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Three-dimensional structural vibration analysis
by the Dual Reciprocity BEM
J. P. Agnantiaris, D. Polyzos, D. E. Beskos

Abstract The dual reciprocity boundary element method
(DR/BEM) is employed for the analysis of free and forced
vibrations of three-dimensional elastic solids. Use of the
elastostatic fundamental solution in the integral formula-
tion of elastodynamics creates an inertial volume integral
in addition to the boundary ones. This volume integral is
transformed into a surface integral by invoking the re-
ciprocal theorem. A general analytical method is described
for the closed form determination of the particular solu-
tions of the displacement and traction tensors corre-
sponding to any radial basis function employed in the
transformation process. The simple but effective 1� r
radial basis function is used in the applications of this
paper. Quadratic continuous and discontinuous 9-noded
boundary elements are used in the analysis. Free vibra-
tions are studied by solving the corresponding eigenvalue
problem iteratively. Harmonic forced vibration problems
are solved directly in the frequency domain. Transient
forced vibration problems are solved by integrating the
equations of motion stepwise with the aid of various al-
gorithms. Interior collection points are also used for as-
sessing the accuracy of the method. Two numerical
examples involving free and forced vibrations of a sphere
and a cube are presented in detail.

1
Introduction
The conventional Boundary Element Method (BEM) as
applied to elastodynamic analysis in the frequency or time
domain employs the corresponding elastodynamic fun-
damental solution and formulates the problem in terms of
only surface integrals, thereby reducing the dimensionality
of the problem by one and restricting the discretization to
the surface of the domain (Beskos 1987, 1996). However,
the use of the elastodynamic fundamental solution in-
creases the computational effort in forced vibration anal-
ysis and in addition creates problems of accuracy in free

vibration analysis, due to its complicated form. On the
other hand, use of the much simpler elastostatic funda-
mental solution creates an inertial volume integral, which
requires an interior discretization of the domain in addi-
tion to the surface one. Thus, the main advantage of di-
mensionality reduction of the method is lost (Beskos 1987,
1996).

Nardini and Brebbia (1982, 1983, 1985) introduced the
Dual Reciprocity Boundary Element Method (DR/BEM), in
which the inertial volume integral is transformed into a
surface integral with the aid of the reciprocal theorem
applied for the second time, the ®rst time being when
formulating the elastodynamic problem in integral form.
Thus, they succeeded in creating a BEM which combines
the dimensionality reduction advantage with the simple
elastostatic fundamental solution with obvious computa-
tional gains in both free and forced elastic vibration
problems. Looking at the result from another viewpoint,
one can say that the resulting formulation looks like a
®nite element one without the need of interior discreti-
zation but with the employment of nonsymmetric matri-
ces. Thus, in DR/BEM, free vibration analysis is
accomplished by solving the generalized eigenvalue
problem iteratively and forced vibration analysis by inte-
grating stepwise the equations of motion. Problems arising
in free vibration analysis (use of the inef®cient determi-
nant search method) and forced vibration analysis (ob-
serving causality at every time step) by the conventional
time domain BEM are now eliminated. The equivalence of
the DR/BEM to the particular integrals BEM approach of
Ahmad and Banerjee (1986) was recently established by
Polyzos et al. (1994). A comprehensive literature review on
the DR/BEM as applied to elastodynamics can be found in
the general review article of Beskos (1996). The problem of
convergence of the DR/BEM and the associated problems
of selecting the best basis (or approximating) functions
and including or not internal collocation points have re-
ceived considerable attention in recent years. In elasto-
dynamics one can mention the works of Chirino et al.
(1994), Providakis et al. (1994) and Agnantiaris et al.
(1996). Through comparison studies dealing with two-
dimensional (2-D) elastodynamic fracture mechanics
problems, Chirino et al. (1994) have concluded that a) a
reasonable number of interior collocation points increase
the accuracy of the method and b) the DR/BEM requires
less computer time than either the time or frequency do-
main conventional BEM's. Very recent studies on the DR/
BEM as applied to various 2-D elastodynamic problems by
Agnantiaris et al. (1996) have revealed that a) radial basis
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functions not only lead to convergent solutions but due to
their simplicity, permit an easy analytic computation of
particular solutions, b) the simplest polynomial 1� r
provides the best results and c) some internal collocation
points improve the accuracy of the solution.

