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ABSTRACT 

The effect of a side notch used as a crack guide in a double-cantilever-

beam specimen is investigated. The resulting stress distribution along the 

section of symmetry ahead of the notch is obtained from a three-dimensional 

photociastic model. The effect of the side notch, through the thickness and 

down the side of the specimen is determined. After stress freezing, the 

model was sliced along principal planes. Along the x-x plane of symmetry, 

the principal stresses were determined by graphical integration of Filon's 

transformation of the Lame'-Maxwell equations and by subslicing along the x-z 

plane. Results of the investigation are in good agreement with those of 

other investigators. The side notch increases the value of the maximum 

tensile stress at the intersection of the starter notch and the side notch by 

approximately 22%. 

This work was performed under the auspices of the U.S. Energy Research & 

Development Administration. 
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Double cantilever beam, side notch, stress freezing, starter notch, 

stress-intensity factor, fringes, photoelasticity, fracture, stress fringes 

NOMENCLATURE 

a Distance from loading pin center line to notch tip (mm) 

B Minimum through-the-thickness distance between side notches (mm) 

d Distance from the notch tip to the end of the specimen (mm) 

P Load (N) 

R Notch root radii*:; (mm) 

W Distance from loading pin center line to the end of the specimen (mm) 

K Stress intensity factor for Mode I type of displacement (MPs'in ) 

0 ,a ,0 Cartesian system stress components x y z 

n Fringe order 

f Material fringe value (N/mm per fringe) 

t Thickness of the model slice (mm) 

0 Nominal combined bending and tensile stresses (Pa) 
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INTRODUCTION 

Experimental work in determining stress-intensity factors and 

three-dimensional effects has been conducted on compact specimens. Schroedi 

and Smith [1] have performed analysis on compact specimens for W/B and a/W 

ratios as recommended in ASTM E-399. However, although other geometries are 

often used to characterize material toughness, the effort to determine the 

three-dimensional effects on the stress intensity of other geometries has not 

been made to the same degree as in the case of compact specimens. Specifically, 

the use of the side notch in the double-cantilever beam (DCB) has not been 

explored to determine the effect of the notch on the through-thickness stress 

intensity-factor. Mostovoy [2] presents the general approach for the use of 

this class of specimens, and Gallagher [3] and Dull [4] discuss the 

determination of experimentally determined stress intensity factors and the 

compliance calibration for these specimens. The use of the contoured double 

cantilever beam specimen is for determining fatigue properties, material 

stress-corrosion resistance, and fracture toughness. Because of the geometric 

advantage which the DCB specimen offers, a program for determining the 

fracture toughness of beryllium was initiated in 1970 at Lawrence Livermore 

Laboratory (LLL) using DCB specimens [5]. This work served to motivate the 

present study. The DCB specimens used in Ref. 5 were side notched but no 

attempt was made to determine the influence of a side notch on fracture toughness. 

The present study is thus aimed at evaluating side-notched specimens with the 

goal of determining their three-dimensional stress distribution. 



This study is restricted to one-notched geometry with a specific crack 

length. However, a thorough experimental stress analysis of this geometry 

has been made and it Is believed that the conclusions reached in this study 

should be relevant to ether side-notched geometries. 

EXPERIMENTAL PROCEDURE 

The photoelastic specimens employed in these experiments are machined 

from readily available epoxy resins which exhibit excellent characteristics 

for use in three-dimensional models. Leven [6] has detailed the techniques 

and procedures for successfully employing phthalic-anhydride cured resins an4 

the authors have had good results with these materials. After casting and 

fabrication, the model is placed in an oven and loaded with dead weights. 

The oven is slowly heated to 165°C, which is the desired "stress freezing" [7] 

temperature for this material, and then slowly cooled to ambient temperature. 

At this point the stresses are permanently locked into the specimen and it is 

ready far slicing and analysis. 

MODEL SLICING AND FRINGE EVALUATION 

Figure 1 shows the coordinate system employed in this investigation. 

The specimen geometry is described in Fig. 2 and the slicing plan is shown in 

Fig. 3. Figure 4 shows the stress patterns in the center slice (™- = Oj, 

These patterns are similar at — = 0,4 and 0.6. The numbers in the field of 

these photographs refer to fringe order (n). Figure 5 is a slice taken at 



thi; edge of the specimen and includes the side notch* Figure 6 shows stress 

patterns of two slices removed tangent to the starter notch for determining 

the fringe orders along the Z axis. By determining the fringe order at an 

initial slice thickness and determining — through a series of machining 

operations, the final values of the stress differences 0 - o* may be 
y z 

extrapolated to the free boundary along the starter notch. 

From the stress patterns shown in Figs. 4 and 5, the principal stresses 

in the region of the starter notch were determined and are plotted in 

dimensionless form in Fig. 7. Separation of the principal stresses was 

accomplished using the slope equilibrium method [7], Filon's transformation 

of the Lame-Maxwell equations [8] and by sub-slicing. The determination of 

fractional fringe orders was accomplished using Tardy Compensation [9], a 

Babinet compensator and by extrapolation to a boundary. 

