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Whenmonochromatic light is scattered from an optically rough surface a complicated three-dimensional (3D) field
is generated. These fields are often described by reference to the 3D volume (extent) of their speckles, leading to the
definition of lateral ðx; yÞ and longitudinal speckle sizes (z). For reasons of mathematical simplicity the longitu-
dinal speckle size is often derived by examining the decorrelation of the speckle field for a single point lying on
axis, i.e., x ¼ y ¼ 0, and this size is generally assumed to be representative for other speckles that lie further off-
axis. Some recent theoretical results, however, indicate that in fact longitudinal speckle size gets smaller as the
observation position moves to off-axis spatial locations. In this paper (Part I), we review the physical argument
leading to this conclusion and support this analysis with a series of robust numerical simulations. We discuss, in
some detail, computational issues that arise when simulating the propagation of speckle fields numerically, show-
ing that the spectral method is not a suitable propagation algorithm when the autocorrelation of the scattering
surface is assumed to be delta correlated. In Part II [J. Opt. Soc. Am. A 28, 1904 (2011)] of this paper, experimental
results are provided that exhibit the predicted variation of longitudinal speckle size as a function of position in
x and y. The results are not only of theoretical interest but have practical implications, and in Part II a method
for locating the optical system axis is proposed and experimentally demonstrated. © 2011 Optical Society
of America

OCIS codes: 030.6140, 030.6600, 050.1940, 070.7345, 200.2610.

1. INTRODUCTION
A three-dimensional (3D) speckle field is produced when an
optically rough surface is illuminated by coherent laser light.
Statistical properties of the resultant speckle fields are usually
examined by studying the space-time cross-correlation func-
tion in the observation plane that is perpendicular to the op-
tical axis. In 1981, Ohtsubo [1] systematically discussed the
time-space cross-correlation function of dynamic speckles
produced by a moving diffuse object under Gaussian beam
illumination. Later, a useful review of the statistical properties
of dynamic speckles was presented by Yoshimura [2], in
which other illumination conditions were also examined. Es-
sentially, these papers concentrated on investigating the time
and spatial (x and y only) properties of speckles in the obser-
vation plane. In 1990, Leushacke and Kirchner [3] examined
the 3D structure of static speckle under plane wave illumina-
tion. Li and Chiang [4] also investigated 3D speckle and
measured the lateral and on-axis longitudinal speckle size, re-
spectively, by examining the diffraction halos and the Young’s
fringes of the specklegrams. Later, the 3D space-time cross-
correlation function for free-space geometry under Gaussian
beam illumination was presented by Yoshimura and Iwamoto
[5]. In 1999, the work in [5] was extended by Yura et al. [6] to
include other paraxial optical systems and soft Gaussian aper-
tures using the ABCD matrix theory with complex values for
the system parameters. Recently, a generalized Yamaguchi
correlation factor was derived using the Linear Canonical

Transform and the associated ABCD matrix theory for a hard
limiting aperture [7,8]. Such methods have been shown to
be of great convenience when examining speckle size and
controlling speckle characteristics in various paraxial optical
systems [9–15].

The 3D average speckle sizes are critical parameters in la-
ser speckle metrology and laser holographic interferometry.
However, as noted in [4], no consistent experimental results
on the longitudinal speckle size were reported while photo-
sensitive films were being used as the recording materials
[16,17]. Two critical assumptions have typically been made
when deriving these physical models: (i) the scattered fields
on the diffuser surface are delta correlated, and (ii) the
speckle fields in the observation plane obey a complex Gaus-
sian random process. Digital cameras (CCDs) are now widely
used to record speckle patterns, which greatly simplifies
the experimental procedure for testing the validity of these
approximations. Nevertheless, experimental investigations
of the longitudinal speckle correlation properties are rela-
tively rare compared with the numerous theoretical models
that have been developed based on these assumptions
[3–5,13,18–20].

Using these assumptions, it is possible to derive a correla-
tion function describing the statistical relationship of the
speckle fields at two different point positions. Naturally, if
the two point positions coincide (i.e., we compare the inten-
sity at a point to itself), we find a normalized correlation value
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of unity. As these points become further separated from each
other, the correlation value tends to decrease. Two points are
said to be totally decorrelated when this correlation function
decreases to zero, and indeed this is often used to define the
lateral and longitudinal speckle size [4]. For numerical and ex-
perimental purpose, the average speckle size in a particular
direction is often defined as the distance at which the correla-
tion function takes the value of 0.5 [3].

