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N Abstract

The viscous supersonic flow over a sharp cone
at incidence is examined numerically with a coupled
strongly implicit algorithm for the properties in
the plane normsl to the cone axis. The Navier-
Stokes equations are considered in a boundary
layer-like or parabolized manner and global
relaxation is considered for the pressure inter-
action. It is shown that departure effects can be
effectively eliminated by forward differencing for
the axial pressure gradient. Moreover, this
approximation retains the implicit free pressure
interaction required for geometries where axial
flow separation is possible.

A

1. Introduction

Por a significant class of geometric configu-
rations and flow conditions solutions of the full
Navier-Stokes equations can be approximated quite
sccurately with boundary layer like marching
techniques in thin viscous layers, coupled with
relaxation or marching procedures for inviscid
sub- and supersonic regions, respectively. TFor
large Reynolds number flows this approach has been
developed in several ways, e.g., interacting
boundary layer theory,* parabolized Navier-Stokes
(PNS) theory,2 viscous or u.nilc layer theory? and
two=-layer interactive theory.* S e
sarching for supersonic outer flows with licttle
or no upstresm interaction, and global or sultiple
pass methods vhen upstreas influence, including
possible separation, is sn important feature of
the flow have been discussed for a variety of
problems. References 2 and 3 review much of the
earlier work on this sudbject.

The prasent study is concerned with the analy-
sis of a global approach to the Navier-Stokes
equations and a single sweep PNS application for
the supersonic laminar flow over a sharp come
goometry. This geometry has been examined exten-
sively during the past decade and in view of the
variety of complex flow phenomena associated with
the cone st incidence, it has served as a prototype
for analysis of new computational methods. Of
particular interest here are procedures that
allow for the evaluation of such a configuration
at relatively large angles of incidence. In
particular, we are concerned with the accurate
prediction of the secondary flow vortex patterns,
isbedded shock formation, axial and secondary flow
pressura interaction, and finally the surface
pressure and heat transfer.

The secondary flow interactiom with shocks
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and vortex forsation is non-trivial and therefore
a coupled strongly implicit (CSIP) algorithm,
developed pnv!.ougly for the incompressible Navier-
Stokes equations,’ is applied here in order to
provide s "two-dimensional"” coupling for the three
velocity components. The secondary flow pressure
and temperature gradients remain uncoupled in order
to limit computer storage requirements; however,
the latter is evaluated with the strongly implicit
(SIP) algorithm. The outer shock boundary condi-
tions are completely coupled into the CSIP
algoritha.

The continuity and norsal somentum equations
are rélated to the evalustion of the normal velo-
city and pressure, respectively. This is contrary
to most conventional Navier-Stokes and PNS proce-
dures. However, it is consistent with the boundary
layer and thin shock layer techniques that have
been applied in non-intersctive analyses. A
deferread-corrector is applied to the upwind or
boundary layer approximation used in the initial
marching sweep for the axial () convection terms.
This E-R® corrector provides a stable second-order
accurate approximation for the global marching
procadure.,

As a peripheral aspect of the preseant study
several differeuce spproximstions for the axial
pressure gradient term py appearing in the
f-momentum equation are considered. This tera
controls the "elliptic” pressure interaction? and
can produce the so-called departure instability
indicative of the upstream pressure effect. It is
seen that vith an appropriate forward difference
approximation to pg, the departure effect is
suppressed and a consistent, stable, pressure
interactive procedurs, tested previously for incom-
pressible flows, is also applicable for the cone
calculations. Since there is not strong upstresm
interaction for the sharp cone geometry this has
1lictle effect on the solutions; however, it does
provide a basis for further consideration with
other configurations.

