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Abstract—Anew parameter-free graph-morphology-based segmentation algorithm is proposed to address the problem of partitioning a

3D triangular mesh into disjoint submeshes that correspond to the physical parts of the underlying object. Curvedness, which is a rotation

and translation invariant shape descriptor, is computed at every vertex in the input triangulation. Iterative graphdilation andmorphological

filtering of the outlier curvednessvalues result inmultiple disjointmaximally connected submeshes such that each submeshcontains a set

of verticeswith similar curvednessvalues, andvertices in disjoint submesheshavesignificantly different curvedness values.Experimental

evaluations using the triangulations of a number of complex objects demonstrate the robustness and the efficiency of the proposed

algorithm and the results prove that it compares well with a number of state-of-the-art mesh segmentation algorithms.

Index Terms—Mesh segmentation, shape descriptor, curvedness, graph morphology.

Ç

1 INTRODUCTION

THREE-DIMENSIONAL mesh segmentation refers to the pro-
blemof partitioning agiven 3D triangularmesh into large

homogeneous disjoint submeshes usually based on certain
geometric properties of the vertices that comprise the mesh.
Typically, suchmeshes are obtained fromunstructured point
clouds of underlying 3D objects, which in turn are generated
by range sensors [4]. Examples of applications that benefit
frommesh segmentation include vertex simplification, object
recognition, and scene understanding [1]. The success of
several existingmesh segmentationalgorithms, judgedbased
on their ability to provide meaningful partitions, can be
attributed to the specific applications for which they have
been designed. For the segmentation results to be useful for
higher level tasks such as object recognition, it would be
advantageous to develop an algorithm that best mimics the
human visual system in terms of isolating different physical
parts in an object [27], [25]. In this work, this challenge is
addressed by considering a graph-morphology-based region
growing algorithm that uses curvedness [5], [10], [11],
computed at every vertex in themesh as the similaritymetric
for segmentation purposes.

Fig. 1 illustrates the need for a new segmentation

algorithm that outputs sufficiently large disjoint submeshes.

In Fig. 1a, due to noise or inaccuracies in the input data, the

traditional segmentation approaches will fail to extract

different parts of the object, that is, homogeneous regions of

connected vertices corresponding to a certain intensity of

curvature. This is because noise causes perturbation of the
vertices, resulting in inaccurate shape descriptor values
associated with certain vertices. The algorithm proposed in
this work allows for the extraction of homogeneous sub-
meshes, as shown in Fig. 1b.

The input to the proposed algorithm is a 3D manifold
surface triangulation [19] that represents the underlying
object of interest. Specifically, we focus on objects that consist
of subregions of homogeneous texture. Since manifold
meshes have at most two triangles incident along any edge
in the mesh, the computation of the shape descriptor such as
the curvedness at a vertex is fairly straightforward. The input
mesh is then characterized as an attributed graph, and the
curvedness values are used to adaptively determine the
curvedness thresholds for segmentation. Essentially, a sub-
mesh consists of a connected set of verticeswhose curvedness
values are in a desired interval, as specified by a pair of
curvedness thresholds. The extraction of a certain submesh is
an iterative morphological process involving graph dilation
and morphological filtering of outlier vertices. A fundamen-
tal advantageof theproposedalgorithmis that the selectionof
curvedness thresholds is donewithout anyuser intervention,
and the algorithm does not require the specification of the
desired number of submeshes. The details of the algorithm
are provided in Section 5.

The performance of our algorithm was tested on triangu-
lations of various complex 3D objects, which are widely
accepted in the fields of computer graphics and machine
vision. It is observed that the adaptive selection of curvedness
thresholds leads to submeshes that correspond to thephysical
parts of the underlying object. Additionally, the incorpora-
tion of morphological filtering ideas with graph dilation
during every iteration of the submesh growing process offers
the desired robustness in the presence of noise.

We contribute to the existing state of the art by

. formulating a new submesh extraction algorithm
that combines graph morphology and signal filtering
ideas and
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. developing a parameter-free approach through the
adaptive selection of curvedness thresholds that
leads to disjoint submeshes that seem to match the
human visual segmentation of the underlying object.

