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Three-Dimensional Stagnation-
Point Flow and Heat Transfer
of a Dusty Fluid Toward
a Stretching Sheet
The steady three-dimensional stagnation-point flow and heat transfer of a dusty fluid to-
ward a stretching sheet is investigated by using similarity solution approach. The free-
stream along z-direction impinges on the stretching sheet to produce a flow with different
velocity components. The governing equations are transformed into ordinary differential
equations by introducing appropriate similarity variables and an exact solution is
obtained. The nonlinear ordinary differential equations are solved numerically using
Runge–Kutta fourth-order method. The effects of the physical parameters like velocity ra-
tio, fluid and thermal particle interaction parameter, ratio of freestream velocity parame-
ter to stretching sheet velocity parameter, Prandtl number, and Eckert number on the
flow field and heat transfer characteristics are obtained, illustrated graphically, and dis-
cussed. Also, a comparison of the obtained numerical results is made with two-
dimensional cases existing in the literature and good agreement is approved. Moreover,
it is found that the heat transfer coefficient and shear stress on the surface for axisymmet-
ric case are larger than nonaxisymmetric case. Also, for stationary flat plat case, a simi-
larity solution is presented and a comparison of the obtained results is made with
previously published results and full agreement is reported. [DOI: 10.1115/1.4033614]
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1 Introduction

Analysis of boundary layer flow and heat transfer over a
stretching sheet has been considered significantly in recent years
due to its applications. This problem has many engineering appli-
cations in industrial processes, such as polymer industry involving
cooling of a molten liquid, rolling and manufacturing of sheets
and fibers, paper production, drawing of plastic film, and so on.
Particularly, when the flow is a mixture of solid–fluid (dusty
flow), its analysis has importance and application in combustion,
petroleum transport, corrosive particles in engine oil flow, waste-
water treatment, etc.

One of the pioneering studies in this field is by Sakiadis [1]
who studied the boundary layer flow behavior over a stretched
sheet with a constant velocity. Crane [2] investigated the analyti-
cal study of boundary layer flow over a linearly stretching sheet
and presented an exact solution for the flow field.

Many exact solutions for Navier–Stokes and energy equations
regarding the problem of stagnation-point flow and heat transfer
in the vicinity of a plane have been found. Hiemenz [3] and Hom-
man [4] did the first study in this field for two-dimensional and
axisymmetric cases, respectively. Chiam [5] studied steady two-
dimensional stagnation-point flow of an incompressible viscous
fluid toward a stretching sheet. Ishak et al. [6,7] studied the flow
and heat transfer characteristics over a stretching sheet and
stagnation-point flow toward a stretching sheet in the presence of
a uniform magnetic field. Tzirtzilakis and Kafoussias [8] investi-
gated the three-dimensional laminar and steady boundary layer
flow of an electrically nonconducting and incompressible mag-
netic fluid, with low Curie temperature and moderate saturation
magnetization, over an elastic stretching sheet. Abbassi and

Rahimi [9,10] presented an exact solution of the Navier–Stokes
and energy equations using similarity solution approach for prob-
lem of three-dimensional stagnation-point flow and heat transfer
on a flat plate with and without transpiration. Also, Abbassi et al.
[11] analyzed the unsteady case of this problem. Further, Abbassi
and Rahimi [12] studied a two-dimensional unsteady stagnation-
point flow and heat transfer impinging on an accelerated flat plate.
Kuznetsov and Nield [13,14] solved problem of natural convec-
tive boundary-layer flow of a nanofluid past a vertical plate ana-
lytically by similarity solution. Mustafa et al. [15] studied
stagnation-point flow of a nanofluid toward a stretching sheet.
Also, Makinde et al. [16] investigated buoyancy effects on
magneto-hydrodynamic (MHD) stagnation-point flow and heat
transfer of a nanofluid past a convectively heated stretching/shrink-
ing sheet. Mahapatra et al. [17] presented a similarity solution for
steady two-dimensional MHD stagnation-point flow and heat trans-
fer of an incompressible viscous fluid over a stretching/shrinking
sheet in the presence of velocity and thermal slips. Sinha and Misra
[18] studied MHD stagnation-point flow of an incompressible vis-
cous electrically conducting fluid over a stretching sheet.

In all the above cited papers, the fluid considered was viscous,
incompressible, and free from impurities. But, in nature, the fluid
in pure form is rarely available. Air and water contains impurities like
dust particles and foreign bodies. In recent years, researchers have
turned to studying dusty fluid. Therefore, the studying two-phase
flows in which solid spherical particles are distributed in a clean fluid
are of interest in practical applications like petroleum industry.