The present paper deals with the application of the DR/
BEM to three-dimensional (3-D) elastodynamic analysis
including both free and forced vibration problems. Con-
vergence of the method as affected by the number of
boundary elements, the number of internal collocation
points, the size of the time step and various step-by-step
integration algorithms is studied through numerical ex-
amples. A general analytical method is described for the
closed form determination of the particular solutions of
the displacement and traction tensors corresponding to
radial basis functions. The simple but effective 1� r radial
basis function is adopted. Quadratic continuous and dis-
continuous 9-noded boundary elements are used in the
analysis. Free vibrations are studied by solving the corre-
sponding eigenvalue problem iteratively. Harmonic forced
vibration problems are solved directly in the frequency
domain and transient forced vibration problems are solved
by step-by-step integration of the equations of motion.
Two numerical examples involving free and forced vibra-
tions of a sphere and a cube are presented. Thus, the
present paper can be thought of as an extension and
generalization of the previous work of the authors (Agn-
antiaris et al. 1996) with respect to dimensionality, internal
collocation point effect and numerical integration. The
DR/BEM has been successfully applied by Wang and
Banerjee (1988, 1990) and Wilson et al. (1990) to free vi-
brations of 3-D and axisymmetric structures. However, no
application of the DR/BEM to forced vibrations of three-
dimensional (3-D) elastic structures and no extensive
convergence studies of the method have as yet appeared in
the literature. The present paper consists of ®ve sections
with the ®rst one being the present section (introduction).
The second section brie¯y presents the DR/BEM as applied
to elastodynamics. The third section describes a general
analytical method for determining particular solutions.
Section four deals with the numerical examples and sec-
tion ®ve presents the conclusions coming out of the
present work.

2
The DR/BEM in elastodynamics
A brief review of the DR/BEM as applied to elastodynamics
is presented in this section for reasons of completeness.
More details can be found elsewhere (Dominguez 1993).
Consider the motion of a linearly elastic body of volume X
and surface C described by the governing partial differ-
ential equation

Lxu�x; t� � �L1
x � L2

x�u�x; t� � 0 ; �1�
where u�x; t� is the displacement vector at point x and
time t and the linear elastostatics operator L1

x and inertial
operator L2

x are given by

L1
x � lIDx � �k� l�rxrx ; �2�

L2
x � ÿqI

o2

ot2
; �3�

with k and l being the Lame elastic constants, q the mass
density, I the identity tensor, D the Laplacian and r the
gradient operator. Assuming zero body forces and initial
conditions one can obtain an integral representation of the
solution of Eq. (1) in the form

c�x�u�x; t� �
Z

C
u��x; n�p�n; t� ÿ p��x; n�u�n; t�� � dC�n�

ÿ
Z

X
u��x; n�q�u�n; t�dX�n� �4�

where u��x; n� is the fundamental displacement tensor and
p��x; n� the corresponding fundamental traction tensor for
the elastostatic operator L1

x (Kelvin's solution), p�n; t� is
the traction vector at point n and time t, overdots indicate
differentiation with respect to time and the tensor c�x�
receives the value of I for x 2 X, 0 for x 2 Xc, (1/2)I for
x 2 C and being smooth and is given as a function of the
local geometry at x for x 2 C and being nonsmooth.

Integral representation (4) has the advantage of em-
ploying the much simpler elastostatic fundamental solu-
tion pair and hence avoiding the time convolutions
present in a conventional time domain BEM. However, the
presence of the inertial volume integral in (4) indicates
that an interior domain discretization in addition to the
boundary one is necessary. Nardini and Brebbia (1982,
1983, 1985) were able to transform this volume integral
into a boundary one, thereby creating an all-boundary
integral formulation involving the advantageous elasto-
static fundamental solution and leading to the DR/BEM.
To this end, the unknown solution u�x; t� is expressed
inside X as a series of unknown time dependent coef®-
cients am

i �t� and known basis functions f m�x� of the
form

ui�x; t� �
XM

m�1

am
i �t�f m�x�; x 2 X ; �5�

where M � N � L with N and L being the number of
boundary and internal collocation points, respectively. In
this work radial basis functions are considered because of
their simplicity meaning that

f m�x� � f �r�x; nm�� ; �6�
where r�x; nm� is the Euclidean distance from point x to
point nm. Inserting expression (5) into the volume integral
of Eq. (4) and using the reciprocity principle one succeeds
in transforming this integral into a boundary integral of
the form

