund and Research Frontiers Programmes, re-
spectively. We also acknowledge the support of the Irish
Research Council for Science, Engineering and Technol-
ogy, and FAS (Training and Employment Authority, Ire-
land) through the FAS Science Challenge. The research

Ward et al.

leading to these results has also received funding from
the European Community’s Seventh Framework Pro-
gramme FP7/2007-2013 under grant agreement no.
216105

REFERENCES

1. P. K. Rastogi, “Techniques of displacement and deformation
Measurements in speckle metrology,” in Speckle Metrology,
R. S. Sirohi, ed. (Marcel Dekker, 1993), pp. xx—xx.

2. H. Tiziani, “A study of the use of laser speckle to measure
small tilts of optically rough surfaces accurately,” Opt.
Commun. 5, 271-274 (1972).

3. J. T. Sheridan and R. Patten, “Holographic interferometry
and the fractional Fourier transformation,” Opt. Lett. 25,
448-450 (2000).

4. D.P. Kelly, B. M. Hennelly, and J. T. Sheridan, “Magnitude
and direction of motion with speckle correlation and the
optical fractional Fourier transform,” Appl. Opt. 44,
2720-2727 (2005).

5. B. M. Hennelly, D. P. Kelly, J. E. Ward, R. Patten, U.
Gopinathan, F. T. O’Neill, and J. T. Sheridan, “Metrology
and the linear canonical transform,” J. Mod. Opt. 53,
21672186 (2006).

6. T. Fricke-Begemann, “Three-dimensional deformation field
measurement with digital speckle correlation,” Appl. Opt.
42, 6783-6796 (2003).

7. T. Yoshimura, M. Zhou, K. Yamahai, and Z. Liyan,
“Optimum determination of speckle size to be used in
electronic speckle pattern interferometry,” Appl. Opt. 34,
87-91 (1995).

8. J. W. Goodman, Speckle Phenomena in Optics (Roberts,
2007).

9. S. A. Collins, Jr., “Lens-system diffraction integral written
in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168—-1177
(1970).

10. S. Abe and J. T. Sheridan, “Optical operations on wave
functions as the Abelian subgroups of the special affine
Fourier transformation,” Opt. Lett. 9, 1801-1803 (1994).

11. R. S. Hansen, H. T. Yura, and S. G. Hanson, “First-order
speckle statistics: an analytic analysis using ABCD
matrices,” J. Opt. Soc. Am. A 14, 3093-3098 (1997).

12. L. I. Goldfischer, “Autocorrelation function and power
spectral density of laser-produced speckle patterns,” J. Opt.
Soc. Am. 55, 247-253 (1965).

13. L. Leushacke and M. Kirchner, “Three-dimensional
correlation coefficient of speckle intensity for rectangular
and circular apertures,” J. Opt. Soc. Am. A 7, 827-832
(1990).

14. H. T. Yura, S. G. Hanson, R. S. Hansen, and B. Rose,
“Three-dimensional speckle dynamics in paraxial optical
systems,” J. Opt. Soc. Am. A 16, 1402-1412 (1999).

15. D. P. Kelly, J. E. Ward, U. Gopinathan, and J. T. Sheridan,
“Controlling speckle using lenses and free space,” Opt.
Lett. 32, 3394-3396 (2007).

16. J. C. Dainty, “The statistics of speckle patterns,” in
Progress in Optics, Vol. XIV, E. Wolf, ed. (North-Holland,
Amsterdam, 1976).

17. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.
(Roberts, 2005).

18. B. R. A. Nijboer, “The diffraction theory of optical
aberrations: II. Diffraction pattern in the presence of small
aberrations,” Physica (Utrecht) 13, 605-620 (1947).

19. M. Abramowitz and I. A. Stegun, Handbook of
Mathematical Functions (Dover, 1970).

20. T. Yoshimura and S. Iwamoto, “Dynamic properties of
three-dimensional speckles,” J. Opt. Soc. Am. A 10,
324-328 (1993).

21. E. W. Weisstein, “ANOVA,” in MathWorld, A Wolfram Web
Resource; http://mathworld.wolfram.com/ANOVA.html
(July 2009).


http://mathworld.wolfram.com/ANOVA.html