Fundamental studies in dynamics of dusty fluid, its behavior,
and boundary layer modeling have been considered in literature
including Refs. [19–22]. Vajravelu and Nayfeh [23] analyzed the
hydromagnetic flow of a dusty fluid over a stretching sheet includ-
ing the effects of suction. Gireesha et al. [24] investigated the
effect of viscous dissipation and heat source on flow and heat
transfer of dusty fluid over an unsteady stretching sheet. Further,
Gireesha et al. [25] studied steady boundary layer flow and heat
transfer of a dusty fluid flow over a stretching sheet with
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nonuniform heat source/sink. Ramesh and Gireesha [26] analyzed
radiation effect on a steady two-dimensional boundary layer flow
of a dusty fluid over a stretching sheet. Further, recent works
[23–29] have been done in the area of dusty flow over a stretching
sheet or plate under different effects and conditions.

In all the above cited papers with a dusty fluid flow, the prob-
lem is modeled and analyzed just for the two-dimensional cases.
To our knowledge, no attempts have been made to analyze three-
dimensional stagnation-point flow of a dusty fluid toward a
stretching sheet.

The objective of the present study is to investigate the three-
dimensional stagnation-point flow of a dusty fluid toward a
stretching sheet by solving Navier–Stokes and energy equations
for both fluid and particle flows. Appropriate similarity variables
for governing equations are derived in this problem. The obtained
ordinary differential equations are solved numerically by using
Runge–Kutta fourth-order method. Velocity and temperature pro-
files are presented for different values of velocity ratio, fluid and
thermal particle interaction parameter, ratio of freestream velocity
parameter to stretching sheet velocity parameter, Prandtl number,
and Eckert number for both of the fluid and dust phases. Also, a
comparison of the obtained numerical results for two-dimensional
problem is made with those of Refs. [28,30] and excellent agree-
ment is reported. Our main goal here is to present a model for com-
bustion in a stagnation-point flow problem where the fluid phase
changes into vaporized bubbles upon impact on a heated substrate
and thereafter could go through the process of combustion if igni-
tion takes place.

2 Problem Formulation

Consider a steady, three-dimensional, incompressible, laminar
boundary layer flow and heat transfer of an incompressible viscous
dusty fluid in the neighborhood of stagnation-point flow over a
stretching surface. The problem is formulated in Cartesian coordi-
nates ðx; y; zÞ with corresponding velocity components ðu; v;wÞ.
The stretching surface is placed in the plane z ¼ 0, with the flow
being confined to z > 0 as the schematic geometry shown in Fig. 1.

The stretching surface velocities in the x- and y-directions,
respectively, are given by

uw ¼ ckx; vw ¼ cy (1)

where c > 0 is the stretching rate and k is the coefficient which
indicates the difference between the sheet velocity components in
x and y directions. The dust particles are treated as spheres with
uniform size and their number density are taken as a constant
throughout the flow.

The three-dimensional boundary layer equations for clean fluid
and dusty particles with usual notation are Refs. [16,19]:
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where ðu; v;wÞ and ðup; vp;wpÞ are the velocity components of
the fluid and dust phases along the x, y, and z directions, respec-
tively. p, q, qp, and l are fluid pressure, density of the fluid, density
of the dust phase, and viscosity of the fluid, respectively. Also, in
energy equations, T and Tp are the temperature of the fluid and tem-
perature of the dust phase, and k is the thermal conductivity of the
fluid.

The terms Fpi , Qp, and ðVpi � ViÞFpi , represent, respectively,
the particles force on fluid along i direction (the drag force due to
the interaction between the fluid and dust phases), the heat trans-
ferred from particle phase to fluid phase, and the dissipation work
due to particles moving relative to the fluid per unit volume and
are expressed as follows:

Fig. 1 Schematic geometry of the flow configuration
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Fpi ¼ N:6prl Vpi � Við Þ ¼ qp
Vpi � Vi

sv
(12)

Qp ¼ N:4prkp Tp � Tð Þ ¼ qpcp
Tp � T

sT
(13)

where Vi and Vpi are velocity vector of the fluid and dusty phases,
respectively, r is the particle radius, kp is thermal conductivity of
the particle, N is number density of the dust phase, sv is the relax-
ation time of the dust phase that expresses the time required by
the particle cloud (dust) to reduce its velocity relative to the fluid,
and sT is the thermal equilibrium time that expresses the time
required by the particle cloud to reduce its temperature relative to
the fluid.