In this two part paper we first numerically (Part I) and sec-
ond experimentally (Part II [21]) determine this correlation
function and compare it to the predictions of the appropriate
physical model. We note that performing such a comparison is
not straightforward. The correlation function is mathemati-
cally represented by the ensemble average of the intensity
values at the two point positions, which can be realized either
by time averaging or by space averaging depending on the ex-
perimental conditions, i.e., where the generated speckle fields
are assumed to be approximately ergodic [22,23]. To illustrate
the issues involved assume we have a speckle field generated
with a diffuser and a monochromatic light source. After re-
cording the resulting intensities for the two point positions,
the original diffuser is replaced with a second one (we assume
that the second diffuser has statistically similar surface rough-
ness characteristics) and the measurement is repeated. It is
highly probable that different intensity values will be re-
corded. If we proceed in this manner, changing diffusers and
making measurements at the same two point positions, we
will build up two data vectors corresponding to the series
of intensities recorded at the two points. Once reasonably
large datasets have been recorded (>1000 values), the re-
sulting correlation function for these two points can be experi-
mentally estimated by cross-correlating the two data vectors
(the mean of each vector being first subtracted from the vec-
tor before a normalized cross correlation is performed). This
approach is however rather slow, therefore, in this manuscript
we replace this form of “time averaging” with a “spatial aver-
aging” [23,24], where for a single diffuser we take intensity
values around the two points of interest and use these values
to determine the value of the correlation function. While this
approximation is not strictly true, our numerical simulations
and experimental results (which involve spatial averaging)
have been found to be consistent with the prediction of the
physical model (involving the use of the ensemble average).
Therefore, this approximation broadly holds for the static
free-space speckles we are investigating here.

In [25] the authors present a new theoretical model for the
description of speckle fields. The model predicts a series of
interesting speckle characteristics (in three different regimes)
that are demonstrated experimentally in a follow-up paper
[26]. In this model the input field is assumed to be factorized
into two well-separated spatial variations: one describes the
lateral average speckle size and the other is the lateral size
of the illuminating spot in the input plane. The input field
is no longer assumed to be delta correlated (in the input
plane) as is the case for the model examined here. However,
the input field in [25] can be considered as being generated
by a delta correlated field which then propagates a specific
longitudinal distance z0 to the input plane. As a result, iden-
tical speckle characteristics are predicted by the authors of
[25] (in the Van Cittert–Zernike regime), and by us (calculated
for the Fresnel regime), when equivalent propagation dis-

tances are used, i.e., see Eq. (41) in [25] and Eq. (11) below.
Our work differs from that presented in [25,26], as we examine
numerical simulations and off-axis and longitudinal speckle
field characteristics.

In this paper we begin by closely examining the 3D decorr-
elation properties of speckle patterns. The relation between
the correlation coefficients obtained for each discrete sample
position and the analytic predictions at the corresponding
spatial position are also clarified. We then describe a numer-
ical technique, employing the standard direct method (DM)
[27–29], to accurately simulate the propagation of the speckle
fields in the Fresnel regime. The decorrelation trends pre-
dicted by the analytic expressions for both in-plane and out-
of-plane displaced speckle fields are reproduced using our
simulated speckle patterns. Therefore, a numerical approach,
which can simulate the physical situation, is provided. The
term in-plane (or lateral) refers to the directions that are per-
pendicular to the optical axis, while out-of-plane (or longitu-
dinal) describes directions parallel to the optical axis. Based
on our studies we note that an alternative algorithm for simu-
lation field propagation, the spectral method (SM) [27–29], is
not suitable for simulating longitudinally displaced speckle
patterns when a delta correlated input field is assumed. This
appears to be due to the way in which the fast Fourier trans-
form (FFT) is used to implement the SM algorithm, and this is
discussed later in Section 3.

In Part II [21], we present accurate experimental measure-
ments to determine the resulting correlation coefficients. The
variation of the decorrelation function with respect to off-axis
position is specifically examined, leading to a novel optical
axis identification and alignment technique. As a result, the
well-known physical model for fully developed speckle is
more clearly understood and more accurately verified.

The layout of Part I of this paper is as follows: building
on the work in [3,5], in Subsection 2.A, we first rederive an
analytic space correlation function describing the statistical
relationship at two different point positions in a speckle field.
This expression predicts important properties (decorrelation
trends) for speckle in 3D, which are presented in Subsec-
tion 2.B. In Section 3, a discrete correlation algorithm, which
is based on area speckle patterns, is described and used. The
resulting correlation coefficients obtained at each sample po-
sition are shown to be closely related to the corresponding
analytic predictions. The decorrelation trends described in
Subsection 2.B are simulated in Subsection 3.B using the
DM, and it is shown that the SM is not a suitable algorithm
for our simulations. Finally, in Section 4, we present some
concluding remarks.

