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Abstract—A 3-D super resolution (SR) pipeline based

on data from a Row-Column (RC) array is presented. The

3 MHz RC array contains 62 rows and 62 columns with

a half wavelength pitch. A Synthetic Aperture (SA) pulse

inversion sequence with 32 positive and 32 negative row

emissions are used for acquiring volumetric data using

the SARUS research ultrasound scanner. Data received

on the 62 columns are beamformed on a GPU for a

maximum volume rate of 156 Hz, when the pulse repetition

frequency is 10 kHz. Simulated and 3-D printed point

and flow micro-phantoms are used for investigating the

approach. The flow micro-phantom contains a 100 µm

radius tube injected with the contrast agent SonoVue.

The 3-D processing pipeline uses the volumetric envelope

data to find the bubble’s positions from their interpolated

maximum signal and yields a high resolution in all three

coordinates. For the point micro-phantom the standard

deviation on the position is (20.7, 19.8 , 9.1) µm (x,y,z). The

precision estimated for the flow phantom is below 23 µm in

all three coordinates, making it possible to locate structures

on the order of a capillary in all three dimensions. The

RC imaging sequence’s point spread function has a size

of 0.58 × 1.05 × 0.31 mm3 (1.17λ×2.12λ×0.63λ ), so the

possible volume resolution is 28,900 times smaller than for

SA RC B-mode imaging.

I. INTRODUCTION

Ultrasound super resolution imaging (SRI) was in-

troduced by a number of groups for increasing the

resolution of ultrasound imaging beyond the diffraction

limit [1–6]. The approach is based on injection of a

diluted ultrasound contrast agent to enable tracking of in-

dividual bubbles. The centroids of the bubble signals are

calculated, and their tracks are determined and displayed

to show an image of the vasculature. This can reveal

the micro vasculature down to vessel sizes of 10 µm

[7]. The images are acquired over several seconds to

minutes generating Gbytes of data. Currently most SRI

is conducted using 1-D array probes due to the large

amount of data, and that few scanners are capable of

full 3-D imaging. The 2-D SR images therefore have a

high resolution in the imaging plane, but localization in

the elevation direction is not possible. 2-D SRI therefore

displays a summation of vessels in the elevation plane.

Visualization of 3-D SR volumes has been performed

by several groups using mechanically translated linear

array probes [6, 8, 9], but such a setup does not make

it possible to estimate the out-of-plane location. SR has

also been made using two orthogonal probes for 3-D

localization in a line [10], and mechanical scanning is

needed to cover a full volume. A matrix probe is, thus,

needed for avoiding mechanical scanning.

Currently, the largest research scanners have 1024

channels [11, 12], and they generate around 20-

50 Gbytes/s of data for 3 MHz probes, only making

short acquisitions possible and precluding the use of

high-frequency probes. They can handle 2-D arrays with

32× 32 = 1024 = N2 elements, which have been fabri-

cated with λ/2 pitch (λ is the wavelength given by c/ f0,

where c is the speed of sound and f0 is transducer center

frequency). This makes them suitable for phased array

imaging, but severely limits their focusing ability due

to their small size and hence high F-numbers (imaging

depth divided by the probe width).

The problem can be somewhat alleviated by using

sparse arrays, and Harput et al. [13] recently used a

512 elements sparse 2-D array based on a spiral pattern

to acquire full 3-D SR imaging. Two 256 channels

research scanners [14] were used for scanning of 200 µm

cellulose tubes with a final localization precision of

18 µm. The main drawback of this approach is the many

transducer channels needed to avoid grating lobes and

the corresponding large amounts of data generated per

second. Further, the probe is quite small (� 10.4 mm),

as it has to be nearly fully populated to avoid side and

grating lobes, limiting the possible F-numbers.
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An new approach is therefore needed for 3-D SR volu-

metric imaging. One possibility for reducing the number

of elements by a factor of N/2 is the employment of

Row-Column (RC) arrays as introduced by Morton and

Lockwood [15], and later investigated by a number of

groups [16–20]. Here, the array is addressed by either

its rows or columns, and imaging can be conducted

using synthetic aperture (SA) imaging schemes [21]

for both a high resolution, deep penetration depth, and

high volume rate. Furthermore, RC SA imaging schemes

can have a low mechanical index due to the emission

of cylindrical waves, making them ideally suited for

contrast agent imaging. The RC arrays can be made

large without having an excessive amount of elements,

making it possible to both have low F-numbers for high

resolutions and still have modest data rates from the

arrays.