ÿ
Z

X
u��x; n�q�u�n; t�dX�n�

� q
XM

m�1

�am
n �t�

�
cij�x�wm

jn�x� �
Z

C
p�ij�x; n�wm

jn�x�dC�n�

ÿ
Z

C
u�ij�x; n�gm

jn�x�dC�n�
�
; �7�

where wm
jn�x� is the particular solution (displacement) of

the equation

L1
xw

m�x� � f m�x�I �8�
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and gm
jn�x� is the traction ®eld corresponding to the dis-

placement wm
jn�x� with i; j; n � 1; 2; 3. Discretization of the

boundary C into a ®nite number of quadratic boundary
elements with a total number of N nodes and writing of
Eq. (4) in conjunction with (7) for all these nodes, enables
one to form the matrix equation

�P�fug � �U�fpg � q��P��W� ÿ �U��H��f�ag ; �9�
where �U� and �P� are the elastostatic in¯uence matrices,
fug and fpg are the boundary displacement and traction
vectors, respectively and �W� and �H� are matrices con-
taining submatrices of the type wm

j and gm
j each column of

which corresponds to the m-order radial function and
each row to the j nodal point. Application of expansion (5)
to all nodal points M and collection of the resulting
equations produces

fug � �F�fag : �10�
Thus one can rewrite Eq. (9) into the form

�M�f�ug � �P�fug � �U�fpg ; �11�
where

�M� � q��U��H� ÿ �P��W���F�ÿ1 : �12�
Equation (11) can be easily solved by a step-by-step time
integration algorithm. It has been found by Loef¯er and
Mansur (1987) that among four different time integration
algorithms (two central difference, Newmark's and Hou-
bolt's) Houbolt's algorithm is the most accurate and stable
for solving this equation. In this work, besides Houbolt's
algorithm, the stif¯y stable algorithm of Park (Park 1975;
Adeli et al. 1978) the a-method of Hilber et al. (1977), as
well as the central difference algorithm and those of
Newmark and Wilson (Bathe 1996) have also been used
and tested.

The corresponding DR/BEM elastodynamic formulation
in frequency domain can be easily accomplished by con-
sidering time harmonic dependence for the boundary
displacement and traction vectors appearing in (11). In
this case Eq. (11) becomes

�ÿx2�M� � �P��fu0g � �U�fp0g ; �13�
where x is the circular frequency of the harmonic exci-
tation of u and p vectors with amplitudes u0 and p0, re-
spectively. For any desirable frequency, by considering the
appropriate boundary conditions, one can compute any
unknown amplitude by solving the system (13). The
computation of natural modes and frequencies of vibra-
tion can be deduced from the general system (13) by set-
ting the external disturbances equal to zero. This results to
a generalized algebraic eigenvalue problem represented by
the equation

�A�fxg � x2�M��fxg ; �14�
where matrix [A] is the BEM in¯uence matrix referring to
all unknown boundary variables contained in fxg and
matrix �M�� is obtained from [M] by putting zeros in its
sub-columns related to speci®ed displacements (®xed
boundaries). The algebraic system (14) is solved for the
natural frequencies x and the corresponding modal

shapes contained in fxg. It should be noticed that matrices
[A] and �M�� are both fully populated and non symmetric
and care should be taken in the choice of the appropriate
eigenvalue solution algorithm. In the present work, an
algorithm based on iterative similarity transformations for
eigenvalue extraction of non symmetric matrices described
in Press et al. (1994) was used successfully.

3
Derivation of particular solutions
In this section a general method for analytically obtaining
a particular solution of Eq. (8) under three-dimensional
conditions is described. This method uses Papkovich po-
tentials instead of the Galerkin vector employed by Cole-
man et al. (1991) and requires the solution of lower order
ordinary differential equations.