Thispaper is organizedas follows: In Section 3,weprovide
the background required for computation of the shape
descriptor at every vertex in the input triangular mesh.
Sections 4 and 5 provide a complete description of the
algorithm and highlight its capabilities. In Section 6, we
compare our algorithm with an existing state-of-the-art
approach and provide results that demonstrate the effective-
ness of our approach.

2 RELATED WORK

Over the past decade or two, the problem of mesh
segmentation has received significant attention and numer-
ous algorithms [33], [34], [20], [21], [22], [23], [1], [2] have
been proposed to solve the problem. We have grouped the
related work into three categories.

The first category covers methods that use Reeb graph
ideas [20], [21], [22], [23], based on Morse theory, for
segmentation of meshes. A Reeb graph, or a contour tree,
represents the topological skeleton of the underlying
3D object and uses height functions for the determination of
level-set curves. Each such curve represents a vertex in the
graph. Segmentation is achieved by extracting edges that link
different pairs of vertices. The main drawback of the basic a
Reeb graph approach is the determination of appropriate
height functions that would lead to good segmentations.
Also, the approach is highly sensitive to noise [21]. Various
extensions to this approach have been proposed, which

include the formulation of application-dependent height
functions [20], discrete Reeb graphs [22], extended Reeb
graphs [23], and affine-invariant Reebgraphs [21]. The affine-
invariant Reeb graphs [21] provide a rotation-and-transla-
tion-invariant segmentation. However, to obtain good
results, Mortara and Patanè [21] suggest that the input mesh
be uniform. Also, the work in [21] does not specifically
address the perceptual aspect of segmentation.

The second category covers methods that extend classical
segmentation approaches used in image analysis to three
dimensions. Mangan and Whitaker [1] propose a watershed
algorithm for segmentation. They compute the total curva-
ture at every vertex and identify the local curvature minima
that represent thresholds. Adjacent vertices with uniform
curvatures between two minima are labeled as belonging to
the same region. The algorithm is designed to provide good
segmentations only for uniform meshes. Rössl et al. [3]
propose a boundary extraction algorithm by extending
binary morphology to three dimensions. They compute
curvatures at every vertex in the mesh and subsequently
threshold themtoobtain abinary featurevector. Further, they
apply various binary morphological operators to obtain the
skeleton of the feature region. Each skeleton is then
postprocessed to obtain a graph-based characterization. The
Medial Axis Transformation (MAT) [24] provides an affine-
invariant segmentationbut is sensitive tonoise [21]. In [32], an
object is segmented intoparts by combiningMarkovRandom
Field ideas with shape index and curvedness metrics.

The third category covers algorithms that perform
perceptual segmentation. These algorithms are based on the
minima theory that defines a framework for how human
perceptionwill decompose an object into its constituent parts
[2]. Essentially, this theory defines boundaries as lines of
negative minima curvature. Wu and Levine [27] address the
perceptual aspect by formulating an algorithm based on the
simulated distribution of electrical charge across the surface
of amesh. Page et al. [2] use the principal curvatures as shape
descriptors and implement a variation of the watershed
algorithm to identify regions that are bounded by lines of
negative minima curvatures. In this work, the proposed
morphology-based algorithm uses curvedness as a similarity
metric to partition a 3D mesh into constituent submeshes.

3 DEFINITIONS AND NOTATIONS

3.1 Shape Descriptor: Curvedness

In our segmentation framework, the geometric aspect of an
object is defined using curvedness, which is also known as
the bending energy [10], [5]. It measures the intensity of the
surface curvature and describes how gently or strongly
curved a surface is. Mathematically, it is defined as

Cv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�2
maxðvÞ þ �2

minðvÞÞ=2
q

; ð1Þ

where �maxðvÞ and �minðvÞ are the principal curvatures of
the surface at vertex v and are defined as

�maxðvÞ ¼HðvÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2ðvÞ �KðvÞ
p

;

�minðvÞ ¼HðvÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2ðvÞ �KðvÞ
p

:
ð2Þ

Themeancurvature and theGaussian curvatures, denoted
byHðvÞ andKðvÞ, respectively, are estimated by considering
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Fig. 1. In (a), the vertices have been partitioned into three categories
corresponding to three different curvedness threshold intervals, com-
puted using the threshold selection technique described in this work. A
straightforward application of a standard region growing algorithm will
result in small fragments of connected vertices as opposed to regions
representing physical parts. The segmentation results obtained using
the proposed graph-morphology-based algorithm is shown in (b).
(a) Colors on the vertices correspond to different curvedness thresholds
intervals. (b) Segmentation using the proposed algorithm.