Solutions are presented for several cases;
however, the major emphasis here is on the
Tracy 10° half-angle cone’ and the Marcillat?
9° half-sngle cone. Incidence angles of from
zero to 45° are comsidered.
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wvhere 0 is the half-cone angle and r = x sind +
y cos 8. 1In addition, the state equation snd
viscosity-temwperature and thermal conductivity-
tempersture relations close the gystea. The
Sutherland law is used for u = u(I) aend the
Prandtl aumber Pr = ) c’lx is constant. )
The systes (1) is non-dimsusionslised with
the shock layer thickness 8(x,4) so that
ney/d; {=xaend ¢ = ¢, The vaelocities are
noraalized with the free stream U, with Pgs
pvith o0, Twith C2/C_. The wmic Beynolds

ousber Be = p U /u_. The system (1) 1is then

transformed from (£,n,4) to (x,y,$) coordinates.
The respective velocities are (u,v,w). It 1s
significant that in the course of this tramsfor-
sation

? ? ?

R thw (2)
ad

A,

TR TR AR (2v)

Although the pressure will be uncoupled from the
(u,v,v) CSIP algoritha, the Py and Py terms do

couple partially through the p, contributions in
(2). This term can be eliminated, vith the normsl
somsntus equation (lc), in terms of (u,v,v). In
fact, for inviscid comical flow 3/ £ 0 end
therefore we would expect the role of p; to be
relatively ninor. The other {-derivatives are not

negligible in the boundary layer and possibly im
the outer layer for larger incidence anglss.

The final system of equations is quite
formidable and will be given in s sepsrate report.
In order to sllow for subsequant code debugging,
error correction or future modifications in the
difference equations or relsxation procsdure, esch
term in each equation is introduced into the
coefficients of the differenced and quasilineariszed
form independently. Therefore each contribution
is identifiable and easily located.

3. Differences Equations

The final transformed equations are differ-
enced as follows: conventional central differ-
encing for the n and ¢ derivatives in the axial ()
and aximuthal (¢) momsntum and energy equations, ses
figure 2 for a description of the difference grid.

Fig. 2. Difference Grid in the Cross Plane.

The axial convective derivatives 3/3f are upwind
differsunced, with a K-R corrector inserted for
msultiple sweep applications; {.e.,
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superscript (*) demotes solutions from the previcus
global iteration. These are assumed to be szero
in the initial marching sweep.

The continuity and normsl sowsutum equatioas,
as noted previcusly, are considered in the boundary
layer or thin shock layer msoner as first-ovder
equations for v and p, respectively and arve
differenced at the half-point nj+(6n12) J with

the trapesoidal rule. VWhen the p, tera from the
n somsntum equation is used f{n (2a) and (2v),
conventional central differences are applied for
the coupled velocity derivatives that ave iatro-
duced into the { snd ¢ momsntum equatioas.

The final system of difference equations are
quasi-linearised to provide the familiar sescomnd-
ovder approximstion

tgetgegt-ty
where the superscript (*) here demotes the previcus

iteration at the axial {; location. Strictly
spesking 1if LI} valuss are used this approximmtiocs




remains second-order and is them non-iterative.

4. Numerical Algorithm and Solution Procedurs

After differencing, substitution of p, and
quasi-linearization, the final systea to be
evaluated 1is of the following form for (u,v,w)
at £ = 51:

£, ¢ momsntum:
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vhere ¢t = 2, 3 for £,4 equations respectively.

continuity:
Yye" "1vj'h Vyarx * Pluj’k Yk
+ "1‘.1',‘ Uy * ’uj'k LIRS
oy Yt lh'j.k L
+ ’1'_1 N ¥y 4 + "'1-’ X "3-1',1:4-1
M DR SRS R
-0 (3b)

The 00334 strongly implicit (CSIP) algoritha
1is of the £

U, .. v . v
IRY ‘uj'k §o1,% ‘n’.k RS

+ 'nj,k "j-l..k + '123,1; "j.bfl

+

- Vit (4a)

3ok

R DR R S E L
+ 5 L] + 3 L
I i R

+C, V. .4D ()
21,& -1,k e

3.k

and the contiauity equation () where the comer
poiats "3-1.::1 are treated isplicitly. The

algorithm is structured to svaluste all k valuss
before procesding from j to j+l.

This is a (2x2)+1 matrix system and not a
much larger (3x3) system. The algorithms (éa) and

(4b) are used in (3s,b) to eliminate an.k.

