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Correlation properties of speckle fields at the output of quadratic phase systems with hard square and circular
apertures are examined. Using the linear canonical transform and ABCD ray matrix techniques to describe
these general optical systems, we first derive analytical formulas for determining axial and lateral speckle
sizes. Then using a numerical technique, we extend the analysis so that the correlation properties of nonaxial
speckles can also be considered. Using some simple optical systems as examples, we demonstrate how this
approach may be conveniently applied. The results of this analysis apply broadly both to the design of metrol-
ogy systems and to speckle control schemes. © 2009 Optical Society of America

OCIS codes: 070.2580, 030.6140, 110.6150.
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. INTRODUCTION
oherent laser light reflected from an optically rough sur-

ace produces a grainy interference pattern known as
peckle. For a given illumination wavelength and optical
ystem, this speckle pattern is dependent on the profile of
he rough surface. Measuring variations in the speckle
eld (for example, by capturing a series of sequential im-
ges) the user has a noncontact means of monitoring sur-
ace changes as external forces and stresses are applied
1–6]. Speckle size plays a role in determining the reso-
ution and dynamic range of such metrology systems, and
he ability to predict and control speckle size can thus be
sed to improve system performance. In speckle photog-
aphy systems, for example, it can be used to match the
peckle and camera pixel sizes, while for speckle interfer-
metry it is preferable to have many speckles per camera
ixel [7]. In other optical applications such as digital ho-
ography, speckle is treated as a source of noise, and in-
ight into speckle correlation properties may aid in the
evelopment of speckle reduction techniques [8]. It is
nown that speckle size depends on the lenses, apertures,
nd sections of free space in an optical system. It is also
ependent on the wavelength used and, although not dis-
ussed here, polarization diversity [8]. In this paper,
imple formulas are presented to estimate the lateral and
n-axis longitudinal speckle size (for input circular and
quare hard apertures) at the output of quadratic phase
ystems described using the linear canonical transform
LCT) and the corresponding ray-tracing ABCD matrices
9–11]. The analysis is then extended so that the off-axis
peckle sizes can also be determined in a straightforward
anner, using a set of simple analytical functions.
Lateral speckle size was first investigated by Gold-

sher [12] by examining the width of the autocorrelation
unction of a free space speckle pattern. Later, Leushacke
1084-7529/09/081855-10/$15.00 © 2
nd Kirchner [13] derived expressions for the average
peckle width and length following free space (Fresnel)
ropagation from both circular and square apertures. On-
xis speckle size in general ABCD systems with soft
aussian apodized apertures has been discussed by Yura

t al. [14]. We have previously determined speckle size
umerically in ABCD systems for a 1-D rectangular slit
15]; however, these results are somewhat awkward to ap-
ly. This paper makes the following additional contribu-
ions: (i) The previous analysis [15] is extended to include
quare and circular apertures; (ii) a set of compact ana-
ytical equations that allow straightforward estimation of
he lateral and on- and off-axis longitudinal speckle size
or any general ABCD system is derived, and a simple
echnique to apply these formulas to system specific solu-
ions is provided; and (iii) some standard optical systems
re examined to demonstrate the effectiveness of the re-
ulting approach.

The layout of the paper is as follows: In Section 2 we
riefly introduce the LCT and use this transform to de-
cribe a speckle field at the output of a general paraxial
ptical system. This speckle field deforms as optical ele-
ents within the bulk optical system are moved or

hanged. Using correlation techniques we derive a func-
ion that provides a measure of the similarity between
peckle fields originating from the same input field but
ropagating through two different LCT systems. We refer
o this measure as the mutual correlation coefficient (of
ntensity) and use it to define speckle size. In Section 3,
pecial cases of the mutual correlation coefficient are ex-
mined individually for different input aperture shapes.
n Subsection 3.A an expression for the first minimum of
he mutual correlation coefficient for 1-D square aper-
ures in generalized ABCD systems is derived and is used
o define our lateral and on-axis longitudinal speckle
009 Optical Society of America
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izes. Subsection 3.B provides a similar analysis for the
ircular aperture case. In Section 4 the analyses are ex-
ended to longitudinal speckle observed off-axis. In Sec-
ion 5 some commonly used optical systems are examined.
peckle size is calculated for these systems, primarily us-

ng the first minimum definition derived in this paper but
lso using the full-width half-maximum definition some-
imes used in the literature [8,11] for the circular aper-
ure case. Finally, in the conclusion in Section 6, a discus-
ion of the main results is presented.