the triangular mesh as a piecewise linear approximation of
an unknown smooth surface [9], [31]. Therefore,

KðvÞ ¼

2��
P

k

i¼1

�i

A=3
;

HðvÞ ¼
1
4

P

mjkejk

A=3
;

ð3Þ

where

mj ¼
�j if edge ej is convex
0 if edge ej is planar

��j if edge ej is concave;

8

<

:

ð4Þ

A ¼
Pk

i¼1 fi is the sum of areas of all triangular faces
incident on the vertex v, and �i denotes the angle subtended
by a triangular face fi at vertex v. �j is the dihedral angle
between two adjacent triangular faces fj and fjþ1 and is
computed as the angle between the corresponding normals.
Here, k � k denotes the euclidean norm. These quantities are
illustrated in Fig. 2.

Curvedness will be used as the shape feature in the
proposed segmentation algorithm described in Section 5.

3.2 Graphs

In this work, an input mesh is defined as an attributed
graph G½ðV ;CÞ; E�, where V ðGÞ ¼ fv1; v2; . . . ; vng is the set
of vertices comprising the mesh, CðGÞ ¼ fCv1 ; Cv2 ; . . . ; Cvng
is the set of curvedness values associated with the vertices
in the mesh, and EðGÞ is a set of edges connecting the
vertices in V ðGÞ. Vertices vi and vj are adjacent and are
neighbors if there exists an edge eij connecting them [17].
The neighborhood NðviÞ of a vertex vi consists of a set of
vertices that are adjacent to vertex vi.

Given the graph G and a threshold interval ½tk; tkþ1Þ with
threshold values tk, tkþ1 2 ½Cmin; Cmax�, where Cmin and Cmax

are the minimum and the maximum curvedness values,
respectively, a maximally connected attributed subgraph
(MCASG) Y is defined as follows:

1. V ðY Þ � V ðGÞ.
2. EðY Þ ¼ EðGÞ \ ðV ðY Þ � V ðY ÞÞ, that is, EðY Þ con-

tains edges from the naturally generated edge set.
3. 8vi 2 V ðY Þ, Cvi 2 ½tk; tkþ1Þ.
4. There exists a path p from vi to vj containing distinct

vertices v0; v1; . . . ; vm 2 V ðY Þ such that Condition 3
holds true for every vertex along the path p.

The details of the MCASG extraction algorithm are
presented in Section 5.

In the following section, we explain the need for new
graph-based morphological operations and provide an
overview of the proposed algorithm’s characteristics.

4 GRAPH-MORPHOLOGY-BASED SEGMENTATION:
OVERVIEW

Fig. 3 illustrates the need for a new graph theoretic
formulation. The color on the vertices indicates the range
of curvedness values assigned to them. The segmentation of
G using the known algorithms will result in four MCASGs,
as shown in Fig. 3b. Such partitions are not acceptable for
our purposes because the MCASGs correspond to small
discontinuous regions (arising from the noisy data). On the
other hand, the proposed morphology-based processing of
the graph G forces the outlier vertices v1 and v2 in Fig. 3a to
behave like their neighbors, thereby resulting in two
MCASGs, as indicated in Fig. 3c. The proposed algorithm
has the following components:
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Fig. 2. Definition of various parameters with respect to the triangular
faces incident on vertex v. �i is the angle subtended by the triangular
face fi at the vertex v and is computed as the angle between the
corresponding edge vectors ei and eiþ1; �i is the dihedral angle between
adjacent triangular faces and is computed as the angle between the
corresponding normals.

Fig. 3. The implication of not transforming the geometric properties of outlier vertices is shown by way of Output1 (b). Output2, shown in (c), is
obtained by our algorithm. The proposed algorithm performs graph dilation by identifying and morphologically filtering outlier vertices such as v1, v2.
(a) Input mesh G½ðV ;CÞ; E�. (b) Output1: four disjoint MCASGs. (c) Output2: two disjoint MCASGs.