"j-o-l,k’ Uj Jk=1° "j,k-l' The comer points jtl1, kil

are treated explicitly in obtaining the recursicn
relationships for the coefficisnts in (4a), (4b).
See reference 5 for a matrix description of the
CSIP algorithm. These ars cbtained by directly
relating (3a,b) to (4a,b). The final recursiom
relationships are given in Appendix A. The
boundary conditions for u, v, w, to be discussed
in the following section, are coupled implicitly
into the CSIP algorithm.

The energy equation vhich is of the forms (3a)

is solved independently with the SIP algorithm (4a).

This is obtained by replacing u with T and setting
v,w = 0 in (3a) and (4a) and inserting the
appropriate coefficients from the transformsd (le).
The pressure is obtsined from the transformed
norasl momsntum equation (1lc) by integrating from
the shock to the surface with the trapesoidal ruls.

The procedure can be summarised as follows:
(1) (u,v,w) are solved with the CSIP slgoritha
and coupled boundary conditions with o, T, p
prescribed (py has been substituted from momentus
into the £,¢ momentum equations and is theredby
implicit); (2) With the new shock values for p
and T, T is updated with the SIP slgorithm and
p from the normal somsntum equation. The viscosity
and thermal conductivity coefficients snd p are
also updated; (3) With theanew p, p, T, b, k
valuss, return to step (1) and continue wmtil a
convergence criterion is satisfied. A flow chart
for tha entire procedure is given in Appendix B.

This describes completely the evalustiom at
each location § = §; for s single sweep marching
procedure. 1f additional sweeps are necessary,
i.e., vhen pressure intersction and upstream
influence are important, the process is repeated
from the initial § = &, location and the KR
correctors, axial diffusion, forward p, differemce
terme dependsnt on the previous pass 350 updated.
Multiple pass calculations have only been consi-
dared to a limited extent and these will not be
discussed further here.

S. Boundary snd Initisl Conditions

Initial conditions are obtained directly from
the governing difference equations by applying
a conical flow approximstion. Imviscid or step
profiles with no-slip surface conditiocus asre
sssumed to start this calculation. This procedure
works well for incidence angles up to 10°. For
e > 10°, the 10° results are used as initial
conditions and the exact o boundary conditions
are imposed at the first marching step. The
effect of the initial conditions rapidly vanishes
as the shock layer is extremsly small near the tip
of the cons. It should be noted that while the
3/3¢ = 0 solutions are reasonsble approximstiocns
for the viscous cone flov, the exact solutioms are
soticeably different both in the viscous boundary
layer and ia the outer vertical region near the
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lee plane. This is oot surprising as the viscous
behavior does not scale conically, i.s., as §(x,4).

The boundary coaditions at the surface n = 0
art¢ u=veyelaendT=T,. At the outer shock
wave n = 1, the Rankine-Hugoniot conditions
apply:

mass conssrvation:

(uy = puds, +-} (0 =ow8, = (vy=ov) =0 (58)

tangential momentum:

1
(vl-v) +3 6. (VI-V) a0 (5b)
(ul-u) + 65 (VI-V) =0 (5¢)

normal momentum:

p»—Xt (5d)

v-1+?:-
1

where subscript (1) denotes free stream components
at the shock wave and My, is the free stream normsl
Mach number which is a “fumctiom of § e [ K

The four equations (5a-d) coupled with the con-
tinuity equation (1a) ovalueud at the half-point
ne1-21 give five equatious for the five
unknowns, u, v, ¥, p, 8z The direction cosine
6. is not coupled but is treated iteratively with
p and T vhich sre only functions of M;, from the
Rankine Bugomiot comditions. The wu}hd u, v, ¥
boumndary conditions sre incorporated implicitly
into the CSIP algorithm. The system (3) is quasi-
linearised in the sams manner as that for ths
interior equations. The combination of the
Rankine-Hugoniot conditions sad the coupled con-
tinuity equation ensure that global mass conser-
vation is maintained. The final form of the
outer boundary conditions includes (5b), which is
linear since 6‘ is treated explicitly, amnd
(5a,¢,d) are combined to give

-;: nf (1- (uyu+ v, v+ w W) ][(2-1)

+ (2~ )(01u+ '1" '1') + (u2+ '2 + '2) ]

s [1- 2(u1u+ vlv-t '1') + (uz-o- vz +vz)] (Se)

This equation is also quasi-linesrized. In this
fora the stream function solution, appearing in
the original systeas, has been eliminated.