The velocity components of the classical potential flow solution
are as follows [9,10]:

U ¼ akx (14)

V ¼ ay (15)

W ¼ �aðkþ 1Þz (16)

where 0 < k � 1 is presented as the ratio of the velocity compo-
nents in x and y directions which indicates the difference between
the velocity components in x and y directions and a > 0 is a con-
stant. For k ¼ 1, freestream velocity components in x and y direc-
tions are the same, and also the sheet velocity components are the
same in these directions, too. So, the problem will be converted
into an axisymmetric problem with no difference between the
flow characteristics in x and y directions.

Employing the Bernoulli’s equation in the potential region, the
following relations between the freestream velocity UðxÞ and
VðyÞ and the pressure gradients in x and y directions are specified,
respectively
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Using Eqs. (12)–(17) into Eqs. (4), (5), and (7)–(11), one can
obtain
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where t, a, cp, and cm are kinematic viscosity, thermal diffusivity,
the specific heat of fluid, and dust phase, respectively. It is
assumed that cp ¼ cm throughout this study.

3 Similarity Solution

3.1 Fluid Flow Solution. To convert partial differential equa-
tions into a set of ordinary differential equations, the following
dimensionless similarity variables are introduced:

u ¼ ckxf 0 gð Þ; v ¼ cy f 0 gð Þ þ g0 gð Þ
� �
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Substituting transformations (25) into momentum Eqs.
(18)–(22) and continuity Eq. (3) yields the following nonlinear or-
dinary differential equations:

f 000 þ ½gþ ðkþ 1Þf �f 00 þ kðc2 � f 0
2Þ þ bðF� f 0ÞH ¼ 0 (26)

g000 þ ½gþ ðkþ 1Þf �g00 � ðg0 þ 2f 0Þg0 � ð1� kÞðf 02 � c2Þ
þ bðG� g0ÞH ¼ 0 (27)

½Gþ ðkþ 1ÞK�F0 þ kF2 þ bðF� f 0Þ ¼ 0 (28)

½Gþ ðkþ 1ÞK�G0 � kF2 þ ðGþ FÞ2 þ bðG� g0Þ ¼ 0 (29)

½Gþ ðkþ 1ÞK�½ðkþ 1ÞK0 þG0� þ b½Gþ gþ ðkþ 1ÞðK þ f Þ� ¼ 0

(30)

½Gþ ðkþ 1ÞK�H0 þ ½ðkþ 1ÞðFþ K0Þ þ Gþ G0�H ¼ 0 (31)

where the prime sign denotes differentiation with respect to g, and
b ¼ 1=cs� is the fluid-particle interaction parameter, c ¼ a=c is
the ratio of the freestream velocity parameter to the stretching
sheet parameter and H ¼ qr ¼ qp=q is the relative density. The
boundary conditions for the above equations are

g ¼ 0 :

u ¼ uw; v ¼ vw; w ¼ 0

f 0 ¼ 1; f ¼ 0; g ¼ g0 ¼ 0

�

(32)

g ! 1 :

up ¼ u ¼ U; vp ¼ v ¼ V; wp ¼ W; qp ¼ qx

f 0 ¼ F ¼ k; g0 ¼ G ¼ 0;K ¼ �f � g

kþ 1ð Þ ;H ¼ x

8

<

:

(33)

where x is the density ratio and is taken as the value of 0.2 in this
study.

3.2 Heat Transfer Solution. To transform the energy equa-
tion into a nondimensional form, dimensionless temperature pro-
files for the clean fluid and the dusty fluid are introduced as
follows:

h gð Þ ¼
T � T1
Tw � T1

; hp gð Þ ¼
Tp � T1
Tw � T1

(34)

where Tw and T1 denote the temperature at wall and the infinity,
respectively, which are assumed to be a constant. By using
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Eqs. (25) and (34) into Eqs. (23) and (24), the energy equations
are obtained as

h00 þ Pr½gþ ðkþ 1Þf �h0 þ PrbT ½hp � h�H
þPrb½EcxðF� f 0Þ2 þ EcyðF� f 0 þ G� g0Þ2�H ¼ 0 (35)

Gþ kþ 1ð ÞK½ �h0p þ
cp

cm
bT hp � h½ � ¼ 0 (36)

where Pr ¼ lcp=k is the Prandtl number, Ecx ¼ ðcxkÞ2=cpDT and
Ecy ¼ ðcyÞ2=cpDT (DT ¼ Tw � T1 > 0) are the Eckert numbers,
and bT ¼ 1=csT is the fluid–particle interaction parameter for tem-
perature (thermal fluid–particle interaction parameter). The
boundary conditions for Eqs. (35) and (36) are as

g ¼ 0 : T ¼ Tw ! h ¼ 1 (37)

g ! 0 : T ¼ Tp ¼ T1 ! hp ¼ h ¼ 0 (38)

The special case of a stationary plate is considered next in
Sec. 4.