A solution of Eq. (8) in three dimensions admits (Brand
1966) a dyadic decomposition of the form

wm � a1 
 x̂1 � a2 
 x̂2 � a3 
 x̂3 ; �15�
where 
 denotes the dyadic, ai are unknown vectors and x̂i

the unit vectors along xi axes of a three dimensional
Cartesian system �i � 1; 2; 3�. Inserting Eq. (15) into
Eq. (8) one receivesX3

i�1

lDai � �k� l�rr � ai ÿ f �r�x̂i� � 
 x̂i � 0 : �16�

Due to the orthogonality of x̂i Eq. (16) implies that

Dai � 1

1ÿ 2m
rr � ai ÿ 1

l
f �r�x̂i � 0; i � 1; 2; 3 ; �17�

where m is the Poisson's ratio. The solutions of Eq. (17) can
be expressed in terms of the vector and scalar (Rekach
1979) potentials as

ai � Ai ÿ 1

4�1ÿ m�r�r � Ai � ai�; i � 1; 2; 3 ; �18�

where the vector potentials Ai and the scalar potentials ai

satisfy the equations

lDAi � f �r�x̂i �19�
and

lDai � ÿf �r��r̂ � x̂i� : �20�
It is easy to see that the complete solutions of the above
vector and scalar Poisson's equations (19) and (20) re-
spectively, are

lAi � g�r� � R1

r

� �
x̂i � R2

r
�x̂1 � x̂2 � x̂3 ÿ x̂i� ; �21�

lai � q�r� � R3r � R4

r2

� �
�r̂ � x̂i� ; �22�

where the radial functions g�r� and q�r� satisfy the ordi-
nary differential equations

1

r

d

dr

d

dr
�r g�r��

� �
� f �r� ; �23�
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d

dr

1

r2

d

dr
fr2q�r�g

� �
� ÿr f �r� ; �24�

respectively, and the constants R1;R2;R3;R4 appearing in
(21) and (22) correspond to arbitrary integration constants
of the homogeneous solutions of (23) and (24), respec-
tively.

Taking into account Eq. (21), (22) and inserting (18)
into (15) the complete particular solution of (8) is written
as

wm
ij � P1�r�dij � r2P2�r�r;i r;j ; �25�

where

P1�r� � 3ÿ 4m
4�1ÿ m�l g � R1

r

� �
ÿ 1

4�1ÿ m�l
q

r
� R3 � R4

r3

� �
;

P2�r� � ÿ 1

4�1ÿ m�l
1

r

dg

dr
ÿ R1

r3
� 1

r2

dq

dr

�
ÿ q

r3
ÿ 3R4

r5

�
:

�26�

In (26) the constants R1;R2;R3;R4 are usually employed in
order to regularize singular terms appearing in the ®nal
expressions for g�r� and q�r�. Finally the traction ®eld gm

ij
corresponding to wm

ij is given by

gm
ij � Q1�r��r;i nj � r;k nkdij�
� Q2�r�r;k nkr;i r;j�Q3�r�nir;j ; �27�

with Q1�r�;Q2�r�;Q3�r� being

Q1�r� � 1ÿ 2m
2�1ÿ m�

dg

dr
ÿ R1

r2

� �
ÿ 1

2�1ÿ m�
1

r

dq

dr
ÿ q

r2
ÿ 3R4

r4

� �
;

Q2�r� � 1

2�1ÿ m� 3
dg

dr
ÿ 3R1

r2
� 5

r

dq

dr
ÿ 5q

r2
ÿ 15R4

r4

� �
;

Q3�r� � ÿ 1ÿ 2m
2�1ÿ m�

dg

dr
ÿ R1

r2

� �
ÿ 1

2�1ÿ m�
1

r

dq

dr
ÿ q

r2
ÿ 3R4

r4

� �
: �28�

In (25) and (27) commas represent spatial derivatives.
It was found in Agnantiaris et al. (1996), that the radial

basis function f �r� � 1� r when used in the above for-
mulation for plane elastic problems provides the best re-
sults. Thus, for this function one can ®nd particular
solutions of Eq. (8) following the procedure described
above. The calculated expressions for the wm

jn�x� particular
solution and its corresponding gm

jn�x� are

wm
ij �

1

4l�1ÿ m� �3ÿ 4m� r2

6
� r3

12

� �
� r2

10
� r3

18

� �
dij

ÿ 1

4l�1ÿ m�
2

15
� r

12

� �
rirj ; �29�

gm
ij �

1

2�1ÿ m� �1ÿ 2m� 1

3
� r

4

� �
� 1

5
� r

6

� �
�rinj � rknkdij�

ÿ 1

2�1ÿ m� �1ÿ 2m� 1

3
� r

4

� �
ÿ 1

5
ÿ r

6

� �
rjni

ÿ 1

2�1ÿ m�
1

12r

� �
rirjrknk ; �30�

where l is the shear modulus, m the Poisson's ratio, ri and
ni are the components of the vector r connecting any two
points of the boundary surface and the components of the
normal outward vector n at the point where the particular
solution is evaluated, respectively and dij is the Dirac
function. The indices i and j vary from 1 to 3.