This paper presents a 3-D SR imaging method using

a prototype 62 + 62 RC array [22] connected to the

SARUS research scanner [11]. Two 3-D printed micro

phantoms are used for validating the approach along

with simulation of a point phantom. The precision of

the pipeline is revealed from these simulations and

measurements.

II. METHODS

This Section describes the various methods used in

the 3-D SR pipeline including the imaging scheme,

processing pipeline, and statistical evaluation.

A. Imaging sequence and processing

The imaging sequence was optimized for a 62+62 RC

PZT 3 MHz experimental probe with dimensions given

in Table I. The probe includes a mechanical apodization

at each end of the elements to reduce edge element

artifacts as described in previous publications on the

probe [19–22]. The volumetric RC SA imaging scheme

consists of 32 virtual focus lines using 32 active elements

per emissions. An F-number of −1 was used for emitting

de-focused line sources with the focal point placed

behind the probe surface and with a Hanning weighting

to reduce side-lobes. The 32 different virtual lines were

placed to generate a sliding aperture imaging sequence

across the rows. Transmission were only made with the

rows and reception was made with the column elements,

resulting in 62 signals to be stored per emission. Pulse

inversion imaging was conducted by emitting two 2 cycle

sinusoidal 3 MHz waves, one positive and one negative,

for each virtual line source. The imaging sequence was

implemented on the the SARUS experimental scanner

[11], with a transmit sampling frequency of 70 MHz. The

TABLE I
RC 62 + 62 PZT PROBE DIMENSIONS.

Parameters 62+62 RC

Number of elements 62+62
Center frequency f0 3 MHz
Wavelength λ 513 µm
Kerf 25 µm
Pitch 270 µm (≈ λ/2)
Apodization region length 4.05 mm
Element length 24.84 mm

Total Active Surface area 282.2 mm2

receive sampling frequency was 23.7 MHz to preserve

the second harmonic component in the signal.

Each emission was beamformed using a MATLAB

based GPU beamformer [23] to generate a low resolution

volume (LRV). The 32 different LRVs were summed

to reveal a high resolution volume (HRV). A simplified

schematic of the sequence can be seen in Fig. 1. The pos-

itive +LRV(1:32) and negative -LRV(1:32) beamformed

emissions were summed to reveal a second harmonic

HRV using pulse inversion. This data was then passed

to the SRI processing pipeline described in Section II-B.

The pulse repetition frequency ( fprf) was 10 kHz, and

a pause of 10 ms was inserted between volumes to

reduce the memory usage and extend the duration of the

acquisition. The Mechanical Index (MI) of the sequence

was determined to be 0.2 at 12 mm from the probe

surface, which is the location of the micro-phantom

flow channel. The actual MI in the phantom is probably

slightly lower due to the attenuation in the phantom.

Three sets of measurements were performed us-

ing a precision translation stage. The RC probe was

mounted on a Newport PG Series floating optical table

(Irvine, California) for stability with the micro-phantoms

mounted on a 8MR190-2-28 rotation stage combined

with a 8MTF-75LS05 x − y translation stage (Standa,

Vilnius, Lithuania). These were used to align both micro-

phantoms with the imaging axis, and to generate transla-

tion in the x− y plane used for the validation described

in Section III-B.

B. Processing pipeline

The processing pipeline consists of several stages.

The first step is to beamform the stored RF data from

the SARUS scanner using the beamforming strategy

described by Rasmussen et al. [19, 21] implemented in

Matlab and running on an Nvidia GeForce GTX 1050

Ti (Nvidia, Santa Clara, CA, USA) [23]. A volume with

a size of ±15λ in both the x and y directions are beam-

formed with a line density of λ/2 and covering the depth

of the phantom. The sampling density in the z direction is
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Fig. 1. The transmitting row elements and their translation across the
aperture is shown in the top figure along with the receiving column
elements. The time sequence of the positive and negative emissions
and their combination is shown in the bottom figure.