. ABCD RAY MATRICES AND THE
ORRELATION COEFFICIENT OF

NTENSITY
. Integral Transforms and the ABCD Ray Matrix
otation
ithin paraxial scalar diffraction theory, light propaga-

ion can be described using the Fresnel transform (FST)
nd the effect of a thin lens by a chirp transform. All such
ntegral transforms are special cases of the LCT, a three-
arameter class of integral transforms that is typically
efined in terms of the parameters A, B, and D [5,9–11].
y choosing appropriate values of these parameters, the
ffect of successive chirp and propagation transforms can
e described using the Collins or ABCD matrix tech-
iques [9]. The advantage of retaining these A, B, and D
arameters throughout a derivation is that the resulting
olutions will be applicable to any paraxial quadratic
hase system (QPS). In Eq. (1) we define the two-
imensional LCT,

u�x,y� = LCT�u�x0,y0���x,y�

=
1

j�B��
−�

�

u�x0,y0�p�x0,y0�

�exp� j�

�B
�Dx2 − 2xx0 + Ax0

2��
� exp� j�

�B
�Dy2 − 2yy0 + Ay0

2��dx0dy0, �1�

here p�x0 ,y0� is the pupil function in the input plane.
he 2-D LCT in Eq. (1) describes the mapping of a field
�x0 ,y0�, at an optically rough surface, to the field u�x ,y�
t the output of the LCT system. Equation (2) gives the
�A ,B� , �C ,D�	 values in Collins’s matrix form [9] for the
ollowing: Eq. (2a), propagation through a section of free
pace or FST; Eq. (2b), a thin lens or chirp modulation;
nd Eq. (2c), a Fourier transform (FT):

�1 z

0 1� , �2a�

� 1 0

− 1/f 1� , �2b�
� 0 1

− 1 0� , �2c�

here z is the propagation distance, f is the focal length of
convex lens, and the matrices in all the cases we con-

ider have the property AD−BC=1. Matrices that de-
cribe a combination of the above operations can be con-
tructed by a simple concatenation of the appropriate
atrices [5].

. Mutual Correlation Coefficient of Intensity, �I
he mutual correlation coefficient (of intensity) provides a
eans of comparing the similarity between two fields. It

s sometimes referred to in the literature as “the norma-
ised autocorrelation function of intensity” [16], or as “co-
ariance” [6,14], but in all cases represents a normalized
orm of the correlation between two intensity fields that
esult from the same input field. The correlation between
he light intensity distributions, Ii�x�= 
ui�x�
2 is given by

R�x, x̃,ABCD1,ABCD2�

= �IABCD1
�x���IABCD2

�x̃�� + 
JA�x, x̃,ABCD1,ABCD2�
2,

�3�

here JA�x , x̃ ,ABCD1 ,ABCD2� is the mutual field ampli-
ude between two Gaussian, statistically independent
elds [8,16], captured in different LCT domains and lat-
rally displaced at the output by x̃−x,

JA�x, x̃,ABCD1,ABCD2� = �uABCD1
�x�uABCD2

* �x̃��, �4�

here �·� denotes ensemble average and subscript � de-
otes complex conjugation. For notational simplicity in
he following expressions, we perform a 1-D analysis. In
ection 3 we examine both square and circular apertures
nd extend the analysis to the 2-D case with appropriate
ubstitutions of variables. Using the 1-D form of Eq. (1),
he correlation between two displaced fields in Eq. (4) is
iven by

 1

j��B1B2
��

�

p2�x0�u�x0�u*�x̃0�

�exp� j�

�B1
�D1x2 − 2xx0 + A1x0

2��,

� exp�− j�

�B2
�D2x̃2 − 2x̃x̃0 + A2x̃0

2��dx0dx̃0� , �5�

here the pupil function p�x0� is assumed to be a real-
alued, hard-edged aperture at the input plane. We now
ake two simplifying assumptions about the statistics of

he speckle: (i) the speckle field is fully developed and is
elta correlated at the rough surface, i.e., �u�x0�u*�x̃0��
C��x0− x̃0�, where C is a constant; and (ii) the intensity
elds �I�x�� and �I�x̃�� are slowly changing and approxi-
ately equal to each other [8]. Thus a study of

A�x , x̃ ,z , z̃� is sufficient to describe the decorrelation of
he speckle field and so the speckle size [13]. We note that
f assumption �i� is not satisfied, the following equations
re valid only in the far field of the aperture [8] Chap. 4.
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sing these assumptions, Eq. (5) can be rewritten as

C exp� j�

�
�D1

B1
x2 −

D2

B2
x̃2��

j��B1B2
�

−�

�

p2�x0�

�exp� j�

�
�� x̃

B2
−

x

B1
�2x0 + �A1

B1
−

A2

B2
�x0

2��dx0.