. Adaptive threshold selection. Submeshes are obtained
using adaptively determined curvedness threshold
intervals. The details of the threshold selection
process are presented in Section 5.3.

. Submesh growing. MCASG extraction process is initi-
alized by identifying a vertex from the input mesh
with a curvedness value in the specified threshold
interval. For example, given the input mesh shown in
Fig. 4a and the curvedness threshold interval [2, 5), the
segmentation initialization is shown in Fig. 4b. At any
iteration, the initial submesh is expanded by graph
dilation,which also implicitly identifies and filters the
outliers in the expanded submesh. Specifically, this
work exploits the idea that the geometric behavior of a
vertex is influenced by its neighbors so that an outlier
vertex is transformed to be a part of the MCASG by

replacing its curvedness value by the median com-
putedover the curvedness values of its neighbors. The
resulting expanded submesh is scooped out of the
input mesh to form the dilated graph for the iteration.
As an example, graph dilation around the initialized
vertex (Fig. 4b) followed by the extraction of the
expanded submesh results in the dilated graph for the
first iteration, as shown in Fig. 4c. Observe that the
morphological filtering during this iteration has not
transformed the outlier neighbors ðv2; v3Þ of the
initialization vertex v1. On the other hand, during
the second iteration, the dilation of M1 morphologi-
cally filters the outliers v4 and v5 (Fig. 4e).

. Removal of outliers. After filtering, the vertices in the

dilated graph that are still outside the desired thresh-

old interval arediscarded. For example, the graphM1,

shown in Fig. 4d, which is used as the submesh for

expansion during the second iteration, is obtained by

discarding the outliers from the dilated graph G1
d. It

may be noted that the MCASG corresponding to a
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Fig. 4. The steps involved in the extraction of two disjoint MCASGs for
the given input mesh G. The curvedness thresholds are specified as
before. The MCASG corresponding to a certain curvedness threshold
interval is obtained when the algorithm converges, that is, when
Mk ¼ Mk�1. The MCASG then is given by Mk. (a) Input graph
G½ðV ;CÞ; E�. (b) Initialization of V ðM0Þ; initial submesh for first iteration.
(c) Dilated graph G1

d. (d) Matched graph M1; initial submesh for second
iteration. (e) Dilated graph G2

d. (f) Matched graph M2.

Fig. 5. (a)Dilated graphextraction process involvesexpansionof the initial
submesh, identification, and morphological filtering of outliers in the
expanded submesh. The idea exploited here is that a vertex geometrically
behaves like its neighbors. Thus, it is possible to replace the curvedness
value of an outlier by the median curvedness computed over its one-
connected neighbors. For example, Cv7 ¼ median fCvs3 ; Cvs4 ; Cv6 ; Cv8 ;
Cv9 ; Cv10g. (a) Input:G½ðV ;CÞ; E�, initial submesh is shown in dotted lines;
curvedness threshold range [2, 5). (b)Dilatedgraph: curvednessvaluesof
certain vertices are modified in the expanded submesh.

Fig. 6. Algorithm exhibits robustness to bad initializations. Selection of vertex v1 as the starting vertex does not allow the submesh to grow as much.
The vertices in such MCASGs are considered unprocessed. Vertex v2 is a good choice for initialization. (a) Input graph G. (b) Initialization: Choice 1.
(c) Initialization: Choice 2.



certain threshold interval is obtained when the

algorithm converges, that is, whenMk ¼ Mk�1.

In the following section, we formally describe the basic
segmentation algorithm and then extend the approach for
the extraction of multiple disjoint MCASGs.

5 ALGORITHM FOR EXTRACTION OF MCASG

5.1 Basic Segmentation Algorithm

Given an input mesh G and a curvedness threshold range
½ti; tiþ1Þ, the extraction of a certain MCASG, say, M,
involves

1. Initialization step. Select an arbitrary vertex v from G
such that its curvedness value Cv 2 ½ti; tiþ1Þ. Set
V ðM0Þ ¼ v. EðM0Þ ¼ ;, and CðM0Þ ¼ Cv.