λ/16. A matched filter is applied on the received signals.

It is designed using the measured impulse response of

the probe to match the first harmonic signal found in

the linearly simulated data. The same filter is also used

for PSF phantom. The positive and negative emissions

are then subtracted to increase the signal-to-noise ratio

(SNR). For the flow micro-phantom the second harmonic

signal is employed, the filter is matched to this, and the

two emissions are added. The full LRV is beamformed

for all emissions with an F-number of 1.5 in transmit

and 1 in receive with a dynamic Hanning apodization

weighting the elements, and all emissions are added

to generate the HRV. The mean value of the first 20

HRVs are averaged and subtracted from the processed

HRVs to remove stationary objects in the processing.

The envelope of the HRV is then found using a Hilbert

transform and log compressed to a 40 dB dynamic range

in relation to the data in the volume for finding locations.

The peak location can either be found from calculation

of the centroid of a global maximum, or the peak

location can be interpolated to increase the location

accuracy. Experimentation with the data has shown that

the interpolation scheme is the most stable and accurate

method, and this is the one used in this paper.

The second stage finds bubble locations by inter-

polating the peak position by fitting a second order

polynomial to the data and then finding its interpolated

maximum position xi, as:

xi = i−
0.5(d(i+1, j,k)−d(i−1, j,k))

d(i+1, j,k)−2d(i, j,k)+d(i−1, j,k)
, (1)

where i, j,k are the indices of the maximum and d is the

envelope data for the volume. This is conducted in all

three coordinates xi,y j,zk with similar equations for an

increased resolution in all three directions.

The third step used only on the point micro-phantom

finds contiguous tracks of target locations. A target in a

first HRV is used as a reference point, and the adjacent

HRV is searched to find a detected target location lying

within a radius of r = vs/ fr from the reference, where fr

is the volume rate and vs is the maximum search velocity,

where vs = 10 mm/s was used. The track is terminated,

if no target is found, and the whole track is discarded, if

it does not contain more than 200 contiguous locations.

No tracks were formed for the micro-flow phantom due

to the high velocity employed, and all bubble locations

in all images are shown in Section III-C.

C. Simulations and measurement phantoms

The method is evaluated using both simulations and

measurements from two 3-D printed micro-phantoms,

which are all described in this Section. The penetration

depth is also determined from measurements on a tissue

mimicking phantom with a 0.5 dB/[MHz cm] attenua-

tion.

1) Simulation of 3-D SRI system: The SA RC se-

quence has been simulated using Field IIpro [24–26] to

generate reference data, where the positions of the scat-

terers are known in the volume. The phantom contains

a number of point targets located at a depth of 5, 15,

and 25 mm at the center axis of the probe. It is used

for determining the point spread function (PSF) of the

imaging method.

2) Fabrication of micro-phantoms: Two micro-

phantoms have been made and used for validating the

approach. Both have been fabricated by 3-D printing of

a PEGDA 700 g/mol hydrogel using stereo-lithography.

The phantoms measure 21.1 × 8.16 × 11.9 mm3,

and the voxel size of the printer is (∆x,∆y,∆z) = 10.8×
10.8× 20 µm3. More information about the fabrication

process can be found in [27].

The first point phantom contains eight markers with a

size of 10.8×10.8×20 = 233µm3. The marker sizes are

in all dimensions smaller than the imaging wavelength

of 500 µm for the RC probe used, resulting in markers

appearing as single targets in the B-mode volume. The

markers are positioned with a minimum distance of 3

mm to ensure a clear separation of the reflected signals.

The phantom is moved relative to the ultrasound probe

using the x−y translation stage in two experiments, one

along x and one along y. An inter-volume movement of

12.5 µm is used to emulate a constant velocity of 1.95

mm/s at 156 Hz. After each movement the positions of

the markers are determined and tracks for the targets are

made.