�6�

he mutual correlation coefficient (of intensity) is equal to
he absolute value squared of the normalized mutual field
mplitude,

I�x, x̃,ABCD1,ABCD2�

= � JA�x, x̃,ABCD1,ABCD2�

�JA�x,x,ABCD1,ABCD1�JA�x̃, x̃,ABCD2,ABCD2�
�2

.

�7�

ubstituting Eq. (6) into Eq. (7) gives

��=�

�

p2�x0�exp�j��x0 + �x0
2�	dx0

�
=�

�

p2�x0�dx0 �
2

, �8�

here

� =
2�

�
� x̃

B2
−

x

B1
�, � =

�

�
�A1

B1
−

A2

B2
� .

quation (8) is the general form of the mutual correlation
oefficient used in this paper to derive speckle size for 1-D
quare aperture systems.

. LATERAL AND ON-AXIS LONGITUDINAL
PECKLE SIZE
he speckle size for two special and important cases, lat-
ral and on-axis longitudinal speckles, are now derived.
he term lateral refers to speckle width perpendicular to
he optical axis, while longitudinal speckle collectively de-
cribes speckle length coincident (on-axis) and noncoinci-
ent (off-axis) with the optical axis. Mathematical defini-
ions of lateral and longitudinal speckle are used, which
llows analytical solutions of Eq. (8) to be found for both
perture types. For lateral speckle we assume that the
ulk optical LCT system remains physically unchanged,
.e., ABCD1=ABCD2; thus �=0, and Eq. (8) is simplified
ccordingly. This corresponds to performing an autocorre-
ation of the speckle intensity pattern and noting the
idth of the resulting autocorrelation peak. Finding the

ateral speckle size thus involves answering the question,
ow far must we displace the speckle pattern laterally be-
ore the first minimum of correlation occurs? In deriving
ongitudinal speckle size, we examine the decorrelation
etween two speckle fields produced from the same input
eld as the ABCD system parameters are varied. For the

ongitudinal case, ABCD1�ABCD2, however, the output
lanes are assumed laterally stationary, e.g., x= x̃. Fur-
hermore, for on-axis longitudinal speckle, x= x̃=0. How-
ver this simplification will not be made until the end of
he derivations so that off-axis solutions to the mutual
orrelation coefficient can be explored. The analysis is
rst performed for 1-D input square apertures and then
or 2-D circular apertures.

. Speckle Size for Square Apertures
he 1-D real-valued pupil function for a hard-edged
quare aperture is

p�x0� = �1 
x0
 	 L/2

0, otherwise� , �9�

here L is the width of the aperture. The full 2-D solution
or the square aperture case involves only a multiplica-
ion of the two orthogonal 1-D solutions. Equation (8) now
ecomes

�I�x, x̃,ABCD1,ABCD2� = � 1

L�−L/2

L/2

exp�j��x0 + �x0
2�	dx0�2

.

�10�

. Lateral Speckle Size
ateral speckle size (speckle width) is defined by the
aximum lateral displacement, x̃=x, that can take place

efore the first minimum of �I is reached. Since only an
utocorrelation of the field must be considered, ABCD1
ABCD2 and �=0. Simplifying Eq. (10) gives

�I�x, x̃� = � 1

L�−L/2

L/2

exp�j�x0�dx0�2

= �2 sin�L�

2 �
L�

�
2

.

�11�

he minima of Eq. (11) are located at the points at which
in�L� /2�=0, i.e., when L� /2=N�, where N is an odd
atural number. The first minimum of the correlation co-
fficient of intensity occurs when N=1, giving

L

2

2�

�B
�x̃ − x� = �. �12�

hus speckle width, 
x, is defined as


x = x̃ − x = �B/L. �13�

quation (13) is the general form for speckle width when
square aperture is at the input plane of the system, and
is dependent on the specific parameters of the optical

ystem.

. Longitudinal Speckle Size
ongitudinal speckle size is defined by the maximum
hange to the optical system that can take place before
he first minimum of �I is reached. The lateral position
emains unchanged for this case; consequently, x̃=x and
I is no longer a function of lateral displacement. In order

o find an analytical solution to Eq. (10), we apply a
hange of variable, t=x �2� /�+� /�2��, giving
0
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�I�ABCD1,ABCD2� = � 1

L
� �

2�
exp�− j��2

4�
��

��
�/�2��−L��/2�

�/�2��+L��/2�

exp� j�t2

2 �dt�2

.

