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Three-Dimensional Texture Analysis of MRI Brain
Datasets

Vassili A. Kovalev, Frithjof Kruggel*, Hermann-Josef Gertz, and D. Yves von Cramon

Abstract—A method is proposed for three-dimensional (3-D)
texture analysis of magnetic resonance imaging brain datasets. It is
based on extended, multisort co-occurrence matrices that employ
intensity, gradient and anisotropy image features in a uniform way.
Basic properties of matrices as well as their sensitivity and depen-
dence on spatial image scaling are evaluated. The ability of the sug-
gested 3-D texture descriptors is demonstrated on nontrivial clas-
sification tasks for pathologic findings in brain datasets.

Index Terms—3-D texture, co-occurrence, MRI, neurodegener-
ative diseases.

I. INTRODUCTION

I T has long been recognized that textural features play an im-
portant role in a wide variety of image analysis problems.

Depending on texture type and specific goal of the problem in
hands, various types of two-dimensional (2-D) texture descrip-
tors have been proposed and studied in the literature, ranging
from general Wold texture features [1] to co-occurrence ma-
trices [2] and tree-structured wavelet transform [3]. Reviews of
2-D texture analysis methods can be found in [4], [5]. Recent
proliferation in three-dimensional (3-D) sensor technology and
continuous increase of spatial resolution of neuroimaging tech-
niques call for new, natively 3-D texture analysis methods. Al-
though using slice-by-slice 2-D approaches is still possible, they
suffer from the drawback that some important information con-
tained in original image data is ignored.

While 2-D texture analysis has been extensively studied, there
has been very little work done in the area of characterization
and analysis of 3-D (volumetric) textures. So far, the extension
of 2-D gray scale methods to three dimensions has largely been
confined to 3-D edge detectors (e.g., [6]) and such a particular
property of 3-D textures as spatial anisotropy [7].

There is a strong practical need for image analysis methods
that derive quantitative measures about tissue characteristics.
Such measures may then be incorporated into statistics com-
paring clinical features to magnetic resonance imaging (MRI)
findings. The work proposed here is a part of the larger project
to develop automatic methods that will help to understand and
quantify diffuse pathologic processes, which occur with neu-
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rodegenerative diseases. Understanding these disease processes
involves detecting and describing pathologic changes as well
as monitoring of these changes with time. Lesions such as dif-
fuse white matter hypointensities (DWMH) [8]–[10], periven-
tricular hypointensities [11] and enlarged periventricular spaces
[12], [13] are typically faint, unsharp, and “cloudy” (without
sharp borders). It is expected that these lesions might be seg-
mented and characterized quantitatively with the help of texture
analysis methods. The unsharp nature of nonfocal brain lesions
does not give us a chance to define their precise borders. It ap-
pears more realistic to calculate brain lesion probability maps
instead. We may then evaluate visually how well it fits to ex-
perts expectations, use the map to segment the lesion for any
given probability threshold and derive quantitative volumetric
and textural descriptors of a lesion.

In this paper, we propose a new method for 3-D texture anal-
ysis which is based on extended co-occurrence matrices. Gray
level co-occurrence matrices and gray level run length matrices
have been suggested by Haralicket al. [2] and Galloway [14].
These classical 2-D texture analysis tools have been success-
fully used for texture description, classification and segmenta-
tion in their original form in a number of applications including
brain image analysis (e.g., [15]). In the context of this paper,
there are at least three different reasons for extending of the
co-occurrence approach.

A. Consideration of the Change of Original Image Data
Dimensionality from 2-D to 3-D

This is an obvious and rather technical point. In order to adapt
traditional co-occurrence matrices designed for 2-D images to
three dimensions, there is no need to change original definitions
except for considering neighboring voxels on the 3-D voxel lat-
tice. Precisely speaking, the increase of spatial dimensionality
of -dimensional arrays defined on the same set of discrete gray
values from to changes neighborhood relations and,
therefore, changes mutual relationships between the sets of pos-
sible -dimensional “images” and their co-occurrence repre-
sentations. However, in this paper we focus on the analysis of
3-D brain datasets and do not elaborate these general theoretical
problems.

