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Three-dimensional stability of slopes and excavations 

R. L. MICHALOWSKI* and A. DRESCHER t 

Three-dimensional (3D) limit analysis of stability of 
slopes is presented. Such analyses are not common, 
because of the difficulties in constructing three-dimen
sional mechanisms of failure in frictional soils. A class of 
admissible rotational mechanisms is considered in this 
paper. The failure surface has the shape of a curvilinear 
cone ('horn'), with upper and lower contours defined by 
log-spirals; all radial cross-sections of the surface are 
circular. In the special case of cohesive soils (undrained 
behaviour), the shape of the failure surface reduces to a 
torus. An alternative failure surface is generated when 
the axis of rotation intersects the circle that generates the 
surface. The 3D mechanism is further modified with a 
plane-strain central insert to ensure the transition to a 
plane-strain mechanism if no restraint is placed on the 
slope width. Also, the spherical failure surface considered 
in the literature is re-examined. The critical height of 
slopes with finite width is determined, and the results are 
presented in the form of graphs and tables for a practical 
range of parameters. A separate set of results is given for 
the critical depth of excavations, where the extent of the 
failure mechanism is defined by the geometry of the 
earthworks. An example illustrates the practical use of 
the results. 

KEYWORDS: excavations; failnre; landslides; limit state 
design/analysis; plasticity; slopes 

INTRODUCTION 
Analyses of slope stability typically involve plane-strain 
failure mechanisms for reasons of simplicity, and because 
such failure modes yield conservative estimates of the slope 
safety when compared with three-dimensional failure pat
terns. Such analyses are justified, particularly when the 
hydraulic conditions and the soil stratigraphy affecting fail
ure are not well defined. However, when the dimensions of a 
soil slope are clearly limited by neighbouring rock forma
tions or existing structures, a three-dimensional analysis of 
safety may be more appropriate. This is particularly true in 
the case of earth works, where the geometry of excavations 
is well defined, and so are the limits on possible failure 
mechanisms. Seeking a more accurate prediction of safety in 
three-dimensional cases could lead to significant savings in 
the construction of slopes, and to more mechanics-motivated 
slope design. Also, two-dimensional forensic analyses 
('back-calculations') of three-dimensional failures lead to 
erroneous estimates of the actual soil strength parameters, 
and the development of a realistic three-dimensional analysis 
would help to remedy this inaccuracy. 

Manuscript received 18 November 2008; revised manuscript 

accepted 26 March 2009. 
Discussion on this paper closes on 1 May 2010, for further details 
see p. ii. 
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Cette communication presente l'analyse Iimite tridimen
sionnelle de Ia stabilite des pentes. Ces analyses ne sont 
pas frequentes, en raison des difficultes que presente la 
construction de mecanismes tridimensionnels de rupture 
des sols de frottement. Dans la presente communication, 
on se penche sur une classe de mecanismes rotatifs 
admissibles. La surface de rupture a la forme d'un cone 
curviligne (« corne »), dont les contours superieurs et 
inferieurs sont definis par des spirales logarithmiques. 
Toutes les coupes radiales de la surface sont circulaires. 
Dans le cas particulier de sols cohesifs ( comportement 
non draine), la forme de la surface de rupture se reduit 
a un tore. Une surface de rupture alternative est produite 
lors de l'intersection de l'axe de rotation avec le cercle 
produisant la surface. Le mecanisme tridimensionnel est 
egalement modifie avec un insert central a deformation 
plane, afin d'assurer la transition a un mecanisme de 
deformation plane si aucune restriction n'est imposee sur 
la largeur de la pente. En outre, on procede egalement a 
un nouvel examen de la surface de rupture spherique 
decrite dans les differents ouvrages. On determine la 
hauteur critique des pentes a largeur finie, en presentant 
les resultats sous forme de graphes et de tableaux pour 
une gamme pratique de parametres. Un ensemble distinct 
de resultats est fourni pour la profondeur critique des 
excavations, lorsque l'etendue du mecanisme de rupture 
est definie par la geometrie des travaux de terrassement. 
Un exemple mustre l'application pratique des resultats. 

The stability of slopes has been addressed by many, and an 
extensive review of the subject with an emphasis on planar 
failures can be found in Duncan (1996). Three-dimensional 
analyses of slopes are less common, and can be grouped into 
three categories: the extension of traditional slice methods; 
numerical approaches, such as the finite element method or 
the discrete element method; and limit analysis (the plasticity 
approach). The reader will find a review of the first two 
categories in a recent article by Griffiths & Marquez (2007). 
The application of limit analysis to earth slopes started with a 
paper by Drucker & Prager (1952), who applied the kine
matic approach of limit analysis to the stability of slopes 
undergoing plane-strain failure. Both translational and rota
tional failure mechanisms were considered in that paper. For 
a frictional/cohesive material, a simple three-dimensional 
one-block collapse was considered by Drescher (1983), a 
more complex 3D multi-block mechanism of slope failure 
induced by a surface load was described by Michalowski 
(1989), and a rotational mechanism was considered by de 
Buban & Garnier (1998). Three-dimensional rotational failure 
in purely cohesive soils (undrained behaviour) was considered 
by Baligh & Azzouz (1975), and by Gens et al. (1988). 

To avoid confusion we define the term three-dimensional 

(3D) as pertaining to failure mechanisms with three-dimen
sional features, such as spherical or other 'double-curve' 
surfaces. The term two-dimensional (2D) describes analyses 
with plane-strain deformation and a geometry of the 
mechanism that does not vary in the direction perpendicular 
to the plane of deformation. The term 'two-dimensional' 
does not mean the absence of the third physical dimension, 
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and the kinematic discontinuities are represented by surfaces 

in both types of analysis (rather than by surfaces and lines). 