�14�

ntroducing the Fresnel integrals, C�z� and S�z� [13,18],
q. (14) can be written as

� 1

2b
exp�− j��a2

2 ���C�a + b� − C�a − b�

+ jS�a + b� − jS�a − b�	�2

, �15�

here a=� /�2�� and b=L�� /2�. This simplifies to

1


2b
2
��C�a + b� − C�a − b�	2 + �S�a + b� − S�a − b�	2�.

�16�

quation (16) is the general analytical form of
I�ABCD1 ,ABCD2� for longitudinal speckle in a 1-D

quare aperture system. t

r0 sin �, �x=� cos , and �y=� sin , where
E

For the special case of on-axis speckle, x=0⇒a=�=0,
nd Eq. (16) can be written as

C2�b� + S2�b�


b2

, �17�

ince C�−b�=−C�b� and S�−b�=−S�b�. The first minimum
f Eq. (17) occurs at bmin=1.9115. Substituting for b gives
�� /2�=1.9115. Therefore, the first minimum of the mu-

ual correlation coefficient for on-axis longitudinal speckle
ccurs when

A1

B1
−

A2

B2
=

7.31�

L2 . �18�

n-axis speckle length is determined from Eq. (18) by
ubstituting in system-specific values of A1, A2, B1, and
2. The application of Eq. (18) to some well-known optical

ystems is discussed in Section 5.

. Speckle Size for Circular Apertures
n this case the 2-D pupil function is given by

p�r0� = �1, 
r0
 	 D0/2

0, otherwise� , �19�

here D0 is the aperture diameter. The 2-D equivalent of

he mutual correlation coefficient is
�I�x, x̃,y, ỹ,ABCD1,ABCD2� = �� �−�

�

p2�x0,y0�exp�j���xx0 + �yy0� + ��x0
2 + y0

2�	�dx0dy0

� �
−�

�

p2�x0,y0�edx0dy0 �
2

, �20�
here

�x =
2�

�
� x̃

B2
−

x

B1
�, �y =

2�

�
� ỹ

B2
−

y

B1
� .

ransforming to cylindrical coordinates, x0=r0 cos �, y0
r0 = �x0
2 + y0

2, � = ��x
2 + �y

2 =
2�

�
� r̃

B2
−

r

B1
� ,

q. (20) becomes
�I�r, r̃,ABCD1,ABCD2� = ��0

��
0

2�

p2�r0�exp�j��r0�cos � cos  + sin � sin � + �r0
2	�r0d�dr0

���2�

p2�r0�r0d�dr �
2

. �21�
0 0
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mploying trigonometric identities and changing the lim-
ts based on the definition of the pupil function, Eq. (21)
ecomes

��0

D0/2�
0

2�

exp�j�r0 cos�� − �	exp�j�r0
2	r0d�dr0

�
0

D0/2�
0

2�

r0d�dr �
2

.

�22�

erforming the integral in the denominator and normal-
zing the radial coordinate, i.e., rN=2r0 /D0, Eq. (22) be-
omes

� 1

�
�

0

1�
0

2�

exp�j
�D0rN

2
cos�� − ��

�exp�j
�D0

2rN
2

4 �rNd�drN�2

= ��
0

1

J0�qrN�exp�jprN
2 	rNdrN�2

, �23�

here p=�D0
2 /4, p=�D0 /2, and J0�x� is the zero-order

essel function [17]. The integral in Eq. (23) is the
ourier–Bessel or Hankel transform.

. Lateral Speckle Size
ince only an autocorrelation needs to be considered,
BCD1=ABCD2 and p=�=0. Equation (23) for lateral
peckle is written as

�I�r, r̃� = �2�
0

1

J0�qrN�rNdrN�2

= �2J1�q�

q �2

, �24�

hich is the Airy function [17]. The first minimum of this
unction occurs at qmin=3.832, and since B1=B2,

D0�

�B
�r̃ − r� = 3.382. �25�

herefore the speckle width 
r is


r = r̃ − r = 1.22�B/D0. �26�

. Longitudinal Speckle Size
s before, longitudinal speckle size is defined by the
aximum change to the optical system that can take

lace before maximum decorrelation occurs. In this case,
=r and Eq. (23) is in the form of Eq. (20) in [18]. There-
ore

�I�ABCD1,ABCD2� = �2 exp� jp

2 ���

p �
n=0

�

�2n + 1�

��− j�nJn+1/2�p

2�J2n+1�q�

q
�2

.�27�

or the case of on-axis speckle, r=0⇒q=0; furthermore,
ince
lim
q→0

�J2n+1�q�

q � = � 1
2 , n = 0

0, n � 0� . �28�

q. (27) becomes [19]

���

p
J1/2�p

2��
2

= �sinc�p

2��2

, �29�

here sinc�x�=sinc�x� /x. The first minimum of this func-
ion occurs when pmin/2=�. Backsubstituting for p gives
he equation from which the system specific definition of
xial speckle size at the output plane can be extracted,

A1

B1
−

A2

B2
=

8�

D0
2 . �30�

he application of Eq. (30) is discussed in Section 5.