4 Stationary Flat Plate

Here, the special case of the three-dimensional stagnation-point
flow of a dusty fluid toward a stationary flat plate is investigated.
If in the stretching sheet problem, the sheet velocity tends to zero
(c ! 0), then the similarity parameter g ! 0 and the parameter
c ¼ a=c are meaningless. Therefore, for a stationary flat plate
(c ¼ 0), we need to define a new dimensionless parameter. For
this problem, the similarity variables are defined as the following:

Table 1 Comparison of the values of velocity gradient in the x
direction f

00 ð0Þ for the different values of c when b50

c Ref. [26] Ref. [24]
Present study

(2D)
Present study
(3D axi.; k¼ 1)

0.1 �0.9737 �0.9696 �0.9697 �1.1246
0.2 �0.9215 �0.9181 �0.9182 �1.0556
0.5 �0.6676 �0.6672 �0.6672 �0.7534
2.0 2.0174 2.0175 2.0175 2.2071
3.0 4.7290 4.7292 4.7293 5.1366

Table 2 The shear stress coefficients in the x direction kf
00 ð0Þ,

the y direction f
00 ð0Þ1g

00 ð0Þ, and heat transfer coefficient on the
wall h

0 ð0Þ when b50, bT50, Ecx50, and Ecy50

c K kf
00 ð0Þ f

00 ð0Þ þ g
00 ð0Þ h

0 ð0Þ

0.2 0.25 �0.1713 �0.9563 �0.5847
0.5 �0.4141 �0.9912 �0.6438
0.75 �0.7117 �1.0241 �0.6965
1 �1.0556 �1.0556 �0.7447

2 0.25 0.3444 2.0633 �0.9303
0.5 0.8481 2.1106 �1.0147
0.75 1.4755 2.1587 �1.0943
1 2.2071 2.2071 �1.1694

Fig. 2 Dimensionless profiles of u;up velocity components for
different values of k when c50:2 and b5 0:5

Fig. 3 Dimensionless profiles of v ;vp velocity components for
different values of k when c50:2 and b5 0:5

Fig. 4 Dimensionless profiles of u;up velocity components for
different values of k when c52.0 and b50:5
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u ¼ akxf 0 gð Þ; v ¼ ay f 0 gð Þ þ g0 gð Þ
� �

;

w ¼ �
ffiffiffiffiffi

a�
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h i
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h i

; qr ¼
qp

q
¼ H gð Þ

(39)

Substituting these transformations into momentum Eqs.
(18)–(22) and continuity Eq. (3) yields the following nonlinear or-
dinary differential equations:

f 000 þ ½gþ ðkþ 1Þf �f 00 þ kð1� f 0
2Þ þ b0ðF� f 0ÞH ¼ 0 (40)

g000 þ ½gþ ðkþ 1Þf �g00 � ðg0 þ 2f 0Þg0 � ð1� kÞðf 02 � 1Þ
þ b0ðG� g0ÞH ¼ 0 (41)

½Gþ ðkþ 1ÞK�F0 þ kF2 þ b0ðF� f 0Þ ¼ 0 (42)

½Gþ ðkþ 1ÞK�G0 � kF2 þ ðGþ FÞ2 þ b0ðG� g0Þ ¼ 0 (43)

½Gþ ðkþ 1ÞK�½ðkþ 1ÞK0 þG0� þ b0½Gþ gþ ðkþ 1ÞðKþ f Þ� ¼ 0

(44)

½Gþ ðkþ 1ÞK�H0 þ ½ðkþ 1ÞðFþ K0Þ þ Gþ G0�H ¼ 0 (45)

where b0 ¼ 1=as� is the new fluid–particle interaction parameter.
The boundary conditions for the above equations are

g ¼ 0 :

u ¼ 0; v ¼ 0; w ¼ 0

f 0 ¼ 0; f ¼ 0; g ¼ g0 ¼ 0

�

(46)

Fig. 5 Dimensionless profiles of v ;vp velocity components for
different values of k when c52.0 and b50:5