This paper is focused on the three-dimensional, rotational 

failure of slopes in frictional/cohesive soils, and the appli

cation of the kinematic method of analysis. The approach 

is analytic, in that the geometry of an admissible mechan

ism is described analytically, and the most critical mechan

ism is found from an analytical or numerical optimisation 

scheme. The consideration of rotational mechanisms is 

motivated by the finding of Chen (1975), who argued 

convincingly that a two-dimensional rotational mechanism 

in slopes is the most critical failure pattern among the two

dimensional mechanisms. However, three-dimensional ana

lyses are significantly more involved than two-dimensional 

ones, for the class of admissible rotational mechanisms now 

is much broader, and, at the same time, it is more difficult 

to construct and analyse the admissible mechanisms, parti

cularly in the presence of soil friction. 

The application of the kinematic method of limit analysis 

to stability of slopes will be discussed first. Next, a three

dimensional rotational mechanism in slopes with frictional/ 

cohesive soils will be discussed, followed by an analysis of 

3D slope failures in cohesive soils with incompressible 

behaviour (undrained conditions). A special case of a three

dimensional rotational mechanism with a spherical cap fail

ure surface will follow. This case has been considered 

previously (Hungr et al., 1989; Silvestri 2006; Griffiths & 

Marquez, 2007), and the analysis presented aims at re

examining the findings. Results for slopes with their width 

restricted by constraints, such as walls of rock formation, 

will be presented, and the results for excavations will be 

given in the penultimate section. The charts in the paper 

may serve as practical tools for slope stability assessment. 

The paper will be concluded with final remarks. 

KINEMATIC METHOD OF LIMIT ANALYSIS IN SLOPE 

STABILITY 

Limit analysis aims at evaluating bounds on the limit load 

inducing or resisting failure in structures built of perfectly 

plastic materials. In application to slopes, the limit load can 

be identified with forces acting on top of the slope, or the 

weight of the soil. Alternatively, a bound on the geometry of 

the slope (e.g. height) can be sought if the unit weight of 

the soil is given. An upper bound on the load or height can 

be obtained from the kinematic method, the essential ele

ment of which is a kinematically admissible velocity field 

defining the possible mechanism of failure. The term admis

sible implies that the strain rates resulting from the velocity 

field must satisfy the flow rule that is associated with the 

yield condition (strength criterion) of the material, and the 

velocities satisfy the boundary conditions. 

The most common yield condition used for soils is the 

Mohr-Coulomb function, which contains two material con

stants: the internal friction angle <jJ and the cohesion inter

cept c. For purely frictional material c = 0, and for purely 

cohesive soil <jJ = 0, with the cohesion identified with un

drained strength (c =cu). This yield condition is used here 

to describe the strength of overconsolidated soils. Reduced 

tensile strength can be accounted for by postulating a 

tension cut-off. Incorporating this modification, however, 

increases the complexity of admissible kinematic fields, and 

is not considered in this paper. Because the flow rule 

associated with the Mohr-Coulomb yield condition (for soils 

with <jJ > 0) predicts larger dilation than that measured in 

experiments, the non-associated flow rule is often postulated. 

Although no rigorous bounds on limit loads can be found 

for non-associated materials, an upper bound for an asso

ciated material is also an upper bound for a non-associated 

one with the same yield condition (Radenkovic, 1962), and 

this warrants the construction of admissible kinematic solu

tions satisfying the normality flow rule. 

In the case of a three-dimensional and continuous defor

mation field, the flow rule requires the following relationship 

among the principal strain rates 

(1) 

The construction of velocity fields satisfying equation (1) is 

a difficult task, and no solutions other than axisymmetric 

have been reported in the literature (Drescher, 1986). The 

task simplifies greatly if the material is purely cohesive ( <jJ 

= 0), the problem is of the plane strain-type (E:2 = 0), or 

the failure mechanism is of the rigid-block motion type. In 

the last case, strain rates are zero within the rigid blocks, 

and equation (1) is satisfied within blocks identically. The 

blocks are separated by velocity discontinuity surfaces, 

which can be interpreted as limits of thin material layers 

undergoing shear and possibly dilation. When equation (1) is 

applied to these thin layers, it leads to the condition where 

the velocity jump vectors must be inclined at angle <jJ to the 

discontinuities: that is 

[vn] = [vt] tan <jJ (2) 

where [Un] and [vi] are the normal and tangential compo

nents of the velocity jump vector [v;] respectively. This 

requirement is equally mandatory in two-dimensional and 

three-dimensional mechanisms. Numerous two-dimensional 

translational and rotational mechanisms have been consid

ered in the literature for <jJ ~ 0, when the velocity disconti

nuities are straight lines (planes) or logarithmic spirals 

(circles for <jJ = 0). Baligh & Azzouz (1975) and Gens et 
al. (1988) considered three-dimensional rotational mechan

isms for purely cohesive soils (¢ = 0), for which any 

surface of revolution is an admissible velocity discontinuity, 

and the velocity jump vectors are tangential. These surfaces 

are generated by rotating a straight line or a curve about an 

axis of rotation parallel to the slope crest: examples are a 

cylinder, a cone, and a paraboloid. Three-dimensional trans

lational mechanisms with planar surfaces for <jJ > 0 can be 

found in Drescher (1983) and Michalowski (1989). Solutions 

with three-dimensional blocks undergoing rotation for soils 

with <jJ > 0 are rare (de Buhan & Gamier, 1998); the 

discontinuity surfaces in such mechanisms are neither planar 

nor surfaces of revolution. A class of admissible rotational 

mechanisms is discussed in this paper. 

