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Summary 

The method for three-dimensional storm surge computation proposed by 
Heaps is modified by removing the bottom frictional stress from the 
vertical eigenfunction expansion. The stress is applied externally on 
each vertical column of fluid. Calculations on a simplified model show 
that the technique does not alter the response of the sea from that 
determined by Heaps’ method. The modification allows the bottom 
frictional stress to be expressed as an arbitrary function of horizontal 
velocity rather than the linear function necessitated previously. 

Introduction 

There are not many numerical methods available in the literature for examining 
the internal structure of large scale sea motions. In the outstanding category there 
are the methods of Sarkisyan (see e.g. 1969), or Sarkisyan & Ivanov (1972), and 
Bryan & Cox (see e.g. 1967). These models are for very large seas and involve a very 
large time scale. Thus it was a considerable step forward when the method of Heaps 
(1971, 1973) was proposed for a shallow enclosed sea. 

It was clear from the earlier models that computing time and space were very 
limiting factors. Heaps sought to economize on this by representing velocity varia- 
tions through the depth with the aid of an eigenfunction expansion throughout each 
vertical column of fluid. By transforming the equation into two-dimensions, it was 
found only necessary to perform the calculations with the first few modes of the 
eigenfunction expansion. Hence both computing time and space were conserved. 

A restriction of Heaps’ scheme for general use is that his eigenfunction expansion 
included the friction law for the bottom stress as a boundary condition for the func- 
tions at the bottom. To retain orthogonal properties, this had to be a linear relation. 

It is well known that for tidal motions in shallow seas a quadratic friction law 
gives closer agreement between numerical solutions and observations. With this in 
mind, an alternative eigenfunction expansion is proposed; this allows a quadratic 
friction law instead of a linear one. 

Review of Heaps’ model 
The reader is referred to the original paper for complete details. The linearized 
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equations of motion used for the calculation of storm surges by Heaps are 

and 

with standard notation, where y is the Coriolis parameter, N is the coefficient of eddy 
viscosity, and z is positive down. The continuity equation appears in the form 

where h is the undisturbed water depth. The surface wind stress components, F, and 
G,, are expressed in terms of an eddy viscosity and vertical shear, i.e. 

Similarly, the bottom conditions are written 

- p  (N:Ih = FB, - p  (Ng)h = G,, z = h. 

where F B  and G B  are the components of bottom friction, which is assumed to vary 
linearly with bottom current, i.e. 

FB = kpUh, GB = kpu,,, (6) 

where k is the friction constant. 
Combining ( 5 )  and (6) yields the linear bottom condition 

Eigenfunctions, fr (z) ,  are now found for the differential equation 

subject to the boundary conditions 

Nhfr’(h) = -kf,(h), 

and the normalizing condition 
f,(O) = 1. 

The horizontal velocity components are then expanded in terms of the eigen- 
functions and the transform of equations (1)-(3) are taken with respect to the eigen- 
functions, yielding 

aur a i  F, - +Arur-yur = -gar- + - 
at ax p h ’  
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avr aC G, 
- +Lrvr+yur = -gar-  + - 

aY Ph’ at 
and 
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(13) 

where r = 1,2,3, ..., 03, and 

Equations (12)-(14) are schematized into a difference scheme and numerical solutions 
generated for various problems. 

Separation of bottom stress from the eigenfunction 

It is obvious that the boundary condition (10) is linear and must necessarily be 
linear for the eigenfunctions to be orthogonal. Thus if (10) were modified to repre- 
sent a quadratic friction law 

I 

the functions, fr(z), would no longer be orthogonal. However, if the bottom boun- 
dary condition of the d.e. (8) were modified so that the bottom stress was not included 
then the orthogonality property could be retained. 

Hence a new set of eigenfunctions, qr(z), are defined for the equation (8), now 
subject to boundary conditions 

4:(0) = 0, (17) 

qr’(h) = 0, 

q r ( 0 )  = 1. 
and the normalizing condition 

Orthogonality of the qr is preserved, however, the transform of equations (1)-(3) is 
altered. Equations (12) and (13) become 

aur ac Fs F ,  
- +A, ur-yvr = -gar - + - - -, 
at ax ph ph 

and 

avr ac G, G ,  - +Arvr+yur = -gar-  + - - -, 
at aY Ph Ph 

where the ,Ir are determined from the system (8), (17), (18) and are different from 
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those of the system (8), (9), (10). Equation (14) retains its form except that the func- 
tions u,, u,, a,, 4, are expressed as integrals of 4,(z). 

The removal of the bottom stress from the orthogonal functions is similar to the 
way in which surface stress is removed by Heaps. Although this method forms a 
discontinuity in the velocity gradient at the surface, Heaps has shown in his paper 
that the discontinuity has no radical effect on the storm surge calculation. 

The bottom stress components, FB and G B ,  in (20) and (21) may now be defined 
in any suitable way, e.g. by (6), or by the equivalent of (16), i.e. 

F B  = K p u h  J ( u h z  + Ohz), G B  = KPUh J ( u h z  + uh2). (22) 
There is a minor penalty attached to the use of (20) and (21). These equations 

require the knowledge of u,, and u,, at each time step. They are given by 

In the practical application of the method the summation is carried out over M 
terms and, since 4,qr(h) are known from the outset, (23) consists of an extra 2M 
multiplications and additions per time step. 

Numerical verification 

The technique required by equations (20), (21) and (23) is verified on a simple 
storm surge model. A two-dimensional model is assumed, having constant depth, no 
rotation, and a/dy E 0. A constant wind stress, F,, of 15 dyne cm-’ is applied in 
the x direction over an enclosed sea of length 420 km, represented by 14 grid spaces, 
and a depth of 65 m. Linear friction is assumed with k = 0.2. The response of the 
sea surface is found for a wind stress lasting 20hr, using time steps of 6min. The 
results are compared with the corresponding Heaps’ model. In view of the figures in 
Heaps’ paper depicting the relevant amplitudes of each mode in the solution it was 
decided to use only the first six modes in each case. 

No graphs are presented here because the two solutions are almost identical. 
Discrepancies in elevations at each of 20 one-hour time intervals is at most 1 per 

cent. For the velocities the error is of the same order for all depths except the bottom 
where the error is at most 5 per cent. One possible source of error is the truncation 
of the modes after 6. The error term due to this truncation is unlikely to be the same 
at all points throughout the calculation. Nevertheless the correspondence of the two 
results is sufficiently established to show that the bottom stress may be removed from 
the eigenfunction expansion and in this way a quadratic law may be applied to the 
friction term. 
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