2. 3D SPECKLE CORRELATION FUNCTION
A. Theory
In this section we briefly review the derivation of the 3D
speckle correlation function. The free-space optical setup is
shown in Fig. 1. A diffuser is placed in the object plane
ðξ; ηÞ and illuminated from behind with monochromatic light
of wavelength λ. In our analysis we examine two situations:
when the extent of the object plane is limited by (i) a hard
circular aperture of diameter 2w or (ii) a soft Gaussian aper-
ture with an effective extent of 2w. The scattered light propa-
gates to the observation plane ðx; yÞ, where the speckle
intensity pattern is recorded by a camera, located a distance
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z0 from the object plane. Here we restrict our attention to fully
developed speckle formed when the surface roughness ex-
ceeds the wavelength of the illuminating light and where
the surface correlation extent is much smaller than the illumi-
nated area. If a sufficiently large number of independent
scattering points within this aperture contribute to form the
speckle field, then by adopting the central limit theorem
[30,31], the resultant field in the observation plane obeys a
complex Gaussian random process. Note that in this manu-
script we assume that the diffuser randomly modulates the
phase of the incident beam and that the amplitude of the illu-
minating wave field, just before and just after the diffuser, is
not changed. Although this does not satisfy the requirements
identified by Goodman [18] (see Chapter 2, p. 8), since the real
and imaginary parts of the complex amplitude are supposed to
be statistically independent, we have found from extensive si-
mulations that the resulting distribution in the observation
plane still follows a Gaussian random process.

We now wish to compare statistically the speckle intensi-
ties, IðrÞ ¼ AðrÞA�ðrÞ and Iðr0Þ ¼ Aðr0ÞA�ðr0Þ, at point positions
r and r0, and so we calculate the ensemble average. Since the
intensity distributions obey a random Gaussian process, we
can reduce the complexity of this equation using Reeds the-
orem [31], so that

hIðrÞIðr0Þi ¼ hAðrÞA�ðrÞAðrÞA�ðr0Þi;
hIðrÞIðr0Þi ¼ hIðrÞihIðr0Þi þ jhAðrÞA�ðr0Þij2; ð1Þ

where h� � �i indicates an ensemble average and the star de-
notes complex conjugation. The first two terms in Eq. (1)
are the mean intensity of the speckle patterns. The normalized
correlation function of intensity is given by

hIðrÞIðr0Þi
hIðrÞihIðr0Þi ¼ 1þ jμ12ðr; r0Þj2; ð2Þ

where the normalized mutual intensity, μ12, is defined as

μ12ðr; r0Þ ¼
hAðrÞA�ðr0Þi

½hAðrÞA�ðrÞihAðr0ÞA�ðr0Þi�1=2 : ð3Þ

The square modulus of the normalized mutual intensity is
sufficient to describe the correlation of intensity. In the
speckle literature, jμ12j2 is usually referred to as the correla-
tion coefficient of intensity [3].

Denoting the complex amplitude of the incident field in the
object plane by A0ðpÞ, the optical field at position r in the
observation plane is given using the Rayleigh–Sommerfeld
formula by

AðrÞ ¼ 1
iλ

ZZ
A0ðpÞ

z0
jr − pj

expðikjr − pjÞ
jr − pj dξdη; ð4Þ

where integration is carried out over the entire illuminated

area and jr − pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − ξÞ2 þ ðy − ηÞ2 þ z20

q
, as illustrated in

Fig. 1. Applying Eq. (4), it can be shown that the cross corre-
lation of the field at the two points r and r0 is giving by

hAðrÞA�ðr0Þi ¼
�
z
λ

�
2
ZZ ZZ

hA0ðp1ÞA�
0ðp2Þi

exp½ikðjr − p1j − jr0 − p2jÞ�
jr − p1j2jr0 − p2j2

dξ1dη1dξ2dη2: ð5Þ

Here we apply the assumption that the field just in the object
plane is delta correlated, and hence we write

hA0ðp1ÞA�
0ðp2Þi ¼ C0Eðp1ÞE�ðp2Þδðp1 − p2Þ; ð6Þ

where C0 is a constant and EðpÞ represents the illuminating
wave amplitude. EðpÞ is used as it has been assumed that
the microscopic structure of the object only changes the
phase of the incident light. Using Eq. (6), Eq. (5) simplifies to

hAðrÞA�ðr0Þi ¼ C0

�
z
λ

�
2
ZZ

jEðpÞj2 exp½ikðjr− pj− jr0 − pjÞ�
jr − pj2jr0 − pj2 dξdη:

ð7Þ

Making the usual approximation to the denominator of the in-
tegrand in Eq. (7), i.e., jr − pj2 ≈ jr0 − pj2 ≈ z0, and normalizing
as in Eq. (3), gives the desired expression for the square mod-
ulus of the normalized mutual intensity

jμ12ðr; r0Þj2 ¼
����
RR jEðpÞj2 exp½ikðjr − pj − jr0 − pjÞ�dξdηRR jEðpÞj2dξdη

����
2
: ð8Þ

Examining Eq. (8),it can be seen that jμ12j2 depends on the
intensity distribution of the illuminating beam, the shape,
and size of the illuminating spot on the object and the obser-
vation positions ðr; r0Þ with respect to the origin, O ¼ ð0; 0; 0Þ,
which is defined by the location of the center of the illuminat-
ing spot. We compare the cases of plane wave and Gaussian
beam illuminations by making the appropriate substitutions
for jEðpÞj.