4
Numerical examples
In this section two 3-D elastodynamic problems dealing
with the free and forced vibration of an elastic sphere of
radius r � 6 m and a cube of side a � 6 m, are solved by
the DR/BEM in order to examine the ef®ciency and the
accuracy of this method as applied to structural vibration
analysis. The above applications were accomplished in a
486 personal computer with 100 MHz processor speed, 16
Mb RAM and 600 Mb hard disk memory space. The ma-
terial properties for both problems are: Shear modulus
l � 106 Pa, Poisson's ratio m � 0:25 (in the free vibration
analysis of the cantilever elastic cube the Poisson's ratio is
taken equal to 0.3) and mass density q � 100 kg=m3. All
the results are compared with those obtained by other
analytical and/or numerical methods.

Example 1 The ®rst problem in this example concerns the
free vibration of an elastic sphere with a traction free
surface. The ®rst six natural frequencies of the problem
have been calculated through the DR/BEM by discretizing
the surface of the sphere into 40 continuous, nine node,
quadratic, quadrilateral elements and using in turn 7, 15,
27, 53 and 67 uniformly distributed internal collocation
points. The results are presented in Table 1 and compared
with those derived analytically in Eringen and Suhubi
(1975). As it is evident from this table there is a very good
agreement between numerical and analytical results, es-
pecially when the number of internal collocation points
increases. Increasing the number of internal collocation
points makes the error smaller and of similar size for all
the frequencies.

The same sphere is subjected next to a uniform har-
monic pressure of amplitude P0 � 100 Pa. This time har-
monic vibration problem has been solved numerically by
the DR/BEM using the same boundary mesh and the same
number of internal points as in the previous free vibration
problem. Figure 1a±d portrays the amplitude of the har-
monic radial displacement Ur at the surface of the sphere
versus the frequency x for 0, 15, 47 and 67 internal points.
The results are compared with the analytical solution of
Eringen and Suhubi (1975) and those obtained by a con-
ventional frequency domain BEM (FD/BEM) code (Kattis
et al. 1994) using the same boundary mesh. It is obvious
from this comparison that the accuracy of the DR/BEM
increases as the number of internal points increases.

4



Finally the sphere is subjected to a suddenly applied
uniform radial pressure P�t� � P0H�t� where P0 � 100 Pa
and H�t� is the Heaviside function. This problem has been
solved by the DR/BEM using the same mesh as in the
previous two cases and considering 0, 15, 27, 53 and 67
internal collocation points. In order to ®nd the most re-
liable time marching scheme of solving the ®nal system
(11), the well known step-by-step time integration tech-
niques of Houbolt, Newmark, Wilson, central difference
(Bathe 1996; Park 1975) and the a-method of Hilber et al.
(1977), have been tested in the present example. Among
them, only Houbolt's and Park's methods gave stable and
accurate results. For this reason, only results pertaining to
Houbolt's and Park's algorithms are presented here as
shown in Fig. 2a±d and 3a±d, respectively, for 0, 15, 53 and
67 internal collocation points for Houbolt's and 0, 15, 27

and 53 for Park's methods. In both cases the same time
integration step Dt � 0:0038 sec has been used for com-
parison reasons. The results are compared with those
obtained ®rst by a numerical inverse Fourier transforma-
tion (with 50 sampling points in a time interval of 0.4 sec)
of the frequency domain analytical solution given by
Eringen and Suhubi (1975) and second by inverting in real
time the Laplace transformed BEM solution of the problem
(with 70 sampling points in a time interval of 0.6 sec) as
proposed by Stamos and Beskos (1995). As it is evident
from these two ®gures, the accuracy of the DR/BEM so-
lution through both Houbolt's and Park's step-by-step
integration schemes, slightly increases for a small increase
of the number of internal points but decreases for further
increase of them. In fact, Park's algorithm breaks down
when use is made of 53 internal points (Fig. 3d). This is in

Table 1. Normalized eigenfrequencies of the traction free sphere

x� � x� R�pq=l

Mode Type Analytical DR/BEM Error DR/BEM Error DR/BEM Error DR/BEM Error DR/BEM Error
7 I.P. (%) 15 I.P. (%) 27 I.P. (%) 53 I.P. (%) 67 I.P. (%)