This CSIP end SIP procedures are convergent
to 1010 for sll incidence angles. The pressure
equation is converged to 10-7 for a < 32°. Por
a > 32° the pressurs solution exhibits a slow
divergsnce that is appersntly associated with the
explicit or umcoupled chsrscter of the normsl
momsntus equation. 1If the prassure field 1is
wmderrelaxed by including s time-1ike term {a the

normal somsntum and energy equations, this diver-
gence is suppressed and the overall system con-
verges; however, the underrelaxstion is very expen-
sive computationally and it is evident that
coupling the pressure divectly would be more
desirable.

The solutions for a > 30° depict fairly strong
isbeddad shock wvaves and significant vortex lift-
off; therefore, the secondary flow pressure inter-
action will be quite strong and an implicit treat-
msnt of this effect may be required. We recsll
that the p2 coutribution in (2b) is already intro-
duced implicitly; howeaver, the Py and &, effects
are considered iteratively.

Finally, symmstry conditiomns Uy = v, - 'r. -

P.'Ondv“-o are imposed at the lee and

wind planes. These conditions are coupled implicit-
ly into the CSIP and SIP algorithms by appropristely
modifying the coefficients of the difference
equations at these locations; e.g., Y1 " Yy

at k = 1, thersfore s,'“j k" 0 in (3a,b) and "Luj Kk

» »
is modified to include the uk+1 coefficient so
that ""“jl - .‘“jl + s"‘jl' etc.

6. Pressure Interaction and Departure

For any sweep of a one-step or global relaxs-
tion proceadure the appropriates treatment of the
pressurs intersction term p, in the axial momentum
equations (1b) is essentisl. Even for supersonic
free stresms an "elliptic” pressure iatersction
is transmitted upstream through the Py tera when
regions of subsonic flow, as in the wall boundary
layer, are present. If p, is prescribed the equa-
tions are truly parabolic emd the upstresm effect
is lost. Howewver, for flows where upstresa
effects are significant, if the Py term is backward
differenced gﬁ_!gg the interaction is included

in the systen.”'  This {s manifested in the
appearance of departure curves or ianstadbilities
vhenever 4x > (Ax)m, which is of the order of

the thickness of the subsogic layer or o(-llz)

for the viscous cone flow.’ Therefore, in the
present application, with e >> 1, reasonsbly
accurats solutions are possible even for Ax* (Ax)-u.

This procedure is however incomsistent and
for flows with significant pressure interaction
may be inadequate. A global relaxstion procedure
is required if the inconsistency is to be elimi-
nated. Morever, ia the global procedure it is
oecessary that sach marching sweep be departure
free and yst allow for aa fwplicit pressure iater-
action in order to circumveat the separstion
point singularity that arises vith e explicit
pressure represeatatiocm. :! r earlier incompres-
sible PNS thia layer study,®+® {t was showm that
forwvard p, differencing is departure free and
stable y. Cemtral p, is umstable globally
and backward p; is not ture free. It was
-lwuun!n&ul-dlehtua forward p¢
differenciag, it was possible to march through
separation regioms departurs free ia each global
relazation sweep. This was aleso tested

procedure
for the come calculations sad the earlier comelu-
sions obtained doth mmalytically and awmerically
were verified. Although this effect is relatively

— o r o vme s e iE e e.a
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wmisportant for come flows where solutions with
Ax > (Ax) aln F® ascceptable except very close

to the tip, for more complex comfigurations this
procedure is considered important.

Por the comne calculations, detailed tasts for
the value of (Ax) as & function of Rs have
been cousidered. ‘Ec resulting stability curve
for a = 28° is shown in figure 3. This clearly
confirms the earlier snalysis and demcustrates that
(Ax)mlyu.l decreases as Re increases. The exact

dependence is not proportional to 212 44 1o the
incompressible case. The use of s K-R second-order
pressurs correction for a forward-differenced py
has not been addressed. Finally, we recall that
the Pp contribution to p, is treated implicitly and
with a backward or -rch!ng mode for vg; therefore,
the entire global intersction is conuiuod in pg.