For a kinematically admissible velocity field an upper 

bound on the limit load (or on the slope height) is deter

mined by equating the rate of work of external forces W to 

the rate of work D, dissipated internally in the failure 

mechanism. This is often referred to as the energy rate 

balance. With no forces on the slope surface, the rate of 

external work is provided only by the weight of the soil, and 

it is calculated as an integral of the dot product of the unit 

weight vector y; and the velocity vector V;. In rotational 

mechanisms, the work rate of the weight (Wy) can be 

calculated as the dot product of the total weight of a block 

W; and the velocity of the block centroid v~ 

(3) 

with V being the volume of the rotating block. In general, 

the rate of dissipated work D is the sum of dissipation 

within volume V, Dv, and over the velocity discontinuity 

surfaces Si, D1• In terms of the principal strain rates, the 

dissipation within the deforming volume can be expressed as 
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(4) 

whereas for velocity discontinuity surfaces St the dissipation 

rate can be written as 

= J ccos¢[v]dSt 
s, 

(5) 

In the case of planar discontinuities (translational mechan

isms) it is relatively simple to calculate Dt. It becomes more 

involved if the boundaries are complex curvilinear surfaces, 

typical of rotational mechanisms. For materials with ¢ > 0 

an advantageous alternative to the integration given in 

equations (4) and (5) is use of the methodology suggested by 

Michalowski (2001). This methodology is based on the 

observation that, using the divergence theorem, the sum of 

volumetric strain rates in the failure mechanism can be 

expressed as 

= -Lv;n;dS (6) 

= -J V;n;dSt -J V;n;dSr 
S, S, 

where the surface S bounding the mechanism is divided into 

kinematic discontinuities St and the remaining part Sr; n; is 

the outward unit vector normal to surface S, and V; is the 

corresponding velocity (the negative sign derives from com

pressive strain rates taken as positive). Making use of 

equations (1) and (6), equation (4) can be written as 

Dv = ccot¢fsv;n;dS 

= ccot¢J V;n;dSt + ccot¢J V;n;dSr 
s, S, 

(7) 

At the velocity discontinuity surface St bounding the mech

anism V; = [v;], and the dot product V;n; = -[Vt] tan¢. 

Thus the first term on the right-hand side in equation (7) is 

opposite in sign, and equal in magnitude, to the dissipation 

given in equation (5). This implies that the total dissipation 

in the mechanism D = Dv + Dt is equal to the second term 

on the right-hand side in equation (7). In the case of a slope, 

surface Sr consists of two planar surfaces (part of the top 

surface of the slope, and the face of the slope). This 

procedure is equally valid if the mechanism contains kine

matic discontinuities within volume V. 

Note that equation (7) cannot be used when ¢ = 0, and 

the dissipation must be determined from equations (4) 

and (5), for continuous deformation and for discontinuities 

respectively. 

In evaluating an upper bound to the height H of a slope at 

failure (critical height), it is convenient to introduce a 

dimensionless group yH!c, and seek its minimum as a func

tion of slope geometry and friction angle ¢. The dimension

less group yH!c is sometimes referred to as the stability 

factor, and it is a reciprocal of the stability number c!yH, 

used earlier by Taylor ( 193 7). Alternatively, for a slope of 

given geometry, it is possible to evaluate the safety factor, 

defined as 

c tan¢ 
F=-=-

Cct tan¢ct 
(8) 

where Cct and <Pct are ('developed') soil strength parameters 

required for the slope to become unstable. In seeking the 

factor of safety, the energy balance yields yHlcct as a func

tion of <fact, and F is determined by using equation (8). 

Finding F is explicit when ¢ = 0, and implicit (iterative) 

otherwise. 

THREE-DIMENSIONAL ROTATIONAL FAILURE 

MECHANISMS IN SLOPES 

A class of kinematically admissible three-dimensional rota

tional mechanisms for slopes is discussed in this section. Both 

frictional/cohesive and purely cohesive soils are considered. 

Frictional/cohesive soil (¢ > 0, c > 0) 

As implied in equations (1) and (2), the plastic yielding of 

soils with ¢ > 0 is accompanied by dilation, and this causes 

difficulties in constructing kinematically admissible fields. 

More specifically, in a rigid rotation mechanism (no volnme 

changes within the rotating block), equation (2) must be 

satisfied across the velocity discontinuity surface bounding 

the rotating volume. Condition (2) means that locally the 

surface must be tangent to a cone with apex angle 2¢ and 

its axis coinciding with the linear velocity v. This condition, 

however, does not provide a direct indication as to the 

overall shape of the surface. 

Among the various admissible mechanisms a particular 

class is suggested now in which all radial cross-sections are 

circular. An example of such a mechanism is illustrated in 

Fig. l(a). The linear velocity in the mechanism is a function 

of radius p and angle e, its direction is perpendicular to 

radius p, and its magnitude is given by 

v = wp (9) 

where OJ is the angular velocity about the axis passing 

through point 0. The shape of this mechanism resembles 

that for continuous and translational velocity fields consid

ered by Michalowski (2001) for evaluating limit load on 

rectangular footings. 

This mechanism has the shape of a curvilinear cone (a 

'horn') with apex angle 2¢. This surface is smooth (with the 

exception of the apex), and has one symmetry plane. Only a 

portion of this surface intersects the slope. The trace of the 

mechanism (discontinuity surface) on the symmetry plane is 

described by two log-spirals, AC 

r = roe(IJ-1Jo)tan¢ (10) 

and A'C' 

r' = r6e-(IJ-1Jo)tan¢ (11) 

with r0 and 80 as shown in Fig. l(a). With the trace of the 

surface intersecting the toe point C, angles e0 and eh, and 

ratio rb/ r0 uniquely determine the location of the 'horn' 

surface in the space. 

The rate of work of the external forces (weight) and the 

dissipation rate were calculated from equation (3) and the 

second term of equation (7) respectively. The best (lowest) 

estimate of ratio yH!c was obtained by varying the ratio 

rb/ ro and angles eo and eh. 

The shape of this mechanism can be regarded as being 

generated by rotating a circle of increasing diameter (shaded 

area in Fig. l(a)) about an axis passing through point 0 

outside the circle. If the circle is rotated about an axis 
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Fig. 1. Three-dimensional rotational mechanism: (a) a 'horn

shape' snrface; (b) alternative mechanism 

passing through the circle, a different mechanism is gener
ated (Fig. l(b)). This time, however, the upper contour A'C' 
of the generated block is defined by the log-spiral 

(12) 

In the search for the mm1mum of yH!c, the mmnmsation 
process for both mechanisms in Fig. I can be carried out 
with the same set of variable parameters: eo, eh and r6/ ro. 
The ratio r 0/ r0 assumes positive values for the mechanism 
in Fig. l(a), it reaches zero when log-spiral A'C' reduces to 
a point at 0, and it assumes negative values for the mechan
ism in Fig. 1 (b ). 