1 Torsional 2.501 2.446 2.3 2.453 1.9 2.456 1.8 2.469 1.47 2.464 1.47
2 Spheroidal 2.640 2.873 8.8 2.777 5.18 2.750 4.1 2.691 1.93 2.691 1.93
3 Spheroidal 3.424 3.440 0.46 3.405 0.5 3.397 0.78 3.395 0.84 3.383 1.19
4 Torsional 3.865 3.883 0.45 3.881 0.4 3.877 0.3 3.874 0.23 3.873 0.23
5 Spheroidal 3.916 3.898 0.45 3.898 0.45 3.891 0.63 3.886 0.76 3.886 0.76
6 Spheroidal 4.440 4.681 5.4 4.607 3.76 4.575 3. 4.509 1.55 4.509 1.55

Fig. 1a±d. Amplitude of the radial displacement on the surface of the sphere versus radial frequency
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Fig. 3a±d. Time history of the radial displacement on the surface of the sphere using Park's algorithm

Fig. 2a±d. Time history of the radial displacement on the surface of the sphere using Houbolt's algorithm

6



agreement with Chirino et al. (1994) and Agnantiaris et al.
(1996) stating that a small number of internal points im-
proves the accuracy of the solution.

It should be noted here that both Houbolt's and Park's
algorithms have been also tested in the present example by
considering either smaller or larger time step than the one
used here (0.0038 sec) for the same number of internal
collocation points. These results are not shown here for
lack of space reasons, but the main conclusion of this
study is that Houbolt's integration scheme gives accurate
results for a time step Dt that satis®es the relation
b � c1Dt=L � 0:8, with c1 and L being the longitudinal
wave velocity of the elastic medium and the length be-

tween the nearest surface nodes, respectively, while Park's
stif¯y stable time integration scheme works with the same
accuracy as Houbolt's algorithm when b is equal to 1.4.
For 2-D applications of the DR/BEM this parameter b
takes values in the interval [0.75, 1.5] when Houbolt's in-
tegration technique is used (Chirino et al. 1994).

Example 2 The ®rst problem in this example deals with
the free vibration analysis of an elastic cube. The dis-
placements on one face of the cube are completely ®xed
while all the other faces are traction free. The cube is
discretized into 4 nine-node-quadratic-quadrilateral dis-
continuous elements per face in order to accommodate the

Table 2. Normalized eigenfrequencies of the cantilever cube

x� � x� R�pq=E

Mode Type Analytical DR/BEM Error DR/BEM Error DR/BEM Error DR/BEM Error
0 I.P. (%) 10 I.P. (%) 27 I.P. (%) 36 I.P. (%)

1 Bending 0.670 0.673 0.44 0.670 0. 0.670 0. 0.670 0.
2 Torsion 0.909 0.926 1.83 0.930 2.3 0.933 2.64 0.933 2.64
3 Tension 1.599 1.628 1.81 1.608 0.5 1.602 0.18 1.6 0.06
4 Bending 1.769 1.788 1.07 1.775 0.3 1.773 0.22 1.773 0.22
5 Torsion 2.180 2.149 2.6 2.154 1.2 2.156 1.1 2.156 1.1
6 Tension 2.581 2.533 1.85 2.559 0.8 2.556 0.96 2.557 0.92

Fig. 4a±d. Amplitude of the Ux displacement at the mid-node of the loaded surface of the cube versus radial frequency
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corner and edge effects. The results of the DR/BEM were
obtained with 0, 10, 27 and 36 internal collocation points.
The ®rst six natural frequencies of the structure as ob-
tained by the DR/BEM are shown in Table 2. The results
show a rapid convergence as the number of internal points
increases and are in excellent agreement with those cal-
culated analytically by Leissa and Zhang (1983).

Next, a harmonic forced vibration problem is consid-
ered. The cube is subjected to a uniform harmonically
varying with time normal tensile traction of amplitude
P0 � 100 Pa acting on one face (along x direction), while
the displacements on the opposite face are completely
®xed. The remaining faces are traction free. The boundary
mesh is the same as in the free vibration case. The am-
plitude of the harmonic displacement Ux on the loaded
face is plotted versus frequency x as shown in Figs. 4a±d
for 0, 15, 27 and 36 internal collocation points. The same
problem was also solved by the ®nite element program
NASTRAN (1994) using 216 solid-linear-®nite-elements as
well as by a conventional frequency domain BEM (FD/
BEM) code (Kattis et al. 1994) using the same surface mesh
as in the DR/BEM. The results of the DR/BEM are shown
to be in close agreement with those obtained by NASTRAN
and in closer agreement with those obtained by the fre-
quency domain BEM, especially when more internal col-
location points are included.

