Three-dimensional structure of the Crab Nebula

David H. Clark Space and Astrophysics Division, Rutherford Appleton Laboratory,Chilton, Didcot, Oxfordshire

Paul Murdin, Roger Wood and Roberto Gilmozzi* Royal Greenwich Observatory, Herstmonceux Castle, Hailsham, East Sussex

John Danziger European Southern Observatory, Karl Schwarzchild Strasse 2, D-8046, Garching-bei-Munchen, Federal Republic of Germany

Andrew W. Furr Astronomy Centre, University of Sussex, Falmer, Brighton,
East Sussex

 discontinuity in brightness at the bright inner shell.

1 Introduction
Previous investigations of the dynamics of the Crab Nebula have been based on the radial velocity observations of Mayall (1962), Woltjer (1958), Münch (1958) and Trimble (1968) and proper motion measurements by Duncan (1939), Deutsch \& Lavdovsky (1940), Trimble

 that the Crab has a thick shell.

Earlier observations were restricted to selected positions within the nebula. The observa-
 * Present address: Istituto di Astrofisica Spaziale, C.P. 67, 00044 Frascati/9421197, Italy.
magnitude increase in the available velocity data compared with earlier work: they both confirm and extend the accepted model
Observations were made during 1977 November (supplemented in 1979 and 1982) using the RGO spectrograph and image photon counting system (IPCS) attached to the $3.9-\mathrm{m}$ AngloAustralian telescope. The IPCS was operated in two-dimensional mode, with resolution of e of spuodsəaios uо!̣n⿺辶 velocity resolution of about $30 \mathrm{~km} \mathrm{~s}^{-1}$ at $5000 \AA$. Radial velocities were estimated from displacements of the $\lambda 5007$ [O III] line, with wavelength calibration achieved using a
The spectrograph slit was positioned east-west and 100-s duration exposures were taken at each of 28 declination positions, separated by 10 arcsec, with slit width 1 arcsec so that 10 per cent of the nebula surface was sampled. By this process 1800 independent spectra
 in right ascension and 10 arcsec in declination (equivalent to $0.05 \times 0.1 \mathrm{pc}$ at a distance of
From each of the 1800 spectra, the red/blueshift of the [$\left.\mathrm{O}_{\text {III }}\right] \lambda 5007$ line was estimated (within the errors quoted) and converted to a velocity of recession (or approach) with respect to the rest wavelength. In most cases several features with different red/blueshifts were noted at the same point. It proved possible to distinguish redshifted $\lambda 4959$ from blueshifted $\lambda 5007$ by inspection of the relative intensities of the lines, and we are confident that the velocities measured are negligibly contaminated by this ambiguity.
More than 300 velocity estimates are tabulated in Tables 1 and 2 (Microfiche MN204/1), where bright features (those having peak intensity greater than 100 counts in 100 -s exposure) are marked with an asterisk. The velocity map pixels are identified by X (column number) and Y (row number) coordinates where X ranges from 1 to 66 , defining the right

 RA $(1950.0)=05^{\mathrm{h}} 31^{\mathrm{m}} 32^{\mathrm{s}}-(X-39) \times 4.7 \mathrm{arcsec}$

 bright feature data sets are depicted separately, for far- and near-side of the nebula. Where several red or blueshift velocity values were obtained for a single pixel, the largest was used in the colourgraph.

 әЧ7 Јо Кұ! nebula is insignificant (Trimble 1968).
3.1 VElocity Ellipse
A series of spectra obtained every 4.7 arcsec on an east-west line through the centre of the nebula is shown in Fig. 1(a), which displays both [O iII] lines, $\lambda \lambda 5007,4959$. The velocity

417

$$
\text { plnqวN qDiD วuf fo amıonuıs } G
$$

in an expanding shell of material. The spread in radial velocity about the maxima arises นеว (e) I © ©

 emission along the slit. The inner diameter is 135 arcsec , the outer 340 arcsec and the thickness of the shell transverse to the line-of-sight is measured by the ratio of these numbers and is also 0.40 .