Fig. 6 Dimensionless temperature profiles for different values
of k when b5 0:5, bT 5 0:5, Pr5 0:72, Ecx 5Ecy 5 1:0, and c50:2

Fig. 8 Effect of the velocity ratio k on g 0 profiles when c5 2:0
and b5 0:5

Fig. 7 Dimensionless temperature profiles for different values
of k when b5 0:5, bT 5 0:5, Pr5 0:72, Ecx 5Ecy 5 1:0, and c52:0
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g ! 1 :

up ¼ u ¼ U; vp ¼ v ¼ V; wp ¼ W; qp ¼ qx

f 0 ¼ F ¼ 1; g0 ¼ G ¼ 0;K ¼ �f � g

kþ 1ð Þ ;H ¼ x

8

<

:

(47)

Similarly, by using the definition of the dimensionless tempera-
ture profiles from Eqs. (34) and (39), into Eqs. (23) and (24), the
energy equations are obtained as

h00 þ Pr½gþ ðkþ 1Þf �h0 þ Prb0T ½hp � h�H
þ Prb0½EcxðF� f 0Þ2 þ EcyðF� f 0 þ G� g0Þ2�H ¼ 0 (48)

Gþ kþ 1ð ÞK½ �h0p þ
cp

cm
b0T hp � h½ � ¼ 0 (49)

where b0T ¼ 1=asT is the new fluid–particle interaction parameter
for the temperature. The boundary conditions for the above equa-
tions are as

g ¼ 0 : T ¼ Tw ! h ¼ 1 (50)

g ! 0 : T ¼ Tp ¼ T1 ! hp ¼ h ¼ 0 (51)

Some numerical results are presented in Sec. 5.

5 Results and Discussion

Equations (26)–(31) and Eqs. (35) and (36) with the boundary
conditions (32) and (33) and (37) and (38), respectively, are two
set of coupled highly nonlinear ordinary differential equations. To
solve these equations, we applied the fourth-order Runge–Kutta
numerical scheme with a shooting method for Eqs. (26), (27), and
(35) and iterated the solution process till satisfying the initial
boundary conditions. The fourth-order Runge–Kutta numerical
method is a convenient and efficient method to solve a boundary
value problem.

In this section, the solution of the self-similar Eqs. (26)–(31),
(35), and (36) for different values of the fluid velocity ratio k, the

Fig. 9 Effect of the velocity ratio k on dimensionless velocity
profiles f

0
and ðf 0

1g
0 Þ when c5 2:0 and b5 0:5

Fig. 10 Dimensionless profiles of u, up velocity components
for different values of c when k50:5 and b5 0:5

Fig. 11 Dimensionless profiles of v , vp velocity components
for different values of c when k50:5 and b5 0:5

Fig. 12 Effect of velocity ratio k parameter on f , g, and dimen-
sionless velocity profiles w=

ffiffiffiffiffi

cv

p
when c5 2:0 and b50:5
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fluid–particle interaction parameter b, the ratio of the freestream
velocity parameter to the stretching sheet velocity parameter c,
the thermal fluid–particle interaction parameter bT , the Prandtl
number Pr, and the Eckert number Ec are presented. In order to
validate the results presented in this paper, different quantities are
selected and compared with those of Refs. [24,26] for the two-
dimensional case in Table 1. As it can be seen, an excellent agree-
ment is reported.

In order to verify the accuracy of our present method, and to
observe the difference between the 2D and 3D cases, the compari-
son of the velocity gradient in x direction on the wall, f 00ð0Þ, with
those of the previously published results of Refs. [24,26], for dif-
ferent values of c was made. The result of this comparison shows
an excellent agreement in all the above cases which is a confirma-
tion of the accuracy of our obtained results. Also, comparing the
results in the fourth and fifth columns (2D and axisymmetric
cases) shows that the shear stress for the axisymmetric case is
larger than for the 2D case, as expected, since the thermal and

velocity boundary layer in the 2D case is smaller than the axisym-
metric case.

Shear stress coefficient in x and y directions and heat transfer
on the wall are presented in Table 2 in third, fourth, and fifth col-
umns, respectively, for different values of c and k. Comparing the
results in the 3D (k < 1) and the axisymmetric (k ¼ 1)) cases
reveals this important point that the shear stress coefficient in both
x and y directions and the heat transfer coefficient in the vicinity
of the plate increase by increasing k and these values are the larg-
est for the axisymmetric case (k ¼ 1).This can also be observed
from Figs. 2–7. Moreover, by comparing the results in rows c ¼
0:2 and c ¼ 2:0, one can observe that the sign of the shear stress
coefficients is different. This is because when the stretching veloc-
ity is less than the freestream velocity (c > 1), the flow has a
boundary layer structure. On the other hand, when c < 1, the flow
has an inverted boundary layer structure (Figs. 8 and 9).