. OFF-AXIS LONGITUDINAL SPECKLE SIZE
he analysis in Section 3 provides two closed-form equa-

ions to estimate longitudinal speckle length. However
hese formulas are valid only for speckle observed on the
rincipal axis. Off-axis speckles are those observed in any
art of the output plane that is noncoincident with the op-
ical axis. Although the difference in size between on- and
ff-axis speckles is small close to the optical axis [8],
peckle length drops off after this central “plateau.”

The analytical solutions for speckle size presented in
ection 3 were derived for the special cases of a=0 (on-
xis speckle with a square aperture) and q=0 (on-axis
peckle with a circular aperture). Without these simplifi-
ations, it is not, to our knowledge, possible to extend the
imple analytical formulation to the off-axis case. It is
owever possible to numerically determine the relation-
hip between a and b (or p and q) at the first minimum of
1�ABCD1 ,ABCD2�. We proceed, following [15], by iden-

ifying numerically a “boundary of correlation” (BOC)
urve on a contour plot of �1�ABCD1 ,ABCD2�. The points
n this curve represent the first minima of
1�ABCD1 ,ABCD2� for all possible values of a and b (or p
nd q). We proceed by fitting analytical functions to these
OC points to provide the user with equations that can be
sed to determine off-axis speckle size for apertured
BCD systems. We also include a “half-maximum” line in

he contour plot to mark where �1�ABCD1 ,ABCD2�=0.5
or the circular aperture case. Twice the distance of this
urve from the origin is sometimes used in the literature
o estimate speckle size [8,14,20]. We note that the half-
aximum definition of speckle always predicts a smaller

ize than the corresponding first-minimum prediction
13]. We have also observed that when using the half-
aximum definition, the off-axis decorrelation character-

stics appear to be consistently underestimated for the
ongitudinal case.

. Square Aperture
or the square aperture case, it is easier to first deter-
ine the BOC of �1�ABCD1 ,ABCD2� parameterized in

erms of � and �, as shown in [15]. This is because the
rst minima of �1�ABCD1 ,ABCD2� are sharper and thus
ore easily located numerically when the function is pa-
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ameterized in terms of these variables. Applying the
appings a→� /�2�� and b→L�� /2� gives the BOC

hown in Fig. 1, where �1�ABCD1 ,ABCD2� is now param-
terized as a function of a and b. A difficulty still remains
n identifying minima in the range 0.34	 
a
	0.4. Follow-
ng detailed numerical examination, we have found that
n this range, no sharply defined first minima exist. This
an be observed as a discontinuity in Fig. 2 in the region
f these a values. The resulting gap in the numerically
enerated data points is fitted with a thin blue line (short
ertical segment near top of figure).

Table 1. Equations Describing the Fits to the Vari
and Mean-Sq

Square
Aperture Equation: b�a�=

Curve 1 1.911
Curve 1(a) 1.907+0.004 exp�43.748a1.693�
Curve 1(b) 1.954 exp�−0.261a2.003�

Curve 2 0.086+3.533 exp�−1.448a0.557�

ig. 1. Contour plot of �I�ABCD1 ,ABCD2� for the square aper-
ure case, where the BOC marks the location of the first minima
arameterized in terms of a and b.

ig. 2. (Color online) Plot of the BOC for the square aperture
ase, showing the range of a values for which each segment of the
OC curve is valid.
In the BOC curve in the positive quadrant of Fig. 1, a
elatively flat segment of the BOC is observed, followed
y a longer curve of negative curvature. Given the sym-
etry of the BOC, the curves corresponding to negative a

r b values can be related to those in the positive quad-
ant by a simple change of sign. In Fig. 2, where the dif-
erent segments of the BOC are identified more clearly, a
light positive inflection in the flat portion of the BOC is
bserved. We therefore give the option of classifying this
egment either as a straight line, “Line 1,” or, if a more
ccurate representation is required, as the combination of
wo shallow curves, “Curve 1(a)” and “Curve 1(b).” The
onger segment of negative curvature will be referred to
s “Curve 2.” We note that Curve 2 has been extended to
rovide values in the region of the discontinuity, i.e.,
here the minima could not be unambigously identified.