The outer boundary to the second shell cannot be interpreted literally. Murdin \& Clark (1981) have shown photographic evidence for a faint red ($\mathrm{H} \alpha$?) halo around the Crab Nebula. Dennefeld (1983) has discovered faint features in his near-infrared spectra and attributes them to high velocity filaments at +3880 and $+4940 \mathrm{~km} \mathrm{~s}^{-1}$. In our spectra there is faint $\lambda 5007$ emission (most readily visible on the far side of the nebula where it is not

 corner). The projection factor means that this emission represents an expansion velocity in excess of $\sim 2300 \mathrm{~km} \mathrm{~s}^{-1}$
 line of the nebula. The composite formed by summing all the individual spectra in the east--

 to $-2400 \mathrm{~km} \mathrm{~s}^{-1}$
 this materal as for the shells, we confirm the existence of a high velocity halo around the Crab Nebula extending to at least twice the radius of the outer shell
 and Figs 4 and 5 similar data for the bright features only. Each velocity section is a picture of the spatial distribution of points within a $100 \mathrm{~km} \mathrm{~s}^{-1}$ velocity band $\left(200 \mathrm{~km} \mathrm{~s}^{-1}\right.$ for brightest points only). On the assumption that radial distance along the line-of-sight is proportional to the radial velocity, each velocity sheet may be considered to be a cross-

 $(3.0 \times 2.6 \times 2.6 \mathrm{pc})$.

The correctness of the topology of the data brick is confirmed by radio polarization

 emission from within the shell.

6It
3-D structure of the Crab Nebula hell is demonstrated by the absence of emission near $X=39, Y=14$ (the pulsar) in the low velocity ($\left|V_{\mathrm{r}}\right|<400 \mathrm{~km} \mathrm{~s}^{-1}$) sections. The velocity sections confirm the thickness of the shell derived in Section 3.1. The existence of the hollow centre is also clearly seen in Figs 6 and 7 where the radial distances of pixels from the pulsar are plotted against the velocities present

 ound three isolated knots within this hollow space. The knots were chosen to be measurable
 arcsec sampling in declination. Such knots are clearly rare.) These diagrams also confirm the evident thickness of the nebula's shell: however, the double structure is not seen here since all points are treated with equal weight, but runs of points, representing near-radial filaments, can sometimes be perceived.

Figure 2. Sections through the Crab Nebula in redshifted velocity space. North-east is upper left. The保

 which starts near $(X=10, Y=10, V=101-200)$ and runs to $(X=25, Y=12, V=201-300)]$.
The diagrans in Fig. 8 were also constructed from the velocity data. They show crosssections (perpendicular to the plane of the sky) through the nebula. Taking the major axis to

 alone. However, Trimble pointed out that for an expanding shell it is possible to make some әч7 әq рпnочs sə!̣!

$\stackrel{8}{>}$

Figure 3. As Fig. 2, but blueshifts.
Lof suoḷวəs fo
 S! Кем S!̣ч U! suosụvduro К К
 oblate or a prolate spheroid, respectively.

Figure 3 - continued

3.3 NARROW-BAND PHOTOGRAPHY

$\stackrel{\underset{\sim}{*}}{\underset{\sim}{*}}$

D. H. Clark et al
knotty filaments within the shell. However, its appearance can be closely simulated by combining from Figs 2 and 3 pictures of blueshifted material between 200 and $1000 \mathrm{~km} \mathrm{~s}^{-1}$ КІұ

 $-400 \mathrm{~km} \mathrm{~s}^{-1}$ which has crept into the picture in the wings of the interference filter (equivalent filter response centred at $5017 \AA, 30 \AA$ bandpass).
$\underset{Ұ}{\approx}$

D. H. Clark et al.

$\stackrel{N}{\sim}$

 Filaments are, however, angled across the thickness of the shell: for instance in Fig. 2, a filament runs from $X=10, Y=10, V_{\mathrm{r}}=150 \mathrm{~km} \mathrm{~s}^{-1}$ to $X=25, Y=12, V_{\mathrm{r}}=250 \mathrm{~km} \mathrm{~s}^{-1}$. A near-radial filament linking the two shells is visible in Fig. 1(a) at near-zero radial velocity,

The filaments have been likened to a net (e.g. Minkowski 1966); we could extend the
analogy and say that they were like a tangled net, loosely bundled around a hollow ball.