Previous experience (e.g. Duncan, 1996) has shown that 
plane-strain mechanisms of failure are more critical than 
three-dimensional ones. Calculations for the mechanisms in 
Fig. 1 have shown, however, that the minimum ratio yH/c is 
found at some finite width of the mechanism, even if no 
constraints are placed on the width of the slope. To allow 
transition to plane-strain mechanisms, the three-dimensional 
failure patterns (Fig. 2(a)) were modified with a 'plane 
insert', by splitting and separating laterally the halves of the 
3D surface, as illustrated in Fig. 2(b). This guarantees that 
in the limit, when the width of the insert b ---+ oo, the plane 
mechanism results. This modification introduces one more 
parameter in the minimisation of yH!c, namely the width of 
the insert, b, with B (Fig. 2(b)) being a given constraint on 
the width of the mechanism. The plane insert has geometry 
based on the log-spiral suggested first by Drucker & Prager 
(1952), and the combined 3D sections and the plane insert 
form a smooth composite surface. Optimisation of the com
bined mechanism has shown that an increase in the con
straint on the overall width B of the mechanism not only 
produces a change in the width of the inseri, b, but also 
affects the geometry of the three-dimensional components of 
the failure surface. Such an insert in three-dimensional fail
ure patterns in frictional soils under footings was considered 
by Michalowski (2001), to provide a transition from square 
to strip footings. More details on the equations used in 
calculations are given in the Appendix. 

Cohesive soil (undrained shear strength c > 0, ¢> = 0) 

Soils are described as purely cohesive when their shear 
strength is independent of the level of stress. This is typical 

(a) 

(b) 

Fig. 2. (a) Schematic diagram of the 3D mechanism; 
(b) mechanism with plane insert 
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of clays subjected to undrained conditions. Constructing 

rotational mechanisms for such soils is relatively simple, as 
their deformation occurs without volume change (incompres

sibility). Consequently, any surface of revolution provides an 

admissible surface of sliding. An example of such a surface 
is illustrated in Fig. 3(a). The rotating block has the shape 

of a portion of a torus, and it is a special case of the first 
mechanism considered in the previous section. Fig. 3(b) 

shows the case where the axis of rotation passes through the 

circle generating the surface. These mechanisms can be 

modified with cylindrical inserts, to ensure transition to a 
plane mechanism with an increase in the width of the insert. 

The mechanisms in Fig. 3 are particular examples of the 
mechanisms considered earlier by Baligh & Azzouz (1975). 

Baligh & Azzouz considered a cylindrical mechanism in 

'cohesive slopes', with a variety of 'ends' to form an overall 
three-dimensional mechanism. Similar failure patterns were 

also considered by Gens et al. (1988). 

The procedure for computation of the critical ratio yH!c is 

similar to that for ¢ > 0, with the exception that the rate of 
dissipation must now be evaluated from equation (5) rather 

than equation (7). The details are presented in the Appendix. 

Spherical cap failure mechanism 

In this section a kinematically admissible rotational me

chanism in cohesive soils (undrained behaviour) is consid

ered, with a spherical failure surface confined to the sloping 

y 

(a) 

A' 

A 

H 

c 

(b) 

Fig. 3. Rotational failure mechanisms for soil under undrained 
conditions (incompressible): (a) torus-type failure surface; 
(b) alternative mechanism 

portion of a slope. This is an example that is often consid

ered as a benchmark solution (e.g. Hungr et al., 1989; 
Silvestri, 2006; Griffiths & Marquez, 2007), and this is a 

special case of mechanisms considered earlier by Baligh & 

Azzouz (1975). The problem is sketched in Fig. 4(a), where 
BAE is the principal cross-section through a spherical cap, 

and the soil inside the cap rotates about axis z, perpendicular 

to the plane of Fig. 4(a). The coordinate system used in the 

calculations is illustrated in Fig. 4(b ). 
As in equation (3), the work rate Wy was obtained as the 

dot product of the soil weight concentrated at its volume 
centroid G and the velocity vector at G, yielding 

(13) 

where w is the rate of rotation about axis z, y is the unit 

weight, fJ is the inclination angle of the slope, and o is 
shown in Fig. 4(a). The rate of work dissipation in the 

mechanism was calculated from equation (5) as an integral 
of the product of the velocity of points on the cap's surface 

/x' 

---.... 

'',._><~'---~ 

(3 

(a) 

Y' 

A 

'x 

z 
(b) 

(c) 

Fig. 4. Spherical cap failure surface: (a) cross-section of 
mechanism; (b) coordinate system; (c) limit on failure depth 
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(v) and cohesion (c), taken over the entire cap surface. The 

velocity v is a function of spherical coordinates e and a 
(Fig. 4(b)) 

v = wRV 1 - sin2 a cos2 e 

The infinitesimal area element dS is 

dS = R2 cos e da de 

and the work dissipation rate becomes 

J
n/2Jn/2 

D = 4wcR3 

6 0 

cos ev 1 - sin2 a cos2 e da de 

(14) 

(15) 

(16) 

Now, comparing equations (13) and (16), an upper-bound 

estimate of the critical value of yR!c is given by 

R 16 J"/2Jn/2 L = . f3 
4 0 

cos e J 1 - sin2 a cos2 e da de 
c n:sm cos 0 o 

(17) 

and the minimum of yR!c is obtained by varying angle o. 
For a given y and c, equation (17) allows determination of 

the critical value of the radius of the sphere, Rcr, for which 

the slope becomes unstable. Alternatively, a safety factor can 

be calculated for a slope with given clyR, 

C 16 Jn/2Jn/2 
F= R . f3 

40 
coseV1-sin

2
acos2edade 

y n:sm cos 0 0 

(18) 

The benchmark solution cited in the literature involves a 1 :2 

slope (fJ = 26·56°), clyR = 0·1, and one particular angle 

o = 30° (Fig. 4(c)). Many attribute the corresponding solu

tion of F = 1-402 to Baligh & Azzouz (1975) (e.g. Hungr et 

al., 1989; Silvestri, 2006; Griffiths & Marquez, 2007), 

although the specific reference cited does not contain this 

solution. The limit analysis solution in equation (18), with 

clyR = O· l and o = 30°, confirms the correctness of the 

referenced safety factor F = 1-402 for the selected geometric 

parameters. A value of F = 1-422 was obtained by Hungr et 

al. (1989) using the limit equilibrium technique, and 

F = l · 39 was obtained by Griffiths & Marquez (2007) using 

a finite element code. 