2. Iteration step. For k ¼ 1; 2 . . . , perform the following:

a. Dilated graph extraction. Determine the neighbors
of the vertices in V ðMk�1Þ and perform median
filtering on their curvedness values if necessary.
Extract the dilated graph Gk

d such that

V ðGk
dÞ ¼ fV ðMk�1Þ [ v0jv0 2 NðvÞ; 9v 2 V ðMk�1Þg

CðGk
dÞ ¼ fC0

vg; where

8v 2 V ðGk
dÞ

C0
v ¼

medianfCv0 jv
0 2 NðvÞg; Cv =2 ½ti; tiþ1�

CðvÞ; otherwise

�

EðGk
dÞ ¼ feuv 2 EðGÞju; v 2 V ðGk

dÞg:

ð5Þ

The dilated graph extraction process is illu-
strated in Fig. 5.

b. Extraction of MCASG. The removal of the outlier
vertices in the dilated graph will result in a
graph Mk, where i) V ðMkÞ ¼ fv 2 V ðGk

dÞjCv

2 ½ti; tiþ1Þg, i i ) EðMkÞ ¼ ðV ðMkÞ � V ðMkÞÞ \
EðGk

dÞ, and iii) CðMkÞ ¼ fCv; 8v 2 V ðMkÞg. All
the vertices inMk have their curvedness value in
the desired curvedness threshold interval.

The algorithm converges when Mk ¼ Mk�1. The
MCASG corresponding to the threshold range
½ti; tiþ1Þ is then given by Mk.

It is observed that this approach causes the smoothing of a
local surface shape, by modifying outlier curvedness
values. We list below certain modifications to the basic
algorithm that provide practical and robust segmentations.

5.2 Modified Algorithm

In Section 5.1, the segmentation initialization was done by
arbitrarily selecting a vertex having its curvedness in the
desired interval. However, if such a vertex has its neighbors
outside the desired interval, then a reasonably sized
MCASG may not be guaranteed. The implications of a
bad initialization are illustrated in Fig. 6. If we set V ðM0Þ ¼
v1 and implement our segmentation algorithm, we observe
that the MCASG cannot grow as much as would have been
expected, as shown in Fig. 6b. Since such MCASGs do not
really represent reasonably large segmented regions, the
vertices that comprise such MCASGs are considered
“unprocessed” from a segmentation point of view. This
leads to the selection of another vertex for segmentation
initialization. As shown in Fig. 6c, vertex v2 is definitely a
good starting point. It may be noted that the term reasonable
is subjective, and for our problem, we drop MCASGs with
fewer than 15 vertices and consider these vertices as
unprocessed. As we show in the examples, such an
approach works well for quite a broad range of objects.
Therefore, as far as the final segmentation is concerned, we
feel that the algorithm is robust against bad initializations.
For a given curvedness threshold range ½ti; tiþ1Þ, due to the
propagating nature of the segmentation algorithm, there
will be a single MCASG at the output. In general, there may
be several parts in any object with a similar intensity of
curvature, which are otherwise disconnected. We take into
account such situations and modify the basic segmentation
algorithm to obtain multiple disconnected similar MCASGs.

Modified Segmentation Algorithm

1. Obtain the list of all vertices, say, L, satisfying the
curvedness threshold criterion.

2. Select an arbitrary unprocessed vertex from L and
implement the basic segmentation algorithm.

3. Drop the MCASG obtained in Step 2 if it is not
reasonably large (fewer than 15 vertices) and
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Fig. 7. Selection of curvedness threshold for the simplified horse
consisting of 1,548 vertices. The gray-colored bin in (a) and
(c) indicates the first bin of appropriate peakedness. All curvedness
values in this bin are clustered into two classes using K-Means with
cluster centers cen1 and cen2. In (b) and (d) “�” and “þ” correspond to
the cluster centers and the bin center, respectively. The cluster center
closest to the bin center is assigned as the threshold tiþ1. (a) i ¼ 1,
W1 ¼ 56:02, k ¼ 6, t1 ¼ 0. (b) cen1 ¼ 292:04, cen2 ¼ 306:84, t2 ¼ 292:04.
( c ) i ¼ 2, W2 ¼ 57:8, k ¼ 2, t2 ¼ 292:04. ( d ) cen1 ¼ 382:84,
cen2 ¼ 414:09, t3 ¼ 382:84. (e) i ¼ 3, W3 ¼ 93:9, t3 ¼ 382:84.



consider the corresponding vertices as unprocessed;
else, proceed to Step 4.