For plane wave illumination, jEðpÞj is constant when jpj ≤ w
and zero otherwise. To proceed, we simplify the expression in
Eq. (8), by first making the Fresnel approximation to the ex-
ponent of the integrand [32] and then integrating over the area
of the circular aperture. The expression for jμ12j2, between
field at point positions R ¼ ðx; y; z0Þ and R0 ¼ ðxþ γ; yþ δ;
z0 þ εÞ, as indicated in Fig. 1, is giving by [3]

jμ12ðx; y; z0; γ; δ; εÞj2 ¼
����2
X∞
n¼0

inð2nþ 1Þjnðu=4ÞJ2nþ1ðυÞ=υ
����
2
;

ð9Þ

Fig. 1. Free-space propagation geometry for static speckle for-
mation. The illuminating spot on the diffuse object is circular with
diameter 2w.
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where u ¼ −w2εk=z20, υ ¼ wk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz0γ − εxÞ2 þ ðz0δ − εyÞ2

p
=z20,

and k ¼ 2π=λ. jn are the spherical Bessel functions and
Jn are the Bessel functions of the first kind.

For Gaussian beam illumination, we define [5,33]

jEðpÞj ¼
�
w0

w

�
2
exp

�
−
jpj
w2

2
�
; ð10Þ

where w is the radius at which the beam amplitude drops to
1=e of the axial value in the object plane, and w0 is a constant
denoting the beam waist size. Making the Fresnel approxima-
tion to the exponent of the integrand in Eq. (8), and noting that
in this case the integration is carried out over infinity, the
expression for jμ12j2 is given by [5]

jμ12ðx; y; z0; γ; δ; εÞj2 ¼
1

1þ ðε=lzÞ2
exp

�
−

�
1
rs

�
2
�� ε

z0
x − γ

�
2

þ
� ε
z0

y − δ
�

2
��

; ð11Þ

where lz ¼ 4z0ðz0 þ εÞ=ðw2kÞ and rs ¼ 2ðz0 þ εÞ½1þ
ðε=lzÞ2�1=2=ðwkÞ.

Thus the speckle correlation coefficient for any two points
in the 3D space can be determined using Eq. (9) for plane
wave and Eq. (11) for Gaussian beam illumination.

B. Interpretation
The analytic expressions for jμ12j2 indicate that speckle has
3D structure. In general, jμ12j2 decreases as the spatial separa-
tion of the two correlating positions increases. We proceed by
examining the predictions of Eq. (9) and (11), identifying the
statistical properties as well as the average speckle size in a
specific direction. Let us assume that we are examining the
correlation between two points, ðx; 0; z0Þ and ðxþ γ; 0; z0 þ εÞ
so that we can, for the moment, ignore the variable y. Under
these conditions, we can make several observations.

I. If ε → 0 and γ → 0 then jμ12j2 ¼ 1, indicating 100% cor-
relation for a speckle field correlated with itself.

II. If ε → 0, we find that any decorrelation will be depen-
dent on the variable γ only, i.e., the decorrelation does not
depend on the spatial location in x and y. This is consistent
with the analysis presented in [3–6,13].

III. For a fixed value of ε, jμ12j2 gives equivalent correla-
tion coefficients in the directions that pass through the system
origin. As a result, in a specific observation plane, i.e., the z ¼
z0 plane, the speckles are oriented toward the system origin
and have on average the same projection length onto the op-
tical axis [3,5]. We now consider the correlation coefficients
between the fields at point positions, see Fig. 2, which are di-
vided into three groups: (i) Q0 and Q0

0 (located at the optical
axis), (ii) Q1 and Q00

1 (located on a straight line that passes
through the system origin), and (iii) Q2 and Q00

2 (located on
a different line through the origin). Note that Q0, Q1, and
Q2 are all in the z ¼ z0 plane, while Q0

0, Q
00
1 , and Q00

2 are located
in the z ¼ z0 þ ε plane. Significantly, the jμ12j2 values for the
three groups are all equal. If it is assumed that in each of these
three cases jμ12j2 ¼ 0:5, then the average speckle grain sizes
along each of these three directions (the actual distance be-
tween the two points) has been found. In Fig. 2, an on-axis
speckle grain and two off-axis grains are drawn. It is clear that

the further the position away from the optical axis, the larger
the speckle size will be in the direction along the line that
passes through the system origin. However, significantly, they
all have the same projection length (ε) on the z axis, and this
length is the on-axis speckle size.