The second flow micro-phantom contains a single

cylindrical 100 µm radius channel placed 3 mm from

the top surface of the phantom. After a 5.8 mm long
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inlet, the channel bends 90◦ into a 7 mm long central

region before bending 90◦ again into the 5.8 mm outlet.

The flow channel was infused at 1.61 µL/s with SonoVue

(Bracco, Milano, Italy) in a 1:10 dilution giving a peak

velocity of 102.4 mm/s.

D. Statistical evaluation

The bubble locations are randomly distributed in the

flow micro-phantom tube due to noise in the localization

estimation, and some of them will appear to be located

outside the phantom wall. The distribution of positions

found can then yield an estimate of the localization

precision. An estimate of the y− z and x− z precision

can be obtained from the two straight segments of the

200 µm channel phantom. In the straight segments a line

is fitted to the data and considered an estimate of the

center of the channel, and the distance from each bubble

to the center is calculated. Assuming the measurement

uncertainty in each dimension is normal distributed, the

radial distribution of all bubbles in the segment will

follow the distribution

f (r) = 2πr

∫

|~rt |<R

1

πR2

1

2πσ2
exp

(

−|~r−~rt |
2

2σ2

)

d2rt (2)

where r is radial position, R is the radius of the tube,

and σ is the standard deviation of the uncertainty. The

integral is a convolution of a constant density (1/(πR2))
with a two-dimensional Gaussian. The non-analytical

integral (2) is estimated in a Monte-Carlo calculation and

is a Rayleigh distribution convolved with a uniform disk

distribution of radius R = 100 µm. The factor 2πr is the

Jacobian needed to convert from Cartesian to cylindrical

coordinates. The fraction of bubbles estimated to fall

outside the tube can then be translated into an estimate

for the standard deviation σ (localization precision), as

is performed in Section III-C1

III. RESULT

A. Imaging performance

The performance of the imaging scheme has both been

simulated and measured. The response from several point

scatterers were simulated using Field II, and the FWHM

was determined for the first harmonic signal to be

(FWHMx, FWHMy, FWHMz,= 0.58× 1.05× 0.31 mm

= (1.17λ × 2.12λ × 0.63λ ) at a depth of 15 mm. The

receive F-number is 1, so the PSF is close to the

theoretical limit of λ . The transmit F-number is 1.5 and,

thus, gives a slightly wider PSF in the y-direction along

emissions.

The penetration depth of the scheme was determined

using a uniformly scattering phantom model 571 (Danish
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Fig. 2. Tracks estimated from mechanical translation of the PSF
micro phantom where the colors indicate detected positions. The top
graph is for translation in the x-direction and bottom for translation
in y.

Phantom Service, DK-3600 Frederikssund, Denmark)

with a speed-of-sound of 1540 m/s and a uniform

attenuation of 0.5 dB/[MHz cm]. Determining the SNR

from ten independent measurements gave a penetration

depth of 14 cm (SNR=0 dB).

B. Validation in point micro-phantom

Fig. 2 shows the cumulative localized positions of 3-

D printed markers within the micro phantom acquired

over 640 beamformed volumes at the emulated speed

of 1.95 mm/s. The top figure shows movement in the

x-direction and in the y-direction at the bottom. Seven

markers have been detected and are shown as colored

points. The eighth marker was too weak to be detected.

Lines are fitted to the positions using a least squares fit,

as shown in Fig. 3 for one of the tracks. The deviations
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from the fitted line are calculated and the standard devi-

ations is estimated to (σx,σy,σz) = (20.7,19.8,9.1) µm,

when taking the average across all tracks.

C. 3-D SRI imaging

The measured data from the flow micro-phantom

acquired from 400 frames of the SA imaging sequence

has been processed by the SR pipeline, including beam-

forming and detection of bubble locations, using the

interpolation scheme in (1). A 3-D view of the detected

bubbles is shown in Fig. 4, where each blue dot is

a detected bubble. The geometry of the phantom can

clearly be seen.