4. Repeat Step 2 until all vertices in L have been
processed. This step ensures that all possible sets of
MCASGs satisfying the given curvedness threshold
criterion have been extracted.

Stopping Condition. The algorithm terminates either
when all vertices in L have been processed or when only
isolated regions with fewer than 15 vertices (which are not
reachable by any propagations) are left.

5.3 Adaptive Selection of Thresholds

The proposed segmentation algorithm is driven by the
assumed knowledge of a pair of curvedness thresholds
½ti; tiþ1Þ that identifies the rangeof curvedness values allowed
for thevertices inanMCASG.Athresholdpair corresponds to
the representative curvedness values for an MCASG. The
motivation for the threshold selection process described here
is derived fromK-Means clustering [28] and histograms [18].
For our problem, the use of cluster centers resulting from a
straightforward application of the K-Means algorithm to the
set of curvedness values does not result in the desired
MCASGs. Also, the optimal number of classes needs to be
specified.Wehavefoundthat theuseofcurvednesshistogram
peaks as thresholds leads to oversegmentation. Such over-
segmentationscanbeavoidedbyselectingacurvednessvalue
(threshold) that is close to the identified peak.

We propose an iterative threshold determination techni-
que based on the subbin processing of the histograms.
Specifically, during an iteration i, we construct a curved-
ness histogram with an optimal bin width over the set of
curvedness values in the interval ½ti; Cmax�. Here, ti is the
minimum of the Ni curvedness values available for
processing at level i. When i ¼ 1, ti ¼ Cmin. Next, we
identify the first bin with an appropriate peak, that is, the
bin with at least 10 percent of the total number of vertices in
the input mesh. Subbin processing of this bin involves
1) partitioning of the curvedness values in the bin into two
classes using K-Means and 2) assigning the cluster mean
that is closer to the bin center as the threshold tiþ1 for the
extraction of the MCASG in the curvedness interval ½ti; tiþ1Þ.
The repetition of this process for i ¼ 2; 3; . . . results in the
determination of all the curvedness intervals ½ti; tiþ1Þ that
are required for the extraction of the corresponding
MCASGs. The threshold determination process is illu-
strated in Fig. 7 and is formally described below.

For i ¼ 1; 2; . . . , the selection of a threshold pair ½ti; tiþ1Þ
involves

1. Construction of a curvedness histogram. During
iteration i, a histogram is constructed over the
curvedness values in the interval ½ti; Cmax�. The set
of curvedness values is partitioned into m bins such
that the jth bin is the open interval ½ti þ ðj� 1ÞWi;
ti þ jWiÞ. Here, Wi is the optimal histogram bin
width [29], computed as

Wi ¼ 3:49�iN
�1=3
i ; ð6Þ

where �i is the standard deviation of the Ni curved-
ness values.

In Fig. 7, for i ¼ 1, the histogram is constructed by
using all the curvedness values, whereas for i ¼ 2
and i ¼ 3, the corresponding histograms are con-
structed over the curvedness values in the intervals
½292:04; Cmax� and ½382:84; Cmax�, respectively.

2. Identification of the first bin of interest. The kth bin is
identified as the first bin of interest, where k ¼ min

fjjnj � 10%Ng. Here, nj is the number of vertices
whose curvedness value falls in the jth bin. In Fig. 7a,
k ¼ 6, as indicated by the gray-colored bin.

3. Subbin processing for the determination of tiþ1. While
there exists the first bin of interest with bin center Xi,
perform Steps a, b, and c:

a. Using K-Means, partition the curvedness values
in this bin into two classes and identify the
corresponding cluster centers cen1 and cen2;
cen1 < cen2. The cluster centers in Figs. 7b and
7dareobtainedbypartitioningof thegray-colored
bins shown in Figs. 7a and 7c, respectively.

b. Set tiþ1 ¼ cenl, where l ¼ argminy¼1;2 jXi � cenyj.
Thus, the cluster center that is closer to the bin
center Xi is selected as a threshold. In Fig. 7b,
t2 ¼ cen1.

c. Extract MCASG corresponding to the threshold
interval ½ti; tiþ1Þ using the segmentation algo-
rithm described in Section 5.1. Fig. 8 illustrates
the various MCASGs obtained using the thresh-
old intervals indicated in Fig. 7.