Silvestri (2006) argued that the solution attributed to 

Baligh & Azzouz (1975) is incorrect, and he presented a 

different solution (F = l · 3 77). However, Silvestri used a 

rather unusual coordinate system in his integration scheme, 

and his solution is questionable because of not recognising 

that the integration limit on e is a function of 'l/J in that 

special coordinate system (specifically, integration in his 

equation (12) has an incorrect upper limit on e, and a 

supposedly typographic error in the exponent of the cosine 

function). 

More generally, equation ( 18) can be represented in the 

form 

c 1 
F =--:--fJA,(o) 

yRsm 

16 Jn/2Jn/2 
A8 (o) = --4-_.. cos eJ 1 - sin2 a cos2 e da de 

n:cos u 0 0 

(19) 

As angle o is a free (variable) parameter, the lowest factor 

of safety F can be found by minimising A,(o). This gives 

A5(o)min = 5·659 and the corresponding angle o = 15·0°. On 

substituting this value, f3 = 26·56° and clyR = O· l in equa

tion (19), Finin = 1·265 is obtained, which is lower than F= 

l ·402 for o = 30°, and the failure mechanism is deeper (Fig. 

4(c)). Thus the value listed in the literature is merely a 

particular value, and not the best upper bound for a given cl 

yR and slope inclination angle /J. 

It is further evident from equation ( 19) that the safety 

factor for a given slope angle f3 decreases when the radius R 
of the spherical cap increases. If the height of the slope is 

considered infinite, and radius R tends to infinity, the factor 

of safety tends to zero, F--+ 0. This is not unexpected as, by 

definition, an infinite slope can accommodate a failure 

mechanism of infinite size (radius). Hence considering sphe

rical failure has practical significance only if the extent of 

the mechanism is restricted to a layer of finite thickness t or 

distance s (Fig. 4(c)). In the first case the factor of safety 

can be expressed as 

F=!_-.
1
-B,(o) 

ytsmfJ 

16(1 - sino) J"/2J"/2 

B,(o) = 
40 

cosevl-sin2acos2 edade 
n:cos 0 0 

(20) 

On mm1m1smg B,(o), B,(o)min = 2·0 is obtained .and the 

corresponding angle o = 90°. In terms of distance s 

c 
l C,(o) 

32 Jn/2Jn/2 
Cs(o) = --

3
-_, cos eJ 1 - sin2 a cos2 e da de 

n:cos u 0 0 

(21) 

and Cs(o)min = 10·721, and a = 23·3°. 
If the plane-strain case is considered, and the sphere is 

replaced by a cylinder, the corresponding expressions for the 

factor of safety are 

c 1 3 n: - 20 
F = -R-:--/3 Ac(o), Ac(o) = --

3
-_, 

y sm 2 cos u 

_ !.__l_ (") (-') _ ~ (1 - sino)(n: - 20) 
F - Beu Beu -y t sin f3 ' 2 cos3 o 

(22) 

c 1 n: - 20 
F = --:--/3 Cc(o), Cc(o) = 3 ~ 

yssm cos u 

and the minimum factors of safety are obtained when 

Ac(o)min = 4·356 at o = 14·1°, Bc(o)min = 1·5 at o = 90°, 
and Cc(o)min = 8·280 at a = 23·2°. Finally, the classical 

case of a plane-strain infinite slope with a sliding layer of 

finite thiclmess t gives 

c 1 
F=-

yt sin/J 
(23) 

It was demonstrated that, for slopes with a limited thiclmess 

of admissible mechanism, t, the least safety factor is ob
tained at the limit when o--+ 90° (i.e. R _, oo) for both the 

spherical and cylindrical mechanisms. It is noticed, however, 

that in the limit neither of these rotational mechanisms 

reduces to the classical plane translational mechanism ( equa

tion (23)). When comparing the results above for a given 

c!yt, it is seen that the plane translational mechanism 

predicts the lowest factor of safety, the rotational cylindrical 

one predicts a higher value, and the three-dimensional rota

tional spherical mechanism gives the highest one. 
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COMPUTATIONAL RESULTS FOR SLOPES 

The 3D mechanisms illustrated in Figs 1 and 3 yield the 
minimum of the critical height yH/c at some finite width of 

the mechanism in the direction perpendicular to their cross

sections shown. For instance, a slope of 60° in inclination 
and ¢ = 10° reached the minimum of yH!c when the ratio 

of width B of the mechanism to the slope height was only 

l ·685. This is not surprising, since the increase of the 
mechanism width is related to the change in the curvature of 

the failure surface. To ensure that the mechanism will tend 

to a plane mechanism when the constraints on its width are 
not present, a plane section was inserted between two halves 

of the mechanism, illustrated schematically in Fig. 2(b ). 

Since the method used in the analysis leads to an upper 

bound on the critical height yH!c, finding the best (least) 
value of yH/c requires a numerical procedure in which the 

geometry of the mechanism is varied in the search for the 

minimum value of yH!c. All results presented are based on 
mechanisms with a plane insert, and the minimum of the 

dimensionless number yH!c was calculated with independent 

variable parameters ea, eh, rb/ ra, and the relative width of 
insert b!H, subject to a limitation imposed on the maximum 

width of the failure mechanism BIH (Fig. 2). 
In the procedure for finding the minimum of objective 

function yH!c, the independent variables were changed se

quentially by a small increment in a single computational 

loop. The loop was then repeated until the minimum was 

found. Next, the increments applied to the independent 

variables were reduced, and the process was repeated. The 
process was stopped when the increments used in optimisa

tion reached 0·01° for ea and eh, and 0·001 for rb/ra and 
b!H (a typical time to obtain the least upper bound of yH!c 

for one set of parameters ¢, f3 and BIH, was about 10 s 
using a PC with a 2·83 GHz processor). 