B. Increasing the Sensitivity and Specificity of Co-Occurrence
Descriptors

Traditional co-occurrence matrices perform well for char-
acterization and discrimination of “general,” distinct textural
classes. Typical examples of such textures are given in the
Brodatz album [16] containing natural patterns of reptile
skin, leafs, brick walls, etc. Because the variation of brain
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texture is not very salient, we need to increase the sensitivity
and specificity of co-occurrence features in order to enable
detection and separation of rather faint and not well-defined
textural differences related to various normal and pathological
structures. In order to achieve this, we increase the co-occur-
rence matrix dimensionality (number of axes) by combining
“elementary” image features of different sorts (e.g., intensity,
gradient magnitude, and mutual orientation) as described in
[17]. In this respect, we may say that traditional co-occurrence
matrices aresingle-sort matrices; namely, intensity co-oc-
currence matrices. We increase sensitivity and specificity of
these descriptors by the use ofmultisort and, accordingly,
multidimensional co-occurrence matrices. Such an extension
provides means for dealing with different features in a system-
atic and uniform manner. It is important to note that there are
no relations between image dimensionality and co-occurrence
matrix dimensionality. The image dimensionality corresponds
to the spatial dimensionality of input data while the matrix
dimensionality reflects the number of image characteristics and
intervoxel relations under consideration.

C. Rotation and Reflection Invariance

According to the definition (e.g., [18]), classical co-occur-
rence matrices use a positional operator to define direction and
distance for the pixel pairs under examination. Selection of
these directions is not critical when we are dealing with uni-
form, anisotropic textures or, just opposite, analyzing strongly
isotropic objects placed into image origin in a predefined way.
In all other cases, the co-occurrence matrices computed for
original and rotated/reflected images may be very different. To
overcome this drawback we do not use predefined directions
for voxel pairs in three dimensions. Instead, all possible voxel
pairs (with no repetition) are considered at a certain distance
range. Hence, such a co-occurrence matrix describes the
internal structureof a given image or an arbitrarily shaped 3-D
gray scale segment, while being independent of its orientation
relative to the image origin.

In Section II, we define extended multisort co-occurrence ma-
trices formally and consider their basic properties. In Section III,
we discuss issues related to the matrix sensitivity and depen-
dence on spatial image scaling. Section IV provides examples
of application of the method suggested. We draw our conclu-
sions and outline future work in Section V.

II. M ETHODOLOGY

A. General Approach

Following the basic concept of elementary image structures
[17], we assume that the image of any object can be consid-
ered as a composition of voxel pairs. The elements of a pair
carry somecharacteristics(e.g., gray value, gradient magni-
tude, semantic label) and have somerelations(e.g., distance be-
tween them, relative gradient angle, and intensity difference).
To represent the voxel pairs that constitute an image, we use an

-dimensional co-occurrence matrix where each of the char-
acteristics and relations correspond to a different dimension of

the matrix. Thus, a -dimensional co-occurrence matrix is a
-dimensional histogram whose elements have the general

form , where takes
all possible (quantified) values of characteristic, and all pos-
sible values of relation defined on a voxel pair. The value
of the matrix is the frequency of occurrence of given voxel pair
in the image, or the frequency of certain combinations of image
characteristics.

The selection of an appropriate matrix type, i.e., type of
elementary voxel characteristics and relations used is a mathe-
matically intractable problem. It depends on the purpose of the
analysis, intrinsic image properties and the way image classes
under comparison manifest their differences. As a general way
for multidimensional co-occurrence matrix construction, one
may follow the principle of “orthogonal” sets of elementary
image features associated with different matrix axes. According
to studies of human texture perception conducted by Rao and
Lohse [19] and Tamuraet al. [20], such features capture visual
properties expressed by the terms “granularity” (coarseness,
contrast), ”repetitiveness” (periodicity or randomness), and
“directionality” (anisotropy). Based on these results and ex-
perience using of traditional intensity co-occurrence matrices,
we suggest the following three basic characteristics: intensity,
gradient magnitude and relative orientation of gradient vectors.
Being considered together with their variations in spatial do-
main, these image features could be accepted as an “orthogonal
basis” for co-occurrence matrix axes.