Finally the cube is subjected at one of its faces to a
suddenly applied uniform tensile traction P � P0H�t�

acting along the x direction, where P0 � 100 Pa and H�t�
is the Heaviside function. The boundary mesh used con-
sists again of 4 elements per face. The time step used in
Houbolt's time integration scheme is Dt � 0:0075 sec
�b � 0:8� while in Park's stif¯y stable scheme is
Dt � 0:0128 sec �b � 1:4�. The results of the DR/BEM
were obtained with 0, 3, 10 and 27 internal collocation
points. The time history of the Ux displacement at the
middle node of the loaded surface of the cube is compared
with that obtained by the ®nite element program NAST-
RAN using 216 solid-linear-®nite-elements and the
Newmark-linear-acceleration time integration algorithm
with a time step Dt � 0:0032 sec. The transient displace-
ment response is shown in Figs. 5a±d for both the Hou-
bolt's and Park's algorithms. The results are in good
agreement with those obtained by NASTRAN but, as it is
evident from the graphs, inclusion of internal collocation
points here introduces oscillations in the response ob-
tained by both Houbolt's and Park's schemes in agreement
with the results of the previous example. As a matter of
fact, in here, even a small number of interior points does
not improve the accuracy as in the case of 2-D plastody-
namics analysed by the DR/BEM (Kontoni and Beskos
1993). Also one can observe that the responses calculated
by the DR/BEM are stiffer than those obtained by
NASTRAN probably to the higher numerical damping in
Houbolt's and Park's algorithms as compared to the New-
mark's algorithm employed by NASTRAN.

Fig. 5a±d. Time History of the Ux displacement at the mid-node of the loaded surface of the cube
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On the basis of the above two examples one can observe
that, in general, an increase of the number of interior
points increases the accuracy of the results of free vibra-
tion or harmonic forced vibration analyses, while de-
creases the accuracy of the results of transient forced
vibration analysis, unless this increase of the interior
points is small. These results can be attributed to the fact
that increase of internal points increases the number of
degrees of freedom of the structure and this results to a
higher solution accuracy when one computes the ®rst few
vibration modes or the harmonic response for low fre-
quencies and a lower solution accuracy when one com-
putes the transient response taking into account the effect
of many inaccurately computed higher modes.

A comparison of the present 3-D elastodynamic results
against the 2-D ones of Agnantiaris et al. (1996) clearly
indicates that the DR/BEM is more accurate and ef®cient
when used for 2-D than for 3-D problems.

5
Conclusions
An ef®cient and satisfactorily accurate DR/BEM for 3-D
dynamic analysis including both free and forced vibrations
has been developed. Closed form expressions for the
particular solution of displacement and traction tensors
are provided for the case of radial basis functions. Only the
surface of the structure has to be discretized eventhough in
eigenfrequency and harmonic response analyses, internal
collocation points are necessary for increased accuracy. In
harmonic response problems the 3-D DR/BEM provides
excellent results especially for low frequencies. The 3-D
DR/BEM, like the 2-D one, produces accurate results
provided that the elements over the surface of the struc-
ture are as uniformly distributed as possible.

For transient response problems, among the various
step-by-step time integration schemes (Houbolt, Park,
Newmark, central difference, Wilson, a-method) that can
be used in DR/BEM, Houbolt's and Park's algorithms
give the most accurate results with the former being
slightly better. Inclusion of zero or a few internal collo-
cation points in DR/BEM used in solving 3-D transient
response problems improves the solution accuracy.
However, inclusion of many interior points decreases the
solution accuracy, especially when the time interval for
both the Houbolt and Park schemes is small, that is when
the parameter b is smaller than 0.8 for Houbolt's and 1.4
for Park's algorithms. The 3-D DR/BEM requires less
computer time than the conventional time and frequency
domain BEM formulations but also has large require-
ments on available computer memory and on available
hard disk memory space due to the cumbersome ma-
trix manipulations for the determination of the mass
matrix [M].
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