n Table 1, the equations descibing each of these curve
ts, the range of a values over which each fit is valid, and
he mean square error between the data and the fits [21]
re given.
In order to solve the equations in Table 1, it is neces-

ary to write them as a function of a single variable. From
ur definitions, a and b written in terms of the ABCD pa-
ameters are

a =
x�2/��B1B2��B1 − B2�

�B2A1 − A2B1

, �31a�

b = L� 1

2�
�A1

B1
−

A2

B2
� . �31b�

y dividing Eq. (31b) by Eq. (31a) it is possible to rewrite
in terms of a. The equations in Table 1 can then be ex-

ressed in terms of a alone and solved. While a different a
alue will result from each equation, the acceptable a
alue is the one that lies within the range specified for
hat equation. By substituting the resulting value of a
nto Eq. (31a), the off-axis speckle size can be calculated.
pecial cases of a and b for two simple optical systems are
rovided in Table 2. In the examples that are provided, �z
efers to an ouput plane normal displacement and will
rovide a result equivalent to the longitudinal speckle
ize, 
z, when the a or b values that result from these
quations lie on the BOC. In order to simplify the expres-
ions in Table 2, the assumption that z��z was made.
hus for the Fresnel case shown in Fig. 3(a), z�z+�z�
z2, and for the single-lens case in Fig. 3(b),

egments of the BOC, with the Associated Ranges
Error Values

Valid Ranges of a
Mean Square

Error [21]

0	a	0.337 2.814�10−4

0	a	0.163 5.173�10−9

0.163	a	0.337 7.073�10−10

0.337	a	� 1.409�10−4
ous S
uare-
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z2� f�z2+�z�. In Section 5, the procedure used to calcu-
ate off-axis speckle size for these systems is applied.

. Circular Aperture
he contour plot of �1�ABCD1 ,ABCD2�, parameterized as
function of p and q, is shown in Fig. 4. Using numerical
tting techniques, equations for the three segments of the
OC curve and the half-maximum curve highlighted in
ig. 5 were determined. The equations for the three seg-
ents provide the relationship between p and q at the

rst minima of �1�ABCD1 ,ABCD2� for the ranges and
ith the accuracies shown. A difficulty arises in identify-

ng minima in the range 5.1	p	6.55. Following detailed
umerical examination, we have found that in this range
o sharply defined first minima exist. This introduces an
mbiguity regarding the location of the BOC that can be
bserved graphically by noting the dashed lines in Fig. 5
r the minima that lie parallel to the contours of
1�ABCD1 ,ABCD2� in Fig. 4. To overcome this ambiguity,
e define a straight line to approximate the BOC in this

egion, going from the minimum q value of Curve 1 to the
inimum p value of Curve 2. We refer to this line as the

ffective BOC line. Table 3 lists the equation describing
ach curve, the range of p values, and the accuracy of
ach fit. For completeness, curve fits to the half-maximum
ontour line are also given. From our definitions, the gen-
ral expressions for p and q in terms of the ABCD param-
ters are

p =
D0

2�

4�
�A2

B2
−

A1

B1
� , �32a�

ptical Systems That Are Laterally Stationarya

b /a 
z

z
z2

−L
2x

2bmin
2 �� z

L �2

fL
z2�−z1z2	

−
Lf

2x�f−z1� 2bmin
2 �

�f�z1+z2�−z1z2	2

fL

ig. 5. (Color online) BOC for the circular aperture case, show-
ng the range of p values for which each segment of the BOC is
alid.
Table 2. a and b Values for Some Commonly Used O

Square
Aperture a b

FST system
−x�2�z

�z2 L� �

2�

Single lens
system −�2�z

�

x�f1−z1�
�f�z1+z2�−z1z2	

��z
2� �f�z1+

ai.e. x̃=x, where 
 is the corresponding off-axis longitudinal speckle size.
ig. 3. Schematic representation of (a) a free space optical sys-
ig. 4. (Color online) Contour plot of �I�ABCD1 ,ABCD2� pa-
ameterized in terms of p and q, showing the BOC for the circu-
ar aperture case. Dashes in an oval mark the half-maximum
ontour.
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q =
D0�r

�
� 1

B2
−

1

B1
� . �32b�

o extract speckle size information using the functions in
able 1, q is expressed in terms of p, and the equations in
able 3 are solved to find p. The correct p value must lie
ithin the range specified for that equation. By substitut-

ng this value of p into Eq. (32a), off-axis speckle size can
e found. The p and q values for some well-known optical
ystems are provided in Table 4. In Section 5, our proce-
ure is applied to analyze these systems assuming input
ircular apertures.