For a formal definition of the corresponding co-occurrence
matrix, let us consider an arbitrary voxel pair defined on
discrete voxel lattice by voxel indexes ,

and with the Euclidean distance . Let us de-
note intensities of these voxels by and , local gradient
magnitudes by , and the angle between their 3-D gra-
dient vectors by . Then the general, six-dimensional (6-D)
co-occurrence matrix can be defined as

(1)

Gradient magnitudes , , and the angle between gra-
dient vectors can be calculated as

(1.1)

where is the dot vector product and , corre-
spond to the normalized gradient vectors. Gradient vector com-
ponents , , and can be calculated by any suitable 3-D
operator. Since we are dealing with high frequency textures, we
use a filter with a small 3 3 3 window proposed by Zucker
and Hummel [6].

Denoting integer intensity bins , by indexes
, gradient magnitude bins , by

, relative gradient angle bins by ,
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and distance bins by , the matrix ele-
ment can be formally
defined as

(1.2)

where , , and are offsets on , , and axes mea-
sured in image raster units. The last five lines of the definition
formalize the requirement of selection of all possible voxel pairs
with no repetition. When calculating the matrices, we always
follow the original image raster and round Euclidean distances

to integer matrix bins in order to avoid incorporation of
nonexisting intensity values caused by interpolation. Therefore,
theroundoperator in (1.2) is defined in the common sense, i.e.,
as rounding to the nearest integer value. According to axis types,
we call this kind of co-occurrence matrices IIGGAD for brevity.

In many practical occasions, some reduced versions of the
above general IIGGAD matrix can be used as well. In particular,
it is worth to consider the following single-sort, intensity (IID),
gradient magnitude (GGD) and gradient angle (gAD) matrices:

IID:

(2)

GGD:

(3)

gAD:

(4)

It is easy to see that single-sort matrices– can always be
derived from basic IIGGAD matrix by summation along the cor-
responding axes. They may be considered as reduced, low-res-
olution versions of . Conversely, the original IIGGAD ma-
trix can not be restored from the – matrices. Therefore,
any combination of “low-resolution”, particular co-occurrence
features can not describe the image structure as detailed as the
IIGGAD matrix.

Note that the IID co-occurrence matrix is a simple 3-D
version of the traditional co-occurrence matrix. It describes
image spatial structure based explicitly on the intensity infor-
mation with no respect to other important features. Indeed, all
image voxel pairs at given distancewith intensity levels
and fall into a single matrix bin , while
in multisort IIGGAD matrices they are additionally separated
between the three axes , , and according to the
local intensity slopes and mutual orientations.

B. Matrix Properties and Related Practical Issues

In this section, we briefly discuss important properties of ex-
tended co-occurrence matrices and some aspects of their prac-
tical use for brain image analysis.

1) Resolution of the Co-Occurrence Representation:The
“resolution” property of an image descriptor can be evaluated
by considering cases where two or more different images
have exactly the same descriptor. According to the definitions
(1)–(4), any given image and its rotated/reflected versions have
the same co-occurrence matrix. In the context of brain image
analysis, with the characteristic “reflected” intensity distribu-
tion in the left and right hemispheres and unpredictable sulcal
variability, this is a highly desirable property. Applying such
transforms as rotation, reflection, and translation to an arbitrary
image segment does not change the corresponding co-occur-
rence matrix (provided the segment surrounded by a uniform
background with thickness greater than maximum considered
distance ). Therefore, in the general case, one co-occurrence
matrix may correspond to a set of different images, which are
indistinguishable by a given kind of descriptors.

2) Statistical Properties of the Inverse Matrix-Image Trans-
form: As mentioned earlier, finding interrelations between the
direct and inverse co-occurrence transforms is a hard combi-
natorial problem, which is not studied in this paper, theoreti-
cally. Statistically, this problem is closely related to the syn-
thesis (reconstruction) of textures with given properties (e.g.,
[21]–[23]). In order to examine co-occurrence properties rele-
vant to the practical aspects of the analysis of brain datasets, we
adapt the texture synthesis method suggested by Lohmann [23].
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(a) (b)

(c) (d)

Fig. 1. Example of 2-D images with the same intensity co-occurrence matrices.
(a) Original image slice. (b)–(c) Images reconstructed from the original intensity
co-occurrence matrix with distance rangesd = 1, 4 andd = 1, 30, respectively.
(d) Same as (c) but with normalization of the co-occurrence matrix for every
distance bin separately.