4. Stopping Condition. Subbin processing terminates
when none of the bins in the curvedness histogram
satisfy the peakiness constraint. Then, the threshold
interval for the remaining unprocessed mesh is
½ti; Cmax�. Such a histogram is shown in Fig. 7e.

Observe that a new curvedness histogram is constructed
during every iteration. This is because segmentation (at the
previous iteration) modifies the curvedness values of
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Fig. 8. Segmentation of the simplified [30] horse with 1,548 vertices into MCASGs corresponding to the threshold intervals shown in Fig. 7.

(a) Curvedness interval [0, 292.04). (b) Curvedness interval [292.04, 382.84). (c) Curvedness interval [382.84, 2304.4].



certain vertices. A fundamental advantage of such an

approach is that the thresholds are selected without any

user intervention, and it does not require the specification

of the desired number of submeshes.

6 EXPERIMENTS AND DISCUSSION

6.1 Comparison with the State of the Art

A comprehensive comparison of our algorithm with all the

existing state-of-the-art approaches is beyond the scope of

this paper. From the mesh segmentation literature, we
selected the watershed algorithm [1] for evaluation pur-
poses, primarily because it is also built on the ideas
borrowed from morphology. Our algorithm differs from
the watershed algorithm [1] in the way the morphological
operators are defined and applied.

6.1.1 Perceptual Aspect

To qualitatively analyze the segmentations, we simulated a
uniformly sampled point cloud of a cube, which was
subsequently triangulated using the commercially available
Points2Polys software. Our algorithm segments the cube into
exactly one MCASG, as shown in Fig. 9a. The watershed
algorithm [1], on the other hand, segments the mesh into six
submeshes (Fig. 9b), wherein each submesh corresponds to a
face in the cube. The input to both the algorithms is a surface
mesh. For a cube, the curvatures and, hence, the curvedness
values associated with the vertices that lie along the edges
are starkly different from the values associated with the
interior vertices. The vertices along the edges are treated as
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Fig. 9. Proposed segmentation algorithm partitions the input mesh into
submeshes corresponding to the physical parts of the underlying object.
Since a cube consists of planar faces, the algorithm outputs only one
MCASG, whereas the watershed algorithm results in six submeshes.
(a) One MCASG. (b) Six submeshes. (c) Five MCASGs. (d) Eleven
submeshes. (e) Five MCASGs. (f) Six submeshes.

Fig. 10. For reasonable noise levels, our proposed algorithmpartitions the
cube into exactly one MCASG. On the other hand, the watershed
segmentation algorithm does not provide the desired results.
(a) SNR ¼ 55 dB, 1 MCASG. (b) SNR ¼ 55 dB, 13 submeshes.
(c) SNR ¼ 45 dB, 1 MCASG. (d) SNR ¼ 45 dB, 34 submeshes.

Fig. 11. The point cloud of the horse was subjected to varying amounts of Gaussian noise (SNR between 44 dB and 55 dB). A considerable amount
of noise is required for the algorithm to generate patchy segmentations. (a) SNR ¼ 44 dB; 15 MCASGs obtained for a noisy horse with
59,547 vertices. (b) Plot of SNR versus the number of MCASGs for the horse.



outliers, and the process of graph dilation forces the outliers
to behave like their neighbors bymodifying their curvedness
values. Hence, segmentation results in exactly one MCASG.
On the other hand, the watershed algorithm [1] treats the
vertices along the edges of the cube as points of minima.
Hence, the gradient descent from vertices lying on the
interior of the cube toward the minima results in six
connected components. It may well be argued that partition-
ing a cube into six submeshes (obtained using watershed
algorithm) is more meaningful than segmentation into a
single MCASG. As stated in the beginning of the paper, the
definition of meaningful is highly application dependent. For
the purposes of recognition, we think that it is reasonable to
partition a cube into a single MCASG. We would like to
point out that our results are similar to the perceptual
segmentation results presented in [2].