Iu-.:
i (I,
:‘;:mmamm

Fig. 3. Depsrture Condition with 'C Backward
Differencing.

7. DJasults

Solutions have been obtained for two flow
ead%:uu for which experimental data 1is avail-
sble7+9 gnd for which numerical regylts have been
obtained by Ms,9-11 gerged layer,1¢ and boundery
regionl3 spproxisstions. All the calculstions
were made with the CSIP algorithm for (u,v,w), the
SIP slgorithm for T end the trapesoidal rﬁc for p.
Converged solutions to s toleramce of 10~V for
successive iterations using double precision com~
pilation on sa AMDANL 370-computer were obtained.
Uniform grids were specified in n and ¢. Calcu-
lations were run with both relatively coarse grids,
e.g8., 10 x 21, 19 x 31 end & finer 51 x 53 grid.
TYor the finest grid calculation times were
0.0008 sec/CSIP Iteration/grid poiat. 7-15 CSIP
iterations are required to convergs the (u,v,v,c‘)
systen. The CSIP procedurs is called about
30-60 times to converge the pressure fisld. Por
8 32° 4t takes sbout 30 minutes for the (3/3¢=0)
equaticns to convergs amd another 1 minute for
any sdditicmal marching step.

Pigure 4 shows the CPU tims consusption as

function of a to veach the same £ locatiom (= 2 ft)
for Tracy conditioms. From the figure it is seen
that running tims increases with o and dus to
underreslaxation required for a > 32°, the times
incresse msasurably. Double precision requires
approximately four times that of single precision
which runs sbout four times slower than a CDC 7600.
Therefore we estimate conservatively that the
maxisus CPU requirement on a 7600 would be less
than 252 of that of the AMDAHL computer if similar
programming techniques were used. Noa-uniform
grids, in particular for the surface normsl (n)
direction, might reduce ths overall computer time;
however, for large incidence with isbedded shocks
and lifting vortex motion the optimsl grid
distribution is not obvious.

P——r——— v —— | ——

e

i -

o § w ® 2 »® ® B ® @ w0
oc(®)

Fg. 4. CPU Time for Initial (;—¢ = 0) and Marching
Solution.

Solutions have been cbtained for incidence
angles (a) up to 45° on'a 10° half-gngle (6) come,
or a = 4.5 0. The interior shocks are captured,
secondary flow separation regions are determined
snd vortex pattemrns are seen to lift far off the
surface for large a.

Selected results are presented here_primarily
for the u;ctimnl‘ conditions of 'rucy7 and
Marcillat.’ Some of the solutions are for very
large incidence angles, vhere experimental data
are unavailable. A 51 x 55 wiform grid is the
finest mesh considered to date and therefore, we
inject a note of caution for o > 32°., In additiom,
a8 discussed previously, underrelaxation is
required for these cases and further study of
accuracy and coanvergence properties is required.

The heat transfer at the wind and lee planes
for moderats to large angles of incidence is
depicted in figures 5e¢,b. The agreement with the
data is quite good as it is for the surface pres-
sure distributions which are given in figures
6a,b,c. The effect of the imbedded secondary flow
shock wave is spparent omly for the largest inci-
dence angles.

These effects can be sesn somavhat mors
clearly in the o = 24° pitot pressurs profiles
and distributions of figures 7a,b,c. The signi-
ficent changs in p, across the shock layer is
apparent. The stagnation pressure is affected by
the inclination of the outer shock, the growth of
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Mig. 5a. Symmetry Plane Heat Transfer -
Moderate Incidence.
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Fig. 5b. Sysmetry Plane Heat Trsusfer -
Large Incidence.

the boundary layer, secondary flow separation and
the appearance of imbedded shock waves. Near the
wind plane, these properties are esssentislly
invarisnt as is p,. However, as is seen in the
following figures, the secondary flow patterus
from the wind plane are extremsly complex and in-
clude sll of the phenomena alluded to previously.