IV. For a fixed value of ε, it can be seen that jμ12j2 is max-
imized by ensuring that εðx=z0Þ − γ ¼ 0. Thus when x ≠ 0, a
maximum correlation value is found when the second point
is shifted in x by

γ ¼ ε
�
x
z0

�
: ð12Þ

Figures 3(a) and 3(b) (solid curves) are plots of the analytic
jμ12ðx1; 0; z0; γ; εÞj2 values as a function of γ (the lateral shift in
the x direction from Q1) for plane wave and Gaussian beam
illumination, respectively. The off-axis position in the z ¼ z0
plane is Q1 ¼ ðx1; 0; z0Þ. Choosing the longitudinal position Q0

1
in the z ¼ z0 þ ε plane as the plot origin, which corresponds
to γ ¼ 0, position shifting of the peak correlation coefficient is
observed. Some typical experimental values are chosen for
the parameters used to generate Fig. 3: λ ¼ 633nm, w ¼
1:5mm, z0 ¼ 400mm, x1 ¼ 3:55mm, and ε ¼ 0, 5, 10, and
15mm. (ε ¼ 0mm corresponds to the autocorrelation of the
off-axis speckle field). The plots in Figs. 3(a) and 3(b) also
show how the position of the peak correlation coefficient
shifts in proportion to ε. We also note, however, that the peak
value decreases as ε increases.

Equation (12) indicates that the out-of-plane displacement
of the diffuser can be estimated in the observation plane using
the off-axis speckle correlation values, by substituting the
longitudinal camera displacement ε with the out-of-plane
displacement of the object surface, while keeping the camera
position steady. The quantitative relationship between the
parameters in the equation is verified experimentally in
Part II [21].

Based on these results we therefore can conclude that po-
sition shifting of the peak correlation coefficient will occur
when an off-axis speckle field is correlated with the fields
(point fields) from a longitudinally displaced plane. The offset
of the position in the x direction results in the peak correlation
coefficient shifting by γ, while the offset of the position in the
y direction results in the peak correlation coefficient shifting
by δ (the lateral shift in the y axis). The cross correlation of an

Fig. 2. Illustration in the x-o-z plane of the orientation property of the
static speckle grains. In the figure, an on-axis speckle and two off-axis
speckles have been drawn (three ellipses). The off-axis speckle sizes
in the directions that pass through the system origin (denoted by
dashed lines) have on average the same projection length onto the
optical axis (z).

Li et al. Vol. 28, No. 9 / September 2011 / J. Opt. Soc. Am. A 1899



on-axis fields (x ¼ 0), and the autocorrelation of an off-axis
field (ε ¼ 0), will produce the maximum coefficient value
located at the origin, i.e., with zero shift.

V. If γ ¼ 0 while the value of ε varies, longitudinal decorr-
elation of the speckle field takes place. Both on-axis (x ¼ 0)
and off-axis (x ≠ 0) longitudinal decorrelation behavior,
i.e., jμ12ðx; 0; z0; 0; 0; εÞj2, as a function of ε are shown in
Figs. 4(a) and 4(b) (solid curves) for the plane wave and
Gaussian beam illumination, respectively. In order to observe
the total decorrelation trends, while not breaking the Fresnel
approximation requirement (i.e., z0 ≫ ε when total decorrela-
tion occurs), we set z0 ¼ 200mm. The other parameter values
are all identical to those used to generate Fig. 3. The results in
Fig. 4 indicate that the longitudinal correlation coefficients of
the off-axis fields decrease much more rapidly than those for
on-axis, and the further one is away from the optical axis, the
larger the decorelation rate is. This means that the off-axis
longitudinal speckle size is much smaller than the on-axis
longitudinal speckle size, and the off-axis longitudinal speckle
size decreases dramatically as the point in the field examined
is positioned further away in ðx; yÞ from the optical axis.

VI. If γ ¼ 0, jμ12j2 is inversely proportional to x for a fixed
value of ε. This can be inferred based on the results presented
above. To illustrate this property, jμ12ðr; z0; 0; 0; εÞj2 is plotted
as a function of the offset r (where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
), see Fig. 5.

The parameter values used arew ¼ 1:5mm, z0 ¼ 200mm, and
ε ¼ 5mm. The two longitudinally displaced speckle patterns in
the observation planes z ¼ z0 and z ¼ z0 þ ε, produce amono-
tonically decreasing longitudinal correlation coefficient along
the radial direction. (Some small fluctuations can be observed
to occur for plane wave illumination in the region where r is

larger enough that the total decorrelation takes place). This
property can be applied to locate the optical axis in relation
to the camera center, which is demonstrated in Part II [21].