In the following, results of the exact solution are illustrated in
Figs. 2–33. Figures 10 and 11 illustrate variation of the velocity
profiles for different values of c. Again, it is found that when the

Fig. 13 Dimensionless profiles of w ;wp velocity components
for different values of k when c50:2 and b5 0:5

Fig. 14 Dimensionless profiles of f , g, G, and K for different
values of k when c5 0:2 and b5 0:5

Fig. 15 Dimensionless profiles of u, up velocity components
for different values of b when k5 0:5 and c5 0:2

Fig. 16 Dimensionless profiles of v , vp velocity components
for different values of b when k5 0:5 and c5 0:2
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stretching velocity is less than the freestream velocity (c > 1), the
flow has a boundary layer structure and on the other hand, when
c > 1, the flow has an inverted boundary layer structure. As it can
be seen from Figs. 10 and 11, when c ¼ 1, the velocity profiles
are straight lines, which means that for this case shear stress
(kf 00ð0Þ and f 00ð0Þ þ g00ð0Þ) is zero. This is a logical result because
the stretching velocity is equal to the freestream velocity, so there
is no boundary layer formation. Also, unlike the state c < 1 when
c > 1, the boundary layer thickness decreases with increase in c
(g1 is decreased).

The effect of the velocity ratio k on the profiles of g0, ðf 0; f 0 þ
g0Þ and ðf ; g;wÞ is shown in Figs. 8, 9, and 12. As it is seen in
Figs. 8 and 9, the smaller the k, the bigger g0 and therefore the dif-
ference between the velocity components is larger. When k ! 1,
then g0 ! 0 (Fig. 12) and g ! 0 (Fig. 12) and the two velocity
components ðu; vÞ become the same, which validates our result
compared to the axisymmetric problem case.

The dimensionless velocity profiles proportional to u, v, and w
velocity components are depicted in Figs. 2–13, respectively, for
different values of k and for both the clean and dusty fluid and for
c < 1 (c¼0.2). As it is seen, the behavior of the clean and dusty
fluid is the same and decreases with increase in k. Also, the bigger
the k, the larger is the absolute value of the w component of the
velocity, as expected.

The profiles of f , g, G, and K are shown in Fig. 14. As previ-
ously was mentioned, since g and G are due to nonaxisymmetric
problem, then when k ! 1, g and G tend to zero.

Note that, as k!0, governing equations for the dusty-flow
appear in the new forms which are definitely different from the
governing equations of the two-dimensional problem case
[19–24] because k tends to zero gradually and the basic governing
equations remain three-dimensional. Note that the existence of the
physical limitation in the x direction is the cause of the gradual
change in k from one to zero.

Fig. 17 Dimensionless profiles of u, up velocity components
for different values of b when k5 0:5 and c5 2:0

Fig. 18 Dimensionless profiles of v , vp velocity components
for different values of b when k5 0:5 and c5 2:0

Fig. 19 Dimensionless temperature profiles for different val-
ues of b when k50.5, c5 0:2, Pr5 0:72, and Ecx 5Ecy 5 1:0

Fig. 20 Dimensionless temperature profiles for different val-
ues of bT when k50.5, c50:2, Pr5 0:72, and Ecx 5Ecy 5 1:0
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The dimensionless velocity profiles proportional to u and v
velocity components, respectively, for different values of k for
both the clean and dusty fluid and for c > 1 (c ¼ 2:0) are pre-
sented in Figs. 4 and 5. For velocity profiles in the x direction
(Fig. 4), unlike inverted boundary layer structure c < 1 (Fig. 2),
the behavior of the clean and the dusty fluid is adverse with
increase in k.The u velocity component of the fluid increases with
increase in k while the up velocity component of the dusty fluid
decreases (Fig. 4). For velocity profiles in the y direction (Fig. 5),
similar to inverted boundary layer structure c < 1 (Fig. 3), the
behavior of the clean and dusty fluid is the same. But, unlike the
case of c < 1, the dusty and fluid velocities increase with increase
in k (Fig. 5).