1) Precision of bubble locations: Bubbles in the

central part of the phantom (−2 mm < x < 2 mm) have

been selected for estimating the localization precision in
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Fig. 5. Selected bubbles in the y − z plane (blue crosses) for
estimating precision (top graph), and the calculated radial position
of the bubbles in the vessel (bottom graph). Blue crosses indicate
bubbles inside the vessel and red circles indicates outside.

the y− z plane as shown on the top in Fig. 5, where

blue crosses indicate bubbles used for this estimation.

Center lines for all selected bubbles are estimated with a

least square fit as shown in Fig. 6. The channels center

depth is at 12.0 mm from the probe, and the channel

is slightly rotated in the x − y plane (57 µm tilt of

x − y line in the top graph). These lines are used for

calculating the radial positions of the bubbles in the

vessel, as shown on the bottom figure in Fig. 5. Here, a

blue cross indicates bubbles inside the vessel, and a red

circle indicates bubbles outside of the vessel boundary,

shown as the solid red line (r = 100 µm). The same graph

for the x− z plane is shown in Fig. 7, where the outlet

part of the vessel has been employed for finding the

precision (−5.5 mm < y <−1 mm).

The fraction of bubbles estimated to fall outside the

tube can then be translated into an estimate for the

standard deviation as described in Section II-D. The

fitted distribution for the bubble locations in the y− z

plane is shown in Fig. 8. For the y− z plane 13% of the
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bubbles fall outside the tube, which leads to a position

uncertainty of 16.5 µm. Similarly, for the x− z plane

18% of the bubbles are estimated to fall outside the tube,

which leads to a position uncertainty of 23 µm.

IV. DISCUSSION

A method for 3-D super resolution imaging has been

developed based on a RC array and a pulse-inversion

SA imaging sequence using 32 positive and negative

emissions. A full volume is, thus, created in 64 emissions

for a possible volume rate of 156 Hz at fpr f = 10 kHz,

and the modest number of emissions makes it possible

to have a 100 Hz volume rate down to a depth of 12

cm. The 3 MHz array’s penetration depth is 14 cm due

to its low frequency and fairly large size (31λ × 31λ ).
Only 62 elements were employed during receive, making

it possible to implement the approach on a standard

ultrasound console with the advantage that a limited

amount of data is generated. A λ/8 sampling density on

the receiving elements can be employed and will contin-

uously generate 2.9 Gbytes/s, which is well within reach

of modern ultrasound research scanners [11, 14, 28–30].

This is significantly less than for a fully populated array,

where a 32× 32 array yields 49 Gbytes/s for an array

with one fourth the area of the RC probe used here.

The attained precision of the schemes was investigated

using both a point micro-phantom and a flow micro-

phantom with a 200 µm diameter tube. The point phan-

tom yielded a localization precision of (20.7, 19.8, 9.1)

µm in the x,y,z coordinates. The flow micro-phantom

yielded an estimated radial precision of 16.5 µm in the

y− z plane, and 23 µm in the x− z plane. Assuming

the coordinate precisions are independent, the radial

precision would be 15.4 µm in the y − z plane, and

16.0 µm in the x− z plane, when using the estimated

precisions from the point phantoms. The 10.8×10.8×20
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µm3 voxel size of the printer will give rise to tube-

wall fluctuations, with an increase in precision, so the

estimated precision for the two phantoms are therefore

similar.

The precision should be compared to the emitted

wavelength of 500 µm, and an improved localization of

a factor of at least 20 times is attained in all three coordi-

nates. The measured PSF has a size of 0.58×1.05×0.31

mm3 making it in theory possible to interrogate a volume

28,900 times smaller than a PSF limited system.

The main advantage of a 3-D system compared to

the current 2-D systems is the increased resolution in

the elevation plane. Current 2-D SR displays images

averaged across the elevation plane thickness, which can

often be 5-15 λ away from the elevation focus. The

resolution is, thus, improved by a factor 100-300 times

compared to a 1D probe, even though the number of

elements is 3 times lower than a 192-elements 1D probe.