The results of optimisation for the undrained analysis 
(incompressible soil) are presented in Fig. 5(a). The magni-

tude of critical yH!c has a tendency to increase significantly 

with the decrease in the width-to-height ratio BIH. For small 
BIH the mechanisms in Fig. 3 could not be constructed 

owing to geometrical constraints, and a plane-strain mechan
ism limited by two vertical planes was used for these cases 

(Fig. 6(a)). This mechanism is similar to one used by Baligh 
& Azzouz (1975). Such a mechanism is kinematically 

admissible for slopes in incompressible soils, and is more 
critical for a small BIH ratio. For instance, for a vertical 

slope confined to BIH = 2·0, the mechanism in Fig. 3(a) 

(with the addition of a small insert as in Fig. 2(b)) yields 
yHlc=5·163, whereas that in Fig. 6(a) gives the value 

5· 136. For larger B/H the mechanism in Fig. 3(b) (with 
insert) yields the least upper bound to yH/c. 

When selecting parameters rb/ ra = -1 ·0, and 

eh= n - 2/3 ea, the mechanism in Fig. 3(b) reduces to a 
spherical shape as that in Fig. 4(a), leading to a numerical 
solution identical to that in equation ( 17). 

For dilatant soils (Figs 5(b) and 5(c)) the mechanisms in 
Fig. 1 (with insert) were used, with the exception of small 

Bl H, where the one-block mechanism (Fig. 6(b) ), considered 
earlier by Drescher (1983), gave better results for vertical 

slopes. For instance, for a vertical slope, ¢ = 30°, and 
BIH = 0·8, the mechanism in Fig. l(a) gave yH!c = 14·368, 

whereas that in Fig. 6(b) yields yH/c = 12·348. For 
BIH > l ·O, however, the mechanism in Fig. l(a) with an 
insert gave the best estimates of the critical yH/c. This 

mechanism was also the most critical for slopes with 
inclination less than ve1iical included in Figs 5(b) and 5(c). 

Notice that, for very small BIH, admissible mechanisms 
passing through the toe could not be constructed; one could 

interpret this result as failure not reaching the toe of the 
slope (dashed horizontal lines in Figs 5(b) and 5(c)). 
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Fig. 5. Critical value of yH/c as function of width of slope: 

(a) <jJ = O; (b) <jJ = 15°; (c) <jJ = 30° 

The least upper bounds of yH!c calculated for slopes 

confined to width-to-height ratio BIH are presented in Tables 

1 to 3. 

STABILITY OF UNSUPPORTED EXCAVATIONS 
The extent of slope failure in excavations is constrained 

by the geometry of the excavation. Excavations of a rectan
gular plan are considered, with all slopes inclined at one 

angle f3 (Fig. 7(a)). The more susceptible to failure is the 
slope along the larger dimension B*. B* is measured at the 
bottom of the excavation. A trace of the failure mechanism 

limited by the vertical plane below line CD is illustrated 
in Fig. 7(b). Examples of critical mechanisms for a f3 = 45° 
excavation and a ve1iical cut are illustrated in Figs 7(c) and 
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(a) 

(b) 

Fig. 6. Simple mechanisms: (a) planar constraints for incom

pressible soil (Baligh & Azzouz, 1975); (b) one-block mechanism 
for dilatant soil (Drescher, 1983) 

Table 1. Critical values of yH/c for slopes with vertical 

constraints and incompressible soils ( </; = 0) 

BIH f3 

30° 45° 60° 75° 90° 

0·5 17· 106 13·541 11-484 9·987 8·753 
0·6 15-410 12·326 10-493 9·126 7·969 
0·8 13·264 10·786 9·241 8·036 6·977 
1·0 11 ·957 9·847 8-478 7·371 6·373 
1 ·5 10·184 8·078 7-441 6-469 5·554 
2·0 9·280 7·630 6·897 6·008 5·136 
3·0 8·006 6·969 6·163 5-498 4·694 
5·0 7·372 6·522 5·758 5· 115 4.334 

10·0 6·806 6· 151 5-473 4·768 4·018 

Table 2. Critical values of yH/c for slopes with vertical 
constraints and </; = 15° 

BIH f3 

30° 45° 60° 75° 90° 

0·5 - 21·741 16-979 12-428 
0·6 - 27·618 18·561 14·048 10·995 
0·8 52·325 22·362 15·236 11·372 9·349 
1·0 39·136 19-672 13-615 10·071 8·431 
1 ·5 32·347 16·635 11·747 8·564 7·124 
2·0 28·911 14·875 10·527 8·167 6·803 
3·0 25·693 13·731 9·748 7·502 6·014 
5·0 23-843 12·984 9·266 7·077 5·504 
10·0 22·691 12-494 8·927 6·809 5·231 

Table 3. Critical values of yH!c for slopes with vertical 
constraints and <jJ = 30° 

BIH f3 

45° 60° 75° 90° 

0·5 - - - 18·290 
0·6 - - 23·304 14·960 
0·8 63-604 27·664 17·827 12·348 
1·0 54·850 23-835 14·701 11·028 
l ·5 46·845 20·773 12·976 8·935 
2·0 42·732 19· 103 12·109 8·604 
3·0 39·956 17-873 11·184 7·974 
5·0 37.994 17·063 10·628 7·266 
10·0 36·703 16·527 10·265 6·944 

7(d) respectively. The upper portion of the graph represents 

the trace of failure mechanisms on the horizontal surface of 

the slope, and the bottom part is the projection of the trace 

of the failure pattern on the vertical plane. The projection of 

line CD on that vertical plane is inclined at angle f3 to the 

horizontal. Dotted lines separate the plane inserts from the 

rest of the mechanisms. For vertical slopes the maximum 

width of the critical mechanism is reached at the crest of 

the slope, whereas for slopes of smaller inclinations the 

critical mechanism reaches the limiting plane at some other 

point, such as point G in Fig. 7(c). 