. EXAMPLES OF SOME WELL-KNOWN
PTICAL SYSTEMS

wo specific optical configurations are examined: a free
pace configuration, Fig. 3(a) and a single-lens system,
ig. 3(b). We determine the lateral and on-axis longitudi-
al speckle size for both cases and examine the change in

ongitudinal speckle size for a given offset from the optical
xis. We note that although only the effect of changing the
osition of the output plane is examined, the analysis pre-
ented is sufficiently general so as to allow one to deter-
ine the correlation properties of a speckle system in
hich any paraxial system component value, i.e., ABCD
arameter, is changed.

. Free-Space Propagation (FST)
rom Eq. (2), the ABCD parameters that describe the
resnel-transforming systems shown in Fig. 3(a) before
isplacement of the output plane are ABCD1=Eq. (2a),
nd following displacement,

Table 4. p and q Values for Some Commonly U

Circular
Aperture p

FST system D0
2��z
4� � 1

z2 � D0�

�

Single lens
system

D0
2f2��z

4��f�z1+z2�−z1z2	2

D0f�r

��f�z1+
ai.e., r̃=r, where 
z is the corresponding off-axis longitudinal speckle size.

Table 3. Equations Describing the Fits to the Vari
and Mean-Square-Error Valu

Circular
Aperture Equation: q�p�

Curve 1
�1.819�10−5�p6+ �1.327�10−3

0.078p2+3.836
Effective
BOC line

−0.813p+6.6558

Curve 2
7.77�1−� p

6.283�
2�0.3

Half-Maximum
1.6163�1−� p

2.79�
2.187�0.
�A2 B2

C2 D2
� = �1 z + �z

0 1 � . �33�

. Square Aperture Case (FST)
ubstituting the B values in Eq. (33) into Eq. (13) gives
he following expression for the lateral speckle size
speckle width):


x = �z/L. �34�

he corresponding expression describing on-axis longitu-
inal speckle size can be found by substituting the above
BCD values into Eq. (18), giving

�z

z�z + �z�
=

7.31�

L2 . �35�

ssuming that z��z, the on-axis longitudinal speckle
ize 
z is given by


z = �z = 7.31��z/L�2. �36�

oth Eqs. (34) and (36) agree with the results in the lit-
rature [13]. Using the example of an optical system with
=20 cm, L=10 cm, and �=633 nm, the speckle width at
he output of the system is 
x=1.266 �m, while the on-
xis longitudinal speckle size is 
z=18.5 �m.
We now examine the change in longitudinal speckle

ize for speckles observed off-axis. We use the same sys-
em component values as above but now consider x
−2 cm in the output plane. For the FST in Table 2, b
−La /2x, and the equations in Table 1 can now be writ-

en as a function of a only and solved numerically. The a
alue resulting from Curve 2 is 0.541, which is within the

ptical Systems That Are Laterally Stationarya

q /p 
z

� 4r
D0

4pmin�

� � z
D0 �2

�z

z2	2

4r�z1− f�
D0f

4pmin�

�
� f�z1+z2�−z1z2

D0f �2

egments of the BOC, with the Associated Ranges
the Circular Aperture Case

Valid Ranges of p
Mean Square

Error [21]

0	p	4.563 2.619�10−5

4.563	p	6.271 n/a

6.271	p	6.283 3.633�10−4

0	p	2.79 8.543�10−6
sed O

q

r�z � 1
z2

�z1− f�
z2�−z1
ous S
es for

�p4−

5
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pecified range, i.e., 0.390	a	�. Substituting into a
−x�2�z /�z2 from Table 2 allows us to solve for �z at the
oint of decorrelation. In this case the off-axis lonigtudi-
al speckle size is 
z=9.263 �m, which is approximately
alf that of the predicted on-axis speckle size given above.
n Fig. 6 we plot 
z as a function of displacement from the
ptical axis over the range 0	x	16 cm for the square ap-
rture case. The gap in the data points arises due to the
iscontinuity discussed in Subsection 4.A.

. Circular Aperture Case (FST)
ubstituting the ABCD values from Eq. (33) into Eq. (26),
he speckle width is


r = 1.22�z/D0. �37�

he corresponding expression governing the on-axis lon-
itudinal speckle size, Eq. (30), is

�z

z�z + �z�
=

8�

D0
2 , �38�

nd therefore 
z is given by


z = �z = 8��z/D0�2, �39�

n agreement with [13]. For an optical system with z
20 cm, D0=10 cm, and �=633 nm, the speckle width at

he output of the system is 
r=1.545 �m, while the on-
xis longitudinal speckle size is 
z=20.256 �m. The
quivalent on-axis longitudinal speckle size using the
alf-maximum definition is 
z=16.96 �m.
We now examine the change in longitudinal speckle

ize for speckles observed off-axis at r=+2 cm in the out-
ut plane. For the FST case in Table 4, q=4rp /D0. Using
his expression, the equations in Table 3 can be written as
function of p only and solved numerically. The p value

esulting from Curve 1 is 3.801, which is within the speci-
ed range 0	p	4.563. Substituting this into p
��D0