3. DISCRETE CORRELATION ALGORITHM
AND NUMERICAL SIMULATIONS
As indicated in Section 2, the derived expressions for jμ12j2 are
continuous functions. Theoretically, the correlation between
fields at any two different point positions in the free-space
Fresnel regime can be found using Eq. (9) or (11) as dis-
cussed. However, in practice the measured speckle fields are
discrete values corresponding to the total light intensity
incident on each camera element area (i.e., camera pixels).
Furthermore, the derivation of the analytic correlation is

1 2 3 4

0.2

0.4

0.6

0.8

|
12

(r
,z

0;
0,

0,
ε

µ
)|2

r (mm)

       Solid: Plane wave illumination 

Dashed: Gaussian beam illumination 

Fig. 5. (Color online) Longitudinal speckle decorrelation as a func-
tion of radial offset r, between fields from two longitudinally displaced
planes z ¼ z0 and z ¼ z0 þ ε.

(a)

(b)

Fig. 3. (Color online) Lateral speckle correlation coefficients be-
tween an off-axis field at position Q1 ¼ ðx1; 0; z0Þ in the z ¼ z0 plane
and fields in a longitudinally displaced plane z ¼ z0 þ ε (mm), as
a function of γ. (a) Plane wave illumination. (b) Gaussian beam
illumination.

(a)

(b)

Fig. 4. (Color online) Longitudinal speckle correlation coefficients
between the field at Q ¼ ðx; 0; z0Þ in the z ¼ z0 plane and a longi-
tudinally displaced field in plane z ¼ z0 þ ε, as a function of ε. x is
in units of millimeters. (a) Plane wave illumination. (b) Gaussian beam
illumination.
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based on ensemble averaging of the fields at point positions,
which are time consuming and difficult to realize in practice.
In this section, we briefly describe a discrete correlation algo-
rithm that can be used to calculate the speckle correlation
coefficients. This algorithm uses two discrete speckle images
to compute the correlation coefficient for fields at the image
center. As a result, spatial averaging is used instead of the en-
semble time average when calculating the speckle correlation
coefficients. We reiterate that this substitution is appropriate
and the obtained discrete correlation coefficients can be
directly related to the analytic predictions at each sample po-
sition. Next, the standard DM is used to calculate the propa-
gation of the speckle fields in the Fresnel regime. The discrete
correlation algorithm is applied to the resulting simulated
speckle images, and the decorrelation trends discussed in
Section 2 are accurately reproduced. Therefore, a verified nu-
merical simulation method, which agrees with the predictions
of the standard physical model of fully developed speckle, is
provided.

A. Discrete Correlation Algorithm
The core command we have used to perform the two-
dimensional speckle correlation is the MATLAB in-built func-
tion “normxcorr2” [34]. Consider two discrete speckle images
f ðm;nÞ and tðm;nÞ with image array sizes of m and n in the
two dimensions. The algorithm used to compute the normal-
ized correlation coefficients is given by the following formula:

cðg; lÞ¼

P
m;n

½f ðm;nÞ−�f g;l�½tðm−g;n− lÞ−�t�
nP

m;n½f ðm;nÞ−�f g;l�2
P
m;n

½tðm−g;n− lÞ−�t�2
o
1=2 ; ð13Þ

where �t is the mean of tðm;nÞ and �f g;l is the mean of the part
of f ðm;nÞ overlapping the second image tðm;nÞ during the
calculation of each correlation value, cðg; lÞ.

This algorithm first shifts the second image tðm;nÞ a dis-
tance g (or l) in the x (or y) direction, and a cross-correlation
coefficient between the fields at sample positions (m=2, n=2)
and (m=2 − g, n=2 − l) is calculated by summing all the pro-
duct values for all the overlapping sample elements. The
normalization of the cross-correlation coefficient is then car-
ried out. Note that the spatial average factor, 1=ðm × nÞ, in
both the numerator and denominator of Eq. (13), has been
canceled out. Therefore, this algorithm is a spatially averaging
approach, which uses area speckle images to calculate corre-
lation coefficients for point positions. Following the terminol-
ogy in [5], we define the center of the first image (m=2, n=2) to
be the standard observation position (SOP). Examining the
correlation algorithm, we note that it returns the speckle cor-
relation coefficients between the field at the SOP and the
fields at the sample positions of the second image. In other
words, cðg; lÞ is the correlation coefficient between the field
at the SOP and the field at the sample position (m=2 − g,
n=2 − l) in the second image, which is ðg; lÞ distance away
from the center of the second image. In order to validate the
algorithm in the next section we simulate area speckle images
and compare the numerically obtained correlation coeffi-
cients with the analytic predictions.