The velocity profile variations in the boundary layer for differ-
ent values of the fluid–particle interaction parameter b are pre-
sented in Figs. 15–18 for c ¼ 0:2 and c ¼ 2:0, respectively. As it
is seen, the values of the velocity are higher for the clean fluid
than for the dusty fluid at all points (except for some points near

the wall in c ¼ 2:0), as expected. Also, it is found that the same
effects in the cases of c < 1, and c > 1 but adverse effect in the
clean and dusty flow, as when b increases the clean fluid velocity
f 0 decreases whereas the dusty fluid velocity FðgÞ increases. Of
course the effect of the variation of b is more sensible on dusty
phase than for the fluid phase since the increase in b increases the
contribution of particles of the fluid velocity and so decreases the
fluid velocity. This is evident because for the large values of b
(s ! 0), the relaxation velocity time of the dusty fluid decreases
and therefore the velocities of both the fluid and dusty phase will
be the same. So, by increase in b the velocity profiles of dusty and
fluid phases are close to each other.

5.1 Energy Equation Results. The variation of dimension-
less temperature profiles h; hp for various values of k and selected
values of b, bT , Pr, and Ec are presented in two cases of c < 1

Fig. 21 Dimensionless temperature profiles for different val-
ues of Ecx when k50:5, c50:2, b5 0:5, bT 50:5, and Pr5 0:72

Fig. 22 Dimensionless temperature profiles for different val-
ues of Ecy when k50:5, c50:2, b5 0:5, bT 50:5, and Pr5 0:72

Fig. 24 Comparison of dimensionless velocity profiles f
0
, g

0
,

and f
0
1g

0
when k50:1

Fig. 23 Dimensionless temperature profiles for different val-
ues of Pr when k5 0:5, c50:2, b5 0:5, bT 5 0:5, and
Ecx 5Ecy 51:0
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(Fig. 6) and c > 1 (Fig. 7). As it is seen, increase of k causes
decrease of the temperature profile of both the dusty and fluid
phases. It is also noted that, for k!0, the variation of temperature
profiles show validation of the nonaxisymmetric temperature
compared to the axisymmetric problem case, again. Moreover, it
can be found out from this figure that the coefficient of heat trans-
fer h0ð0Þ is larger in axisymmetric case than that of the three-
dimensional (also according to Table 2). Furthermore, one can
observe from these figures that the values of the temperature are
higher for the clean fluid than for the dusty fluid at all points, as
excepted.

The variation of the temperature profiles for different values of
the fluid and thermal particle interaction parameter b and bT are
presented in Figs. 19 and 20, respectively. It can be seen from
Fig. 19 that the temperature of both the clean and dusty fluid
decreases with increase in b and of course the effect of variation
of b is more sensible on dusty phase than for the fluid phase. This

is because of the direct effect of b on velocity and since the tem-
perature depends on velocity, then the temperature varies with
variation of b. In Fig. 20, an adverse effect is found for the clean
and dusty flow, as when bT increases the clean fluid temperature h
decreases, whereas the dusty fluid temperature hp increases. This
is similar to the trend of variation of the velocity for different val-
ues of b (Figs. 15 and 16). This is because for the large values of
bT (sT ! 0), the thermal relaxation temperature time of the dusty
fluid decreases and then the temperatures of both the fluid and
dusty phases will be the same.

The effect of the Eckert number Ec on the temperature in the
boundary layer thickness has been plotted in Figs. 21 and 22. One
can observe from these figures that this effect can be neglected.
The dissipation term ðup � uÞFp due to particles moving relative
to the fluid is usually very small (here ðF� f 0Þ < 1 so
ðF� f 0Þ2 � 1), so productive terms EcxðF� f 0Þ2 for Ecx of order
one are still small. So, the variations of the Ec number on

Fig. 25 Comparison of dimensionless velocity profiles f
0
, g

0
,

and f
0
1g

0
when k50.5

Fig. 26 Comparison of dimensionless profiles f , g and velocity
profile w=

ffiffiffiffiffi

av

p
when k5 0:1

Fig. 28 Dimensionless profiles of u, up velocity components
for different values of k when b5 0:5

Fig. 27 Comparison of dimensionless profiles f , g and velocity
profile w=

ffiffiffiffiffi

av

p
when k5 0:5
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temperature profiles are neglected in the area of engineering appli-
cation of this problem (Ec ¼ Oð1Þ and smaller).

The dimensionless temperature profiles for different values
of Prandtl numbers are presented in Fig. 23. As it can be seen,
the fluid phase temperature and the dusty phase temperature
decrease with increase of Prandtl number. As with the increase
of Pr number, the depth of diffusion of the thermal boundary
layer decreases and the thermal boundary layer is thinner
than the momentum boundary layer; consequently, the tempera-
ture gradient increases with the increase in Prandtl number
(Table 2).