2��z� /4�	�1/z2� from Table 2, the value of �z at the
oint of decorrelation can be found. At r=2 cm from the
ptical axis, off-axis longitudinal speckle size is 
z
12.254 �m. In Fig. 7 we plot 
z as a function of displace-
ent from the optical axis over the range 0	r	16 cm for

his circular aperture case.

ig. 6. (Color online) Longitudinal speckle size 
z as a function
f displacement x from the optical axis for a square aperture FST
nd a single-lens system.
. Single-Lens System
sing the matrix concatenation method described in Sub-

ection 2.A, the ABCD parameters that describe the
ingle-lens systems in Fig. 3(b) before and after displace-
ent of the output plane are

ABCD1 = �1 − z2/f z2 + z1�1 − z2/f�

− 1/f 1 − z1/f � , �40a�

nd

ABCD2 = �1 −
z2 + �z

f
z2 + �z + z1�1 −

z2 + �z

f �
− 1/f 1 − z1/f

� .

�40b�

n what follows, we assume z1z2�z1�z2+�z� and fz2
f�z2+�z�.

. Square Aperture Case
n this case the lateral speckle size is given by


x =
�

L�z2 + z1�1 −
z2

f �� �41�

nd on-axis longitudinal speckle size by


z = �z = 7.31�� f�z1 + z2� − z1z2

fL �2

. �42�

he procedure for determining off-axis speckle size fol-
ows that used for the Fresnel system. Figure 6 plots lon-
itudinal speckle size as a function of off-axis displace-
ent x for the square aperture case when z1=8 cm, z2
12 cm, L=10 cm, and �=633 nm.

. Circular Aperture Case
or this case the lateral speckle size is given by


r =
1.22�

D0
�z2 + z1�1 −

z2

f �� �43�

nd the on-axis longitudinal speckle size by

ig. 7. (Color online) Longitudinal speckle size 
z as a function
f displacement r from the optical axis for a circular aperture
ST and a single lens optical system.



I
t
c
=

6
T
o
a
c
l
a
a
r
m
s
r
B
s
t
a
l
w

t
s
t
s
i
r
p

t
c
a
b
c
e
v
4
o
s
fi
t

A
W
S
n
s
R
o
l

l
t
g
2

R

1

1

1

1

1

1

1

1

1

1

2

2

1864 J. Opt. Soc. Am. A/Vol. 26, No. 8 /August 2009 Ward et al.

z = �z = 8�� f�z1 + z2� − z1z2

D0f �2

. �44�

n Fig. 7, the longitudinal speckle size is plotted as a func-
ion of off-axis displacement r for the circular aperture
ase when z1=8 cm, z2=12 cm, D0=10 cm, and �
633 nm.

. CONCLUSION
he correlation properties of speckle fields at the output
f paraxial optical systems with hard square and circular
pertures at the input are examined using the mutual
orrelation coefficient of intensity. Formulating this corre-
ation method using the linear canonical transform, (LCT)
llows us to derive general analytical formulas for lateral
nd on-axis longitudinal speckle size. A “boundary of cor-
elation” (BOC) curve, defining the first minimum of the
utual correlation coefficient for all cases of longitudinal

peckle was generated using a numerical search algo-
ithm. Applying the resulting analytical fits to the various
OC curves, off-axis speckle size can be determined for
uch systems. Analytical fits to the half-maximum con-
our are also provided for the circular aperture case. The
pproach presented provides a general method for calcu-
ating speckle decorrelation and thus size in a practical
ay for a large class of paraxial optical systems.
The results of this paper are of particular significance

o any application in which control over speckle size is de-
irable. The sensitivity and dynamic range of speckle me-
rology systems, for example, is highly influenced by
peckle size. Also, with recent developments in nonimag-
ng speckle photography configurations [3–5], speckle cor-
elation characteristics in generalized optical systems are
articularly topical.
Finally, we note that in the derivations presented in

his paper, fully developed speckle is assumed, and the
orrelation extent of the field at the input plane is defined
s sufficiently small that it can be adequately represented
y a delta function [8]. It is, however, possible that these
onditions are only approximately satisfied under certain
xperimental conditions. In such instances a more in-
olved examination is required; see, for example, Section
.5 [8]. Experimental verification remains necessary in
rder to fully assess the validity of the techniques pre-
ented. Such a study should indicate the suitability of the
rst minimum of the correlation coefficient of intensity as
he most appropriate method of defining speckle size.
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