Calculations for all parameters were performed using the 

mechanisms in Figs 1 and 3, with an insert as indicated in 

Fig. 7(b). This time, however, the width of the mechanism is 

restricted by a vertical plane emerging from the excavation 

corner, with a 45° projection on the horizontal. Independent 

variables in minimising yH!c were angles 80 and eh, the 

ratio rb / ro, and the relative width of the plane insert, bl H. 

The results are presented now as functions of B*!H; they are 

plotted in Fig. 8, and the numerical values are given in 

Tables 4 to 6. 

Application example 

To illustrate the practical use of the charts, an example is 

presented of how to ensure that the required factor of safety 

for excavation slopes is indeed satisfied. An excavation is 

planned in soil with parameters y = 17 kN/m3
, ¢ = 20° and 

c = 12 kN/m2
. The depth of excavation is 5 m, the bottom 

level of excavation is rectangular, 5 X 10 m, and all slopes 

have an inclination of 45° ( 1: 1 ). The required factor of 

safety is l ·5. 

The charts and tables represent the dimensionless critical 

height yH!c as a function of the length at the bottom of the 

excavation to its depth, B* I H, the inclination angle of 

excavation slopes (3, and the soil internal friction angle ¢. 

This function is now written as stability factor N(¢ct) in 

terms of the 'developed' strength parameters 

(24) 

which allows the safety factor in equation (8) to be ex

pressed as 

c 
F=yHN(¢ct) (25) 

The value of N(¢ct) is interpolated now from Tables 4 and 5, 

for B*!H = 2·0, f3 = 45°, and ¢ct= arctan[(tan¢)/1·5] = 

13·6°. The value N = 13·3 is obtained, and, substituting this 

value into equation (25), F l ·87 is obtained. Hence the 

safety factor is not less than l ·5. Finding the exact value of 
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Fig. 7. Excavation: (a) schematic view of excavation corner; (b) plan view; (c) trace of failure mechanism in excavation with slope 

angles of 45° and B*/H = 1·25; (d) mechanism trace for vertical excavation and B*/H = 2 

the safety factor, which in this case is in the range 1·5-1·87, 

requires an iterative procedure. It might be of interest that 
the critical value of yH!c calculated directly from the 

computer code for c/Jct = 13·6° is N = 13·85, which confirms 
acceptable approximation obtained from the linear interpola

tion. 
If the depth of the excavation were to be increased, the 

ratio B* IH would decrease, and the factor N(c/Jct) would 
increase. However, the net contribution of an increase in 

both N( c/Jd) and H in equation (25) leads to a decrease in the 
safety factor, as one would expect. 

FINAL REMARKS 

A three-dimensional rotational mechanism for calculations 
of stability of slopes in frictional soils was presented. The 

failure surface is a sector of a curvilinear cone ('horn'), it 
has a circular radial cross-section, and its lower and upper 
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Fig. 8. Critical value of yH/c for unsupported excavations: 

(a) ¢ = O; (b) ¢ = 15°; (c) ¢ = 30° 

contours are defined by log-spirals. The shape of the failure 
surface is generated by rotating a circle, with increasing 

radius, about an axis that may or may not intersect the 
circle. The 'horn' shape is generated when the axis of 

rotation is not intersecting the circle. The increase in the 
circle radius is a function of the angle of rotation, and it is 

adjusted in such a way that the mechanism is admissible for 
frictional soils. 

The mechanism presented is one of a wider class of 

admissible rotation mechanisms. The cross-section of the 
mechanism does not necessarily need to be a circle, although 
the shape of the cross-section (in frictional soils) may not be 

entirely arbitrary. For instance, a class of polygons with all 
sides tangent to a circle is another example of an admissible 

Table 4. Critical values of yH/c for excavations in incompres

sible soils ( ¢ = 0°) 

B*/H fJ 

30° 45° 60° 75° 90° 

0·5 10·359 8·996 8·377 9·987 8·753 

0·6 9·801 8·694 8·172 7-887 7·969 

0·8 8·936 8·100 7-425 6·993 6·977 

1 ·0 8·652 7·762 7·120 6·564 6·373 

l ·5 8·067 7·251 6·555 6·074 5·554 

2·0 7·764 6·999 6·303 5·761 5·136 

3·0 7-456 6·756 6·037 5·379 4·694 

5·0 7·093 6-430 5·684 4·997 4·334 

10·0 6·754 6·123 5·454 4·755 4·018 

Table 5. Critical values of yH/c for excavations in soils with 

¢ = 15° 

B*!H fJ 

30° 45° 60° 75° 90° 

0·5 33·687 18·651 13-801 13·254 12-428 

0·6 32-454 17·530 13·369 1 l ·724 10·995 

0·8 30· 109 16-472 12·240 9·770 9.349 

1·0 28·708 15·527 11 ·392 9·293 8-431 

l ·5 26·786 14·511 10·443 8·600 7·124 

2·0 25·697 13·950 9·990 7·850 6·803 

3·0 24-496 13·359 9·549 7·371 6·014 

5·0 23-449 12·942 9·187 7·039 5·504 

10·0 22·596 12·563 8·911 6·813 5·231 

Table 6. Critical values of yH/c for excavations in soils with 

</> = 30° 

B*/H fJ 

45° 60° 75° 90° 

0·5 52·945 25·810 18·781 18·290 

0·6 50-423 23-413 16·984 14·960 

0·8 47·289 21 ·856 15·225 12·348 

1·0 45·193 20·673 13·750 11 ·028 

1 ·5 42·248 19·093 12-488 8·935 

2·0 40·685 18·333 11-636 8·604 

3·0 39·050 17·573 11 ·037 7·974 

5·0 37·687 16·963 10·582 7·266 

10·0 36·899 16·519 10·255 6·944 

cross-section. In this case, when generating the failure sur
face, the contour of radial cross-sections preserves its geo

metrical similarity. Other shapes are also possible, but the 
cross-section may not conserve its proportions. A general 

requirement in constructing admissible rotational mechan
isms is that, locally, the surface must be tangent to a cone 
with apex angle 2¢ and the axis perpendicular to the radial 

cross-section of the mechanism (i.e. parallel to the linear 
velocity vector v). For the special case of incompressible 

soils, ¢ = 0 (undrained behaviour), any surface of revolution 
constitutes an admissible discontinuity surface. 