Hereafter, numerical results for the exact solution of the three-
dimensional stagnation-point flow and heat transfer on the station-
ary plate are presented.

For a pure fluid flow b0 ¼ b0T ¼ 0, validation of the results is
presented again using different quantities like profiles of g0,
ðf 0; f 0 þ g0Þ, and ðf ; g;w= ffiffiffiffiffi

a�
p Þ and are compared with those of

Ref. [9] for the cases of k¼0.1 in Figs. 24 and 26 and k ¼ 0:5 in
Figs. 25 and 27, which all show excellent agreements.

The dimensionless velocity profiles proportional to u and v
components of velocity, respectively, for different values of k and
for both the clean and dusty fluid are depicted in Figs. 28 and 29.
As it can be seen, behavior of the dusty and the clean fluid is simi-
lar to the behavior of stagnation-point flow on stretching sheet
when the stretching velocity is less than the freestream velocity
c > 1 (flow has boundary layer structure).

The velocity and temperature profiles variations in boundary
layer for different values of fluid particle interaction parameter b0

and b0T , respectively, are presented in Figs. 30–33. As it is seen,
the trend of these variations is similar to the case of stretching
sheet results. It means that when b0 increases the clean fluid veloc-
ity decreases, whereas the dusty fluid velocity increases. Also,
when b0T increases the clean fluid temperature decreases, whereas
the dusty fluid temperature increases.

Fig. 29 Dimensionless profiles of v , vp velocity components
for different values of k when b5 0:5

Fig. 30 Dimensionless profiles of u, up velocity components
for different values of b when k5 0:5 and c5 0:2

Fig. 31 Dimensionless profiles of v , vp velocity components
for different values of b when k5 0:5 and c5 0:2

Fig. 32 Dimensionless temperature profiles for different val-
ues of b when k50:5 and c5 0:2
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6 Conclusions

In the present study, the effects of different parameters on the
velocity profiles and temperature profiles of a dusty fluid over a
stretching sheet and a stationary flat plate have been investigated
and illustrated for both dusty and fluid phases. An exact solution
for axisymmetric and nonaxisymmetric three-dimensional case of
problem have been presented via converting governing partial dif-
ferential equations into ordinary differential equations by appro-
priate similarity transformations. Since the three-dimensional case
of this problem is closer to reality and practical purposes, we are
interested to model it and to know what happens and how compo-
nents of the flow vary when effect of the third dimension is con-
sidered. For this reason, the effects of the third dimension in
axisymmetric (k ¼ 1) and nonaxisymmetric (k 6¼ 1) cases have
been investigated. Also, the effects of the physical parameters on
the velocity and the temperature fields and the dusty phase have
been shown graphically and discussed where no attempts had
been made to analyze this problem previously. It has been found
that increasing velocity ratio k causes the value of the fluid veloc-
ity components in x and y directions to decrease, for c < 1 case,
and to increase for c > 1. Also, it has been shown that increasing
the velocity ratio k causes the value of the temperature in bound-
ary layer to decrease, for both cases of c < 1 and c > 1. So, the
velocity and temperature gradients increase by increase in k. For
k ¼ 1, the axisymmetric case, these gradients are maximum. As a
result, the shear stress and heat transfer on the wall increase with
increase in k. It is very interesting to note that the effect of b is
adverse in clean and dusty flow in both cases of c < 1 and c > 1,
as when b increases the clean fluid velocity decreases whereas the
dusty fluid velocity increases. Of course it has been deduced that
the effect of variation of b is more sensible on dusty phase than
on the fluid phase. Similarly, one can observe the same effects on
clean and dusty flow temperature profiles because of bT . More-
over, one can observe that there is no significant change in the
temperature profiles since the order of dissipation work term in
energy equation is very small. Also for the stationary flat plate
case, a similarity solution has been presented. The results show
the same behavior in velocity and temperature profiles for both
the dusty and fluid phases with stretching sheet case for c > 1
(boundary layer structure) in general since in both the flat plate and
stretching sheet cases for c > 1, freestream velocity is larger than
the wall velocity. The numerical results give a view toward under-
standing the response characteristics of the dusty fluid as two-phase
flow. This study can be a base model for combustion in a
stagnation-flow problem where the fluid phase changes into

vaporized bubbles upon impact on a heated substrate and thereafter
could go through the process of combustion if ignition takes place.
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