B. Numerical Simulations
In this section we wish to examine, from a numerical perspec-
tive, issues that arise when propagating a field, with a random
phase uniformly distributed over 2π [3], over a given distance
of free space. Two standard free-space propagation algo-
rithms, the DM and the SM, are used to calculate the speckle
images in the observation plane. As will be seen, while the DM
works well, the SM is not suitable to simulate the results for
longitudinally displaced speckle images.

A square matrix of dimension N × N is used to describe the
input field immediately in front of the diffuser, i.e., the object
plane in Fig. 1. Within this square matrix, a subarray of “cir-
cular diameter” C samples is used to model the finite extent of
the illuminating field on the object surface. This sample num-
ber C is given by C ¼ 2w=Δξ, whereΔξ is the sampling period
in the object plane. The amplitudes of the complex numbers in
the array are generated from the magnitude of the illuminating
distribution, while a pseudorandom number generator is used
to generate uniformly distributed phase values over the inter-
val ½0 − 2π�. As an example consider the case of plane wave
illumination: in this case the discrete amplitudes values out-
side the circular subarray are set to zero, while those inside
to unity. When we consider Gaussian illumination, we turn to
Eq. (10) to generate all the matrix values. The matrix is then
Fresnel transformed using an FFT-based algorithm (DM or
SM) in order to calculate Eq. (4). In this way the desired out-
put field and the speckle intensity in the observation plane are
generated.

An important difference between the DM and SM algo-
rithms is the number of FFT operations that need to be per-
formed. For the DM, only one FFT operation is carried out.
Because of the nature of the FFT algorithm, this leads to a
scaling in the output plane where the input sample interval
Δξ maps to the output sample interval Δx according to the
following relationship:

Δx ¼ λz0
NΔξ : ð14Þ

On the other hand for the SM, where two FFT operations are
carried out, the scale factor is canceled out between the two
FFT operations. Therefore, for the SM, the sample intervalΔx
remains constant, i.e., Δx ¼ Δξ.

In the simulation of longitudinally displaced speckle
images, Δx is an important parameter. We first use the DM
for our simulation. Equation (14) indicates that the sample in-
tervalΔx of the simulated image depends onN . As a result, by
choosing a suitable value of N , the ratio of Δx to the average
lateral speckle size in the observation plane z ¼ z0 can be con-
trolled. When N ¼ C, there is on average only one speckle
grain at each matrix element due to the fact that the lateral
average speckle size in plane z ¼ z0 is λz0=ð2wÞ. When
N > C, the field in the object plane is zero padded before Fres-
nel transformation (propagating to the observation plane). As
a result, we can examine in finer detail the distribution in the
output plane. In the simulation, we choose N > C, so that on
average one speckle grain will cover several matrix elements.
This represents the experimental situation wherew and z0 are
appropriately chosen to make sure that in the observation
plane the lateral speckle size is several times larger than
the camera pixel size. In order to compare the simulating re-
sults and the analytic prediction, knowledge of theΔx value is
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necessary. The relationship between the sample intervals in
the object plane and in the observation plane, Δx, is given
by Eq. (14). Given the close agreement between the analytic
and numerical results presented in Figs. 3 and 4, the predic-
tions of Eq. (14) have been verified.

We now simulate the lateral decorrelation trends. Four
speckle patterns in different observation planes z0 þ ε
(ε ¼ 0, 5, 10, and 15mm) are generated. It should be noted
that these simulated speckle patterns have different sample
interval values Δx in each of the four observation planes,
as indicated by Eq. (14). As a result, in order to simulate
the speckle patterns captured by a camera placed in these
observation planes, the number of samples in the last three
patterns must be increased by a factor of ðz0 þ εÞ=z0. This task
can be carried out using the in-built MATLAB function “imre-
size” [35], which resamples and interpolates the pattern ac-
cording to the given rescaling factor. After the resizing
operation, the sample interval value Δx of the four speckle
patterns can be considered the same. We choose N ¼ 1000,
Δξ ¼ 21:38 μm, w ¼ 1:5mm, z0 ¼ 400mm, and λ ¼ 633nm.
As a result, after resizing, the sample interval of the four
simulated patterns is 11:84 μm. Then four image subsets, con-
taining 200 × 200 samples, centered at (300, 0) away from the
image center, are selected from the four images. This means
that the subsets are all the same size and are all centered in
the same transversal region with respect to the optical axis,
i.e., the SOP is (3:55mm, 0). Correlation operations are per-
formed, using the discrete correlation algorithm, between
the first and each of the other three subset images. The result-
ing correlation coefficients estimated from simulating both
plane waves, in Fig. 3(a), and Gaussian beam illumination,
in Fig. 3(b), are compared with the corresponding analytic
predictions.