Several factors can be improved in the current setup

and should be incorporated into a clinically useful 3-D

SR imaging scheme. Currently, no motion correction is

conducted, but the SA imaging scheme makes it possible

to beamform a full volume at more than 100 Hz. This

is sufficient to employ speckle tracking [31] in 3-D to

yield and compensate for the motion as described for

SA flow imaging [32, 33]. Although many schemes use

very high frame rates with thousands images per second

[6, 9] , it has been shown that a conventional linear array

scan with frame rates at 54 Hz can yield excellent super

resolution images with both motion estimation [34] and

quantification of flow [35]. The 154 Hz volume rate

should, thus, be sufficient for in-vivo imaging.

The fairly high velocity of 102.4 mm/s in the flow

micro-phantom is used to prevent clogging of the phan-

tom. This currently prevents the formation of tracks in

the SR pipeline as is done for the PSF micro phantom,

but further experiments should be conducted to lower

the velocity, and maybe introduced a phantom with less

sharp bends to prevent clogging. No efforts have been

made to reduce false detections in the SR pipeline.

Forming long tracks can significantly reduce the number

of false detections, and this could potentially improve

the precision of the location estimates.

The numbers of bubbles used here was sparse to make

isolation easier. The acquisition length could be reduced,

if more detections could be made per second. Methods

for increasing the number of bubble detections have

been the topic of a number of articles [36–38]. Such

approaches can also be employed here, as full RF data

are acquired and can be processed using more advanced

schemes.

The RC array can also be improved. The current

array is a 5-years old prototype PZT array with only 62

elements. The array has 8 non-functioning row elements

and is slightly curved with a deviation around 0.1λ

from a flat surface. This introduces phase errors and

impedes image contrast. Other more advanced focusing

schemes, like matched filter focusing, could also be

used for increasing contrast [21, 39]. It is also possible

to optimize the emission sequence for contrast agent

enhancement, where amplitude modulation potentially

could be used [40–42], and it could also be possible to

optimize the imaging sequence with fewer emissions for

yielding less data and higher volume rates [43]. Adding

more elements to the probe can also increase resolution

and thereby reduce acquisition time, as more bubbles can

be separated. Early investigations have been made for a

192 + 192 RC array and showed an increased resolu-

tion proportional to the F-number and wavelength [44].

Such arrays can directly be used on modern ultrasound

consoles with few modifications in the beamforming.

The approach can fairly easily be translated to clini-

cal use by modifying our current 2-D super resolution

pipeline to include searches and localizations in 3-D

[34, 35]. The motion correction schemes developed for

2-D imaging and needed for in-vivo imaging can then

also be applied [34]. The main clinical applications

could be superficial structures, where the F-number in

beamforming can be kept low. The penetration depth

is 14 cm for this array and imaging scheme, which is

beneficial for larger organs like the liver. The bubble

density would have to be reduced for reliable detection,

and the imaging region will only be within the rectilinear

area of the probe. This can potentially be alleviated by

using a lens in front of the array [45].

A first in-vivo target would be to scan a rat kidney as

performed in [34, 35]. The acquisition time was between

1 and 10 minutes for a 2-D image, with 1 minute giving

an overall rough view of the vasculature and 10 minutes

giving precise quantitative data for the blood flow. We

predict that the same scan times can be kept with the

method presented here for a full volume, and maybe with

a shorter time when employing more advanced SRI [36–

38].

The high resolution will also give some future chal-

lenges. The RC array can image a volume of 31λ ×
31λ ×280λ , which, with a voxel size of (10µm)3, would

yield 33 GVoxels. This might give some challenges in

the display of such data.

V. CONCLUSION

A method for 3-D SRI has been investigated, where

a 62+62 RC array was employed. A detection precision
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better than 23 µm was attained in all three coordinates

for both the SonoVue contrast agent flowing in a micro-

phantom and the point micro-phantom. The precision

was obtained using 1/8 of the elements employed in

previous 3-D SRI, which reduces both the storage and

processing demands by a factor of eight. The approach

yielded an increase in volumetric resolution by a factor

of more than 28,900 with a possible penetration depth

down to 14 cm and corresponding increase in the amount

of volumetric data to 10-40 GVoxels. Potentially a vol-

ume of 16×16×140 mm3 can be resolved with a voxel

size of (10µm)3.
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