Figs. 9c and 9e represent the segmentation results on a
tea pot and tea cup using the proposed graph-morphology-
based segmentation algorithm, whereas Figs. 9d and 9f
represent the corresponding segmentations obtained using

the watershed algorithm. For the tea pot, our segmentation
algorithm results in five MCASGs, whereas the application
of the watershed algorithm results in 11 submeshes. We
would like to draw attention to the fact that the segmenta-
tion results of the tea cup and tea pot, as provided by our
algorithm, are comparable to the perceptual segmentation
results obtained by the fast marching watershed algorithm
presented in [2] (Figs. 2a, 2b, 2c, 3c, and 9b in [2]).

6.1.2 Effect of Noise

The point cloud of the cube was subjected to two different
levels of Gaussian noise resulting in signal-to-noise ratio
ðSNRÞ ¼ 55 dB and 45 dB. SNR is the ratio of signal-to-noise
energy on a logarithmic scale and is mathematically
expressed as SNR ¼ 20logðS=�2

nÞ, where �2
n is the variance

of the Gaussian noise, and S is the maximal signal strength.
Since the noise causes a perturbation of the vertices that
constitute the point cloud, the curvature estimates are not
accurate, resulting in many more outlier vertices or minima
(as compared to the noise-free point cloud). As illustrated in
Figs. 10a and 10c, due tomedian filtering during dilation, our
algorithm segments the noisy input mesh into exactly one
MCASG. The watershed algorithm results in 13 and 34 sub-
meshes for SNR ¼ 55 dB and 45 dB, respectively, as shown in
Figs. 10b and 10d.

The effect of noise on more complex surfaces was
analyzed by subjecting the point cloud of the horse to
varying amounts of white Gaussian noise (SNR varying
between 44 dB and 55 dB). Fig. 11a indicates the segmenta-
tion obtained at SNR ¼ 44 dB. From Fig. 11b, we conclude
that considerable noise is required for the algorithm to
result in patchy MCASGs.

6.2 Complex Data Sets

In order to demonstrate the effectiveness of the proposed
algorithm, acceptable test cases from the realms of
computer graphics and object recognition/machine vision
were segmented into corresponding MCASGs. Multiple
similar yet disjoint MCASGs are obtained using the
modified segmentation algorithm described in Section 5.2.
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Fig. 12. Segmentation results for complex surfaces. (a) Pig: 11MCASGs.

(b) Bunny: 6 MCASGs. (c) Car: 19 MCASGs. (d) Pickup truck:

15 MCASGs. (e) Human: 15 MCASGs. (f) Dart: 4 MCASGs.

Fig. 13. Segmentation of some more complex surfaces. (a) Fire hose

nozzle: 7 MCASGs. (b) Lamp: 5 MCASGs. (c) Dragon: 7 MCASGs.

(d) Cow: 11 MCASGs. (e) Dinopet: 10 MCASGs.



The results in Figs. 12 and 13 confirm the robustness of the

adaptive threshold selection process and its applicability in

a wide context. As these results demonstrate, the proposed

algorithm provides coarse yet clean segmentations for

objects such as a car, pickup truck, dart, and lamp, which

consist of regions of homogeneous texture. On the other

hand, the quality of segmentation for highly textured

surfaces such as the bunny and the dragon points to the

limitations of the approach. Specifically, for such objects,

the algorithm seems to oversegment certain regions of the

mesh. A plausible solution to dealing with such object

models is the inclusion of texture features in addition to the

curvedness values. Further, the problem of undersegmenta-

tion of certain regions of the mesh can be addressed by

casting the solution within a multiscale framework.
Table 1 shows the timing performance of the proposed

algorithm on various data sets. The algorithm was coded in

Matlab and tested on a Pentium IV processor at 1.5 GHz

with a 256-Mbyte memory.

7 CONCLUSIONS

In this paper, a graph-morphology-based 3D mesh segmen-

tation algorithm was presented to classify vertices into

different categories based on their intensities of curvatures.

Results indicate that 1) graph dilation together withmorpho-

logical filtering of outliers can effectively deal with the noise,

thereby resulting in robust segmentation and2) the algorithm

compareswell with the existing state-of-the art segmentation

approaches. As part of future work, we will extend the

approach to deal with textured objects by incorporating

texture features in addition to the shape features considered

in this work. Also, the algorithmwill be extended to perform

multiscale segmentation.
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