The mechanism developed was used to calculate the 
critical height of slopes. Previous experience indicates that 

plane-strain failure patterns are more critical than the three
dimensional ones. However, even when the slope width is 
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not limited, the least upper bound to the critical height 

determined from mechanisms in Figs 1 and 3 is found for a 

well-defined width, and the mechanism does not tend to a 
plane-strain case. For that reason, a plane-strain section was 

inserted into the mechanism, to ensure transition of the 

collapse pattern to plane strain, if no bounds are placed on 

the slope width. 
Using the mechanism developed, the critical height (yH/c) 

was calculated for slopes confined to some predetermined 

width B, for instance due to neighbouring structures. The 
results are given in this paper for a range of parameters. The 

width of the failure mechanism is quite naturally a constraint 

in excavation slopes. A set of results is presented allowing 
determination of the safety of excavations, given the depth, 

the inclination of slopes, and the soil properties. 
Secondary to the main theme in this paper is a discussion 

of an existing solution to the safety factor for uniform 

cohesive slopes with a spherical cap failure surface. This 

solution is typically given as a function of the radius of the 
failure surface, because the height of the slope in this 

problem is not defined (with the exception of the use of 
FEM). A solution based on kinematic limit analysis is 

presented. This solution is useful only if the size of the 

mechanism (spherical cap) is restricted, for instance by 
limited depth. Without such a constraint the mechanism 

would increase infinitely, and the factor of safety would tend 

to zero. Moreover, the spherical cap mechanism is the least 
critical of the mechanisms considered, and its application 

might be limited. 
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APPENDIX 
With the log-spirals r and r' defining the shape of the 

'horn' in Fig. l(a) given in equations (10) and (11) (or (12)), 

the centreline of the conical volume rm(e) and the radius of 
the circular cross-section R(e) are found as 

r+ r' 
rm=-2-

r- r' 
R=--

2 

(26) 

To calculate the work of the soil weight, a local coordinate 

system x, y was introduced, as shown in Fig. l(a) (axis x is 
perpendicular to the plane of the figure). The velocity during 
rotation about axis 0 is 

V =(rm+ y)w (27) 

where w is the angular velocity, and the infinitesimal volume 
element is 

dV = dxdy(r 111 + y)de (28) 

The work rate of the soil weight in equation (3) now can be 
written as 

Wy = f V;Y;dV = rJ vcosedv 
.v v 

(29) 

and, more specifically, 

[J8a J"'* JY* Wy = 2wy (rm+ y) 2 cosedydxde 
80 0 a 

(30) 

The two integrals relate to the work rate in the upper 

portion of the slope, in the range (eo, eB), and in the 
remaining part of the slope (eB, eh). The integration limits 

along x are x* = V R2 - a2 and x* = V R2 - d2 in the first 

and second integral respectively, with R, a and d all being 
functions of e (see Fig. l(a)). Radius R is given in 

equation (26), and a and d were found from the geometrical 

relations in Fig. 1 (a) 

sin((J +eh) (8 -e )tan"' a = roe i. o .,, - rm 
sin((J + e) 

sine0 
d = ----:---e r0 - r 01 

Sill 

(31) 

The integration limit along y is a function of x, y* = 

V R2 - x2. Angle eB was found from trigonometric relations as 

sine0 
eB = arctan e 

cos o - A 

sin( eh - eo) e(eh-eo)tan¢ sin eh - sin eo . 
A= . e - . e . f3 slll(e11 + (3) 

Sill h Sill 11slll 

(32) 

Before generating the computer program, integration in 

equation (30) was performed analytically with respect to y 

and x, and only integration over e was evaluated using a 
numerical method. 

With the velocity at the boundary points described by wr 
(r being the distance from axis 0 to a point on the 
boundary), the work dissipation rate given in the second 
term on the right-hand side in equation (7) can be more 

specifically written as the sum of the integrals over the 

surface at the top of the slope (trace AB in Fig. l(a)) 

DAB - 2 2 . 2 e Je" cos e . IR2 2de - - wr
0

slll o --
3
-v - a 

ccotcp e
0 

sin e 

and the face of the slope (trace BC in Fig. l(a)) 

Dsc 

ccot¢ 

x Je" cos(e + (3) V R2 - dzde 

ea sin
3 

( e + (3) 

(33) 

(34) 

The total rate of work dissipation is then D =DAB+ DBC· 
Equations (33) and (34) cannot be used for incompressible 
soils (Fig. 3), and the dissipation for the case ¢ = 0 was 

calculated from the following integral over the failure sur
face 

D = 2wcR [JeaJR (rm+ y)2dyde + Je"JR (rm+ y)2dyde] 
Oo a eB d 

(35) 

with a and d in equation (31 ), and es in equation (32). 

Integration over y was performed analytically, and the inte
gration over variable e was evaluated numerically. In the 

special case when ¢ = 0, both rm and R in equation (26) are, 
of course, constant. 
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The equations presented in this Appendix relate to calcu
lations for the 3D portion of the composite mechanism 
presented in Fig. 2(b ). Including the plane-strain insert 
requires separate calculations of the work rate of the soil 
weight in the insert, and the dissipation. These equations 
are readily available elsewhere (e.g. Chen et al., 1969; 
Chen, 197 5), and are not repeated here. For the plane insert 
to have a shape consistent with the 3D surfaces, angles 80 

and 811 must have identical values in the respective equa
tions for the 3D and the plane insert portions of the failure 

surface. 
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