DISCUSSION' OF EXPERIMENTAL ANALYSIS AND RESULTS 

Figure 4 shows a light field photograph of a slice removed from the 

center or mid-thickness of the model. Along the X axis, the fringe pattern 

(see numbers on field of photograph) ranges from an order of zero at the 

isotropic point to a maximum of 5.6 at the root radius. Along this principal 

axis a and o are principal stresses. In each case the stress pattern was 
x y r 

analyzed by applying the stress optic law [8] 

a - a = ̂  . { 1 ) 

x y c v ' 

The determination of the principal stresses through the thickness (along the 

Z axis at the root of the notch) is handled in the same manner with 



nf ,..* 
o - a = — • (-) 
y z t 

The general form for the elastic-stress field near a crack tip of zero root 

radius by Irwin [10] is 
K i e /. . . e , 38\ ... 

o = T77 c° s 7 1 + sin -r sin •=- I . (3) 
y (2irr) 1 / 2 2 V 2 2 ' 

As our model has a small finite root radius, it does not satisfy Eq. (3) 

because r never approaches zero. Bowie and Heal [11] performed investigations 

employing finite root radius with results showing that for a notch-length-to-

root-radius ratio greater than 2.0, there is introduced a maximum 2Z error In 

determining K . Kobayashi [12] determined through a series of photoelastic 

experiments that K reaches a stationary value when the minimum value of r is 

approximately 1.85 mm. The boundary stresses cr /a determined at the notch 

root through the thickness from 2Z/B = 0 to 0.75 varies approximately 3-1/22, 

which is an acceptable span for experimental error. Therefore, it will be 

assumed for this investigation that equation (3) provides values within 6Z 

near the starter notch root. 

The stress intensity factors were determined using the dimensxonless 

form suggested by Marloff £t a_l. [13j in which 

0 n = | j ( 4 + M ) . 
Setting 9 = 0 in equation (3) 

Kj » (2Trr)I/'2 a, (5) 
1/9 

By setting r = x and dividing numerator and denominator by d , a convenient 

equation for both stress analysis and plotting may be developed: 
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.,, .1/2 
K t - (2-rd)1'" (I) O y . (6) 

1/2 By substituting (a) /a into both sides of equation (6), the stress 

intensity factor may be expressed in dimensionless form: 

^/2„ K.(a) B 
J— = 7 

•"(-) 1 / 2(^)-
Figured 8 and 9 show the stress distribution along the Z axis from the 

center o.' the* specimen out to the side notch. For most of this distance it 

behaves as tuough it doesn't know the side notch is there, but the discontinuity 

slowly influences it and by 22/B - 0.97, a minimum value is reached with the 

Q J"y stress rapidly increasing to the side notch. So for a value of R 

* 0.5i mm with a 30° flank angle, the side notch influences the distribution 

of principal stresses for a distance of approximately 1.3 times the side notch 

radius. The effects of the side notch may be beneficial in maintaining a more 

even stress distribution through the specimen thickness and ensuring a more 

uniform crack length through the thickness. 

The values of a /a were higher than anticipated but this is probablv z n 

due to the high Poisson's ratio of the model material (0.48) at the 

stress-freezing temperature. Also the triaxial state of stress near the 

notch tip indicates that the condition of plane strain exists. Figure 8 

shows the* principal stresses in the X-V plane at the center and along the 

sid-̂  notch oi the specimen. Starting at the notch root and going along the X 

axis, the values of o fa are always higher along the side notch compared to 

the center, a condition which should be ex^e^ted at a free boundary and 

probably guarantees good crack guidance. 
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Figure 10 is a plot of the stress intensity factors near the starter 

notch. These plots were made for values of x/d between 0.001 to 0.015. It 

appears that these values become constant beyond x/d = 0.007. 

CONCLUSIONS 

Ttie results of this investigation indicate that the use of a side notch 

in symmetrical fracture-toughness specimens provides the crack the guidance 

for which it was intended. Furthermore, the side notch, although it acts as 

a stress riser, tends to raise the average boundary stress from the region 

z/B = 0,75-1.00 to nearly the same as the mid-thickness value and will 

guarantee a more constant crack length throughout the complete thickness. 
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FIGURE CAI'HONS 

1 CooicSinate system for the stress f/.eld near the crack tip* The Z 
axis Is perpendicular to Che page. 

2 Dimensions of photoelastic mcdel. 

i Specimen-slicing plan, 

4 i.ight-field photographs of center slice and enlargement of stress 

pattirn at crack tip. Slice is at 0,89 mm thickness. Notch-tip 

enlarg«raent is 20-*. N'urabers in field refer to fringe order (n). 

5 Light-field photographs o£ edge slice, showing sfue notch. Top 

section is ''.11 mm thick. Lower left section showing crack tip 

{20*) is 0,-U mm thick. Lower right section showing crack tip 

(20*) is 0.41 mm thick. The thinning of the sections was used in: 

(a) determination of values of o , - •; down the side notch axis and 

(b) determining maximum values of a_ at the intersection of the 

crack tin and the notch. Numbers in field refer to fringe order (n). 

6 Scres£ pattern looking along trace of starter notch out to the side 

notch along the z~z plane. Upper slice thickness = 0.58 mm (20*), 

Lower slice thickness = 0.2i (20*). 

7 Distribution of the principal stresses (J Jo and o /o ) through 

the thickness at the notch tip. 

8 Through-the-thickness variations of the principal stresses along 

the z-z axis. 



Fig. 9 Through-che-thickness variation of Che maximum starter-notch 

stresses near the =3ide notch. 

Fig. 10 Plot of stress-intensity factors at center section and at side 

notch. 
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Notes -. 
1. All dimensions in mm 
?. Starter notch and side notch have same radius 

Side 
notch 
detail 

Kirkwood - Fig. 2 
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Edge slice with side notch 

Intermediate slices 

-Slice tangent to starter notch root taken to determine 
a - a at the root. Values we e extropolated to the free 
boundary by thinning several times and recording the fringe 
values. 

tCirkwood - Fig. 3 
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DCB Specimen 
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