Next, we simulate longitudinal decorrelation effects. We en-
sure the validity of the Fresnel transform by ensuring that
z0 ≫ ε, setting z0 ¼ 200mm andΔξ ¼ 10:69 μm in this simula-
tion. The other parameters used, i.e., N , w, and λ have the
same values as used in the lateral case. Therefore, the sample
interval Δx of the simulated speckle pattern is still 11:84 μm.
A series of speckle patterns in different observation planes,
i.e., for 0mm ≤ ε ≤ 30mm, are simulated. Once again, as in
the lateral correlation case, the simulated images are resized
to maintain the sample interval. The longitudinal correla-
tion coefficients for four different SOP positions fð0; 0Þ;
ð1:184mm; 0Þ; ð2:368mm; 0Þ; and ð3:552mm; 0Þg are provided
and compared with the corresponding analytic predictions,
for the plane wave see Fig. 4(a), and for Gaussian illumination
see Fig. 4(b).

Examining the results plotted in Figs. 3 and 4, for both
lateral and longitudinal speckle decorrelation, some differ-
ences can be seen between the numerically calculated corre-
lation coefficients and the analytic predictions. However, the
decorrelation trends agree quite well as do the positions of
the maximum correlation values. Therefore, the relatively
small absolute disagreements between the numerical results
and the analytic predictions in Figs. 3 and 4 are not of great
practical significance. We believe the discrepancies arise
mainly due to the resampling/interpolating operation on the
simulated speckle image. In addition, the discrete speckle in-
tensities are calculated from area samples (pixels), not the
ideal point values assumed in the theoretical derivation,

and we estimate the correlation coefficient value from a “spa-
tial average” around the points of interest. As a result, some
disagreements will arise due to the discrepancy between the
intensity values used in the simulation and the idealized point
values in the theory.

Before proceeding we first wish to examine the use of the
SM for speckle field simulation, examining the simulated on-
axis longitudinal decorrelation (see Fig. 6). The parameters
used are z0 ¼ 200mm,w ¼ 1:5mm, and λ ¼ 633nm. SinceΔx
only depends on Δξ, we set N ¼ C, so no zero padding of the
input field data is carried out before simulating the field pro-
pagation. Three pairs of ðΔξ; CÞ values are used in the simula-
tions fð32:07 μm; 94Þ; ð21:38 μm; 140Þ; and ð10:69 μm; 280Þg.
These parameters are chosen to facilitate a direct comparison
with the DM results. It is clear in Fig. 6 that the decorrelation
rate between the longitudinally displaced speckle images is
affected by the choice of Δξ, and hence cannot be used to
safely model the 3D free-space characteristics of speckle
fields.

In the SM algorithm implementation first a FFT is applied to
the input speckle field, followed by a distance dependent
chirp multiplication, and finally an inverse FFT is performed
on the result yielding the output Fresnel transformed field. We
recall the critical assumption in the analytical treatment of the
speckle fields that the autocorrelation of the input distribution
is described using a Dirac delta function. This assumption im-
plies that the Fourier transform of the input field is unit valued
and broadband (infinite) in the spatial frequency domain. This
is not straightforward to represent numerically. The first FFT
operation in the implementation of SM leads to a distorted
numerical approximation to such a distribution. We therefore
conclude that the SM is unsuitable due to the assumption of a
delta correlated speckle fields, see [36]. Further work is
needed to fully explore the differences between DM- and
SM-based speckle simulations, and we note that it may be pos-
sible to modify the SM to overcome these difficulties. Here we
present some simulation results for SM mainly with the aim of
raising the readers’ awareness of these serious issues.

4. CONCLUSION
The physical model used to describe the statistical properties
of fully developed static speckle in free space has been re-
viewed. A numerical technique involving the DM approach
is provided to simulate the physical predictions. The use of
spatial averaging, instead of ensemble averaging, to perform

Fig. 6. (Color online) Simulation of longitudinal on-axis decorrela-
tion trend using the SM with different choices of sample interval
Δξ. (Gaussian beam illumination case).
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speckle correlation calculation, has been discussed in detail.
In this way the time-consuming realization of the ensemble
averaging can be avoided. The discrete correlation coeffi-
cients obtained, using the proposed spatial average based cor-
relation algorithm, are shown to be directly comparable to the
analytic predictions (calculated using the ensemble average)
at each sample position.

This study of the analytic space cross-correlation function
of speckle has revealed two important properties: (i) the long-
itudinal correlation coefficients of two longitudinally dis-
placed speckle patterns decrease monotonically along the
radial direction away from the system optical axis and (ii) po-
sition shifting of the peak coefficient is observed when an off-
axis speckle points field is correlated with the fields from a
longitudinally displaced plane.

In Part II [21], the prediction of the model are verified
against experimental results for both lateral and longitudinal
speckle decorrelations and on- and off-axis cases.
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