[^0]

3.5 SURFACE BRIGHTNESS DISTRIBUTION

[^1]

 than the fainter filaments, and at its periphery, where the fainter filaments extend beyond the brighter ones. Why are the filaments on the inner shell brighter? Possible explanations are:
(a) Filaments are illuminated and excited from the synchrotron radiation within the shell; the further filaments suffer a dilution effect. (But this seems an unlikely explanation. If the synchrotron radiation is highly centrally condensed, and the outer shell is ~ 1.25 times more distant from the centre than the inner, then the outer shell receives ~ 0.6 times as much radiation as the inner. If the synchrotron radiation is uniformly distributed within the outer shell, the dilution is less. This small dilution factor, of between 0.6 and 1.0 , seems unlikely to account for an overall difference in intensity ~ 10 between the inner and outer filaments.) (b) The inner filaments are different from the outer filaments in a way which makes them composition-dependent difference, or may be exhibiting a boundary-layer difference.
3.6 SPECTRAL DIFFERENCE BETWEEN THE SHELLS
 spectrum ($\lambda \lambda 3727-5007$) obtained with the IPCS on the AAT in 1982 January. Each spectral line may be imagined as a perspective cross-section through the Crab Nebula shells.

Plate 2 has been enlarged. Also clear is the near-radial filament linking inner and outer shell to the eastern side of the nebula.
Plate 2 brings out structural differences in the Crab Nebula as seen in different spectral
 Although, for instance, the $\lambda 4686$ line of He II is as intense as the $\mathrm{H} \beta$ line on the inner

 Crab Nebula filaments have already been remarked upon. There are thus spectral differences between the shells. We note the 'remarkable spectra on the outskirts of the Crab Nebula' Kןए observed (on the inner shell) with his spectra of fainter nebulosity (on the outer?). Henry \& MacAlpine (1982) conclude that there are differences in relative helium abundance amongst the Crab Nebula's filaments. Plate 2 demonstrates correlation of these abundance variations with three-dimensional structure of the nebula.
Spectral differences between inner and outer shells might be explained in terms of the Type II supernova model proposed by Chevalier (1977). The inner shell now observed could have had its origin as helium-rich, outer core material of the progenitor not quite reaching nuclear densities during the core collapse producing the supernova event, and subsequently deriving its kinetic energy almost entirely from the pulsar: the high-velocity outer shell and halo would then be the shock ejected envelope of the progenitor.
3.7 THE SHELLS AND SYNCHROTRON EMISSION
At the declination of the pulsar, Fig. 1(a) shows that the brighter, inner shell extends 1.5 arcmin east and 1.9 arcmin west of the pulsar. Comparison with the radio synchrotron maps at 2.7 and 5 GHz (Wilson 1972) and optical continuum isophotes (Woltjer 1957) emission. The fainter synchrotron emission extends over a total of 5.4 arcmin, just to the
 plateau may also be seen in cross-sections through the optical continuum (Woltjer 1957).
 to be, in the main, confined within the inner shell and to produce the bright region. However, electrons leak out through holes in the net of the inner shell and occupy the

The three-dimensional structure of the Crab Nebula is summarized as Fig. 9.

Acknowledgments

We wish to thank Stephen Richard who extracted the bulk of the radial velocities from the

 the FR80 facilities at the Rutherford Appleton Laboratory. Plates 2 and 3 were produced at the RGO node of STARLINK using ASPIC software.

 (0

Chevalier, R. A., 1977. In Supernovae, p. 53, ed. Schramm, D. N., Reidel, Dordrecht, Holland.
Chevalier, R. A. \& Gull, T. R., 1975. Astrophys. J., 200, 399 .
Davidson, K., 1978. Astrophys. J., 220, 177.
Dennefeld, M., 1983. In Supernova Remnants and their X-ray Emission, Proc. of IA U Symp. IOI, ed.
Gorenstein, P. \& Danziger, I. J., Reidel, Dordrecht, Holland (in press).
Deutsch, A. N. \& Lavdovsky, V. V., 1940. Pulkovo Obs. Circ., 30, 21.
Duncan, J. C., 1939. Astrophys. J., 89, 482.
Henry, R. B. C. \& MacAlpine, G. M., 1982. Astrophys. J., 258, 11.
Mayall, N. U., 1962. Science, 137, 91.
Minkowski, R., 1966. In Nebulae and Interstellar Matter, p. 623, eds Middlehurst, B. M. \& Aller, L. H.,
\quad Chicago University Press, Chicago.
Münch, G., 1958. Rev. Mod. Phys., 30, 1042.
Murdin, P. G. \& Clark, D. H., 1981. Nature, 294, 543 .
Swinbank, E., 1980. Mon. Not. R. astr. Soc., 193, 451 .
Trimble, V., 1968. Astr. J., 73, 535.
Wilson, A. S., 1972. Mon. Not. R. astr. Soc., 157, 229 .
Woltjer, L., 1957. Bull. astr. Inst. Netherlands, 13, 301 .
Woltjer, L., 1958. Bull. astr. Inst. Netherlands, 14, 39 .
Wyckoff, S. \& Murray, C. A., 1977. Mon. Not. R. astr. Soc., 180, 717.
Wyckoff, S., Wehinger, P. A., Fosbury, R. A. E. \& McMullan, D., 1976. Astrophys. J., 206, 254 .
Monthly Notices
of the
ROYAL
ASTRONOMICALSOC