The surface stresaline inclination and flow
patterns (figures 8, 9 and Table 2) reflect the
occurrence of secondary flow separation and for the
largest incidence angles & double separation
effect is predicted. This phenomsna has been seen
experimsntally in turbulent flows and by Marcillat?
for laminar flows, but has not been reported in
esrlier numerical studies. In view of the rela-
tively coarse 51 x 35 uniform grid we reserve
comment on the sccurscy of the present results;
however, the very existence of the comnverged double
separation solutions obtained here ia interesting.
The primary sepsration point is relatively
insensitive to incidence for large a and is showmn
is figure 10. As in sll earlier calculations,
for the present analysis separation first occurs
for a = 7° = 8° and the separated regions found
by Mercillat? for a > 4° are not recoversd hers.
The location of the primsry vortsx center is
depicted in figure 11. The vortex moves sway from
the surface for increasing a, but appesrs to
asymptote to a fixed location at a given value of

TR a0 W90 @ ¢mi20 W0

Pig. 6a. Surface Pressure at Moderate Incidence.

20’

R

Fig. 6b. Surface Pressure at Large Incidence.
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Fig. 6¢c. Surface Pressure at Very Large Incidence.
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)
%
i o) 0 22.5 45 671.5 90 112.5 135  157.5 180
i
¢
: JONES (1968)
*,} vaye | Ctaviseta) 0 1.732 3.284 4.583 S5.517 S5.851 5.385 3.502 O
: M =10 | LINGRUBIN (1973)| O 1.726 3.291 4.600 5.533 5.870 5.390 3.471 0
9=10°
PRESENT METHOD
(55 x 51 Grid) 0 1.722 3.288 4.598 5.531 5.872 5.392 3.497 O
JONES (1968)
weqye | Gaviscid) 0 2.667 S$.333 7,017 9.217 9.300 10.300 7.239 O
M_ =10 | LINGRUBIN (1973)] 0 2.830 5.701 7.889 9.650 10.619 11.090 8.050 O
6=10°
s PRESENT METHOD
f (55 x S Grid) 0 2.89 5.852 8.113 9.938 10.908 11.486 8.49 O

TABLE 2. SURFACE STREAMLINE INCLINATION, tan  (v_/u )|
Y Y ly=o

¢ 4

"
Pig. 9. Surface Stresaline Patterns, a=12°, 24°. Fig. 11. Primary Vortex Centar Location.

n relatively close to the shock for o > 30°. The
"faviscid" solution in the outer portion of the
shock lsyer, including the vortex locatioun is
approximately independent of £ and a function
only of n and ¢, 1.8., conical flow behavior is [
obsaerved thers. j

The boundary and imbedded shock patterns
are seen in figures 12a,b,c for several incidence R
angles. The imbedded shocks increase in strength :
and the outer shock shape begins to deviate
significantly from the near circular pattemrn at !
smaller incidence angles. The flow is super- ;
sonic over most of the rangs of ¢ for a > 12°. i

R R AR v v -

Pinally, for a = 45°, the variation of the
symmatry plane surface pressure and a qualitative
picture of the secondary flow is given in
figures 13a,b. The strong imbedded shocks, the ‘
double vortex pattern and the apple shape of the |
outer shock boundary are of particular note. )

S ami S b wyy

; AU OF ATWACK -0 These solutions are converged to the toleramces
described esrlier; howaver, the grid may be too ;
Fig. 10. Prisary Sepsration Poiat Location. coarse to reach a final couclusion on the accurscy 1

of this picture.
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Fig. 12a.

Shock Patterns -~ a = 12°,

Fig. 12b.

Shock Patterns - a = 24°,

rig. 12¢c.

Shock Patterns - a = 28°,
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Fig. 13a. Surface Pressure on Symmetry Plane.

Fig. 13. TFlow Pattern for a = 45°.

In summary, the CSIP procedure described
here captures shocks, predicts vortex lift-off,
multiple separation regions and complex shock
patterns. The possible suppression of departure
effects with global iteration and forward pg
differencing and the adequacy of single sweep
backward differencing and the adequacy of single
sveep backward differencing for conical flows
with small subsonic viscous layers has been
demonstrated. The accuracy of the present solu-
tions for very large incidence remains a question
for further study.
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