VOL. 204, NO.I, 1983
David $\mathrm{H}_{\text {. Clank Peul Murdin Rogex Wood. Roberto Ci Moevi. }}$
Thxes-dineasioned strueture of the Gxab Nebuia
(C) The Royal Astronomical Society Published for
the Royal Astronomical Sociecy
by
Blackwell Scicntinc Dublications Lid
Osney Mead
Oxiond
Ox2 onc.
 Mierofiches prothecd by ivicromedia, biecter, Owon

Downloaded from https://academic.oup.com/mnras/article/204/2/415/1005692 by guest on 20 August 2022

Downloaded from https://academic.oup.com/mnras/article/204/2/415/1005692 by guest on 20 August 2022

ownloaded from https://academic.oup.com/mnras/article/204/2/415/1005692 by guest on 20 August 2022

Downloaded from https://academic.oup.com/mnras/article/204/2/415/1005692 by guest on 20 August 2022

Downloaded from https://academic.oup.com/mnras/article/204/2/415/1005692 by guest on 20 August 2022

[^2]

-

Downloaded from https://academic.oup.com/mnras/article/204/2/415/1005692 by guest on 20 August 2022

TABIE 2

03
 \Rightarrow

8
n
t.

∞
-1
-1
$\stackrel{10}{1}$
$-\frac{0}{2}$
$\frac{10}{-1}$
COLUMN NUMBER
2919
$\underset{o}{9}$

$\stackrel{\circ}{\mathrm{M}} \stackrel{1}{6}$
in

in
a
n
-1032.

$$
\begin{aligned}
& \rightarrow
\end{aligned}
$$

```
-
\(\frac{10}{0}\)
```

M8

```
* -677. -232. -758. -947. -909





Downloaded from https://academic.oup.com/mnras/article/204/2/415/1005692 by guest on 20 August 2022


\section*{}
(20s/uyt ut sqitusenta) ernqen qex əuq u! sotitiooton


\(906=\)
\(2 E 19-\)
\(9+1-\)
\(5 S\)


 \(3 . \quad . \quad . \quad .1317\).

- co
\(\stackrel{\infty}{-}\)

\(\stackrel{-}{-}\)
乐
\(\geqslant\)


\section*{}








Table 1. Velocities in the Crab Nebula (redshifts).
Table 2. Velocities in the Crab Nebula (blueshifts).
Note to Tables. These tables list the velocities extracted from the data brick

rograph slit on the Crab Nebula, and each column a N-S increment. Rows and
columns are numbered from the NE corner, and are related to right ascension and
declination by the formulae in Section 2. In each pixel rumbers represent the
radiei velocity (in \(k m s^{-1}\) ) of a peak of emission of the 25007 spectral line
of [OLI]. Receding (positive) velocities are entered in Table 1 and approaching

by asterisks.```


[^0]:    Section through minor axis
    Figure 8. Cross-sections through the major and minor axes of the projected image of the Crab Nebula for different assumed distances. The diagrams have been scaled so that, for each vertical pair, linear distances are the same in each coordinate. The left pair of diagrams has been constructed for $d=1.38 \mathrm{kpc}$, the right
    pair for $d=2.02 \mathrm{kpc}$. Section through minor axis

[^1]:    If the Crab Nebula is made up of a shell of well-separated thin filaments of uniform luminosity, then the filamentary system will show no central brightening. The facts contradict this
     about 3.5 arcmin in diameter.
    (a) Filaments are not well-separated, but overlap. (But in a hollow shell model, this produces limb brightening, not central brightening).
    (b) Filaments are not rope-like but ribbon-like, with flat surface across their radius vector
    from the centre.
    (c) Filaments are not of uniform brightness.

[^2]:    $\bigcirc$