The method is based on an iterative stochastic procedure that
reconstructs a 2-D textural image from a given intensity co-oc-
currence matrix defined in the classical way. Note, we use a 2-D
version of the IID matrix defined by (2). Along with visual esti-
mation of the “equivalent” images, the main goals were to find
out an appropriate way for matrix normalization, selection of
suitable distance range, and consideration of texture anisotropy.

Fig. 1 shows an original - image slice [Fig. 1(a)] and
images reconstructed by its IID co-occurrence matrix under dif-
ferent conditions. For calculating the original matrix, we do not
limit ourselves to the intracranial cavity but background pixels
are also considered for demonstration purposes. From Fig. 1(b),
it can be seen that for a relatively small distance range of
1, , 4, the IID co-occurrence matrix describes local textural
properties reasonably well while the “global” image structure
is almost ignored. Increasing the distance range to a maximum

30 [Fig. 1(c)] results in the opposite behavior: the global
brain shape is similar to original one, but local textural proper-
ties are completely lost. This is because the number of possible
pixel pairs for greater distances is much bigger than for a local
neighborhood. Therefore, global spatial relations strongly dom-
inate the local ones. Matrix normalization is relevant for com-
paring objects with different size (e.g., brains of two individuals)
but do not help to avoid large distance domination. The natural
solution is to normalize the matrix for every distance bin sepa-
rately [see Fig. 1(d)]

Consideration of Texture Anisotropy:Consideration of the
texture anisotropy properties based on co-occurrence descriptors
is a bit more complicated issue. It depends on both anisotropy
properties of the image analyzed and the type of co-occurrence
tools employed. First, let us conditionally categorize image tex-
ture anisotropy into the following three classes:

• isotropic;
• anisotropic, unidirectional;
• anisotropic, multidirectional.

In case of classical co-occurrence matrices [2], [18], anisotropy
is not considered directly. However, since a positional operator
is used to define directions for pixel pairs, it should be synchro-
nized with the unidirectional texture orientation to avoid this
“undesirable” property. In contrast, the directional dependence
is emphasized in a subclass of these matrices, the so-called gray
level difference histograms (GLDH), where all possible direc-
tions are examined. With such modification, this kind of matrix

(a) (b)

(c) (d)

Fig. 2. Intensity co-occurrence matrices and texture anisotropy. (a) Original
texture patch selected from a slice of a brainMRI-T image. (b) Texture
reconstructed from the co-occurrence matrix. (c)–(d) Anisotropy histograms of
original and reconstructed textures that plot cumulative directionality according
to local texture gradients.

is used explicitly for anisotropy analysis of 2-D images [24],
[25]. Comparative study of 3-D versions of GLDH-based and
gradient-based approaches showed that GLDH-based approach
is much less sensitive and too robust for brain image analysis
[7]. When applied to the anisotropic, multidirectional textures
(e.g., brain sulci) both approaches produce results that largely
depend on individual orientation structure of the image.

In the definition of 3-D IID matrices (2), we have emphasized
their rotation invariance. Indeed, we consider all possible voxel
pairs with no respect on what direction they appear. Thus, we
may expect that these matrices do not capture (i.e., are inde-
pendent of) image anisotropy. This fact is experimentally tested
by the 2-D inverse co-occurrence transform (see Fig. 2) in the
way described in previous section. Anisotropy histograms were
computed by the gradient-based method described in [7].

In this paper, we suggest to use gradient angle co-occurrence
in form of separate gAD matrices (4) or fuse anisotropy together
with other texture features in general IIGGAD matrices (1). Both
are reflection/rotation invariant because they only take relative
orientations into account. Another suitable property is that these
descriptors are insensitive to the global (low frequency) shape of
a multidirectional 3-D image pattern if the range of intervoxel
distances is relatively small. For smooth, laminar 3-D structures,
such (locally defined) matrices would produce similar descrip-
tors independent of their mutual orientations in space. This is not
the case for other approaches where local orientations summed
up over predefined solid angle bins [24], [7]

C. Technical Remarks

Let us close this section by enumerating particular points crit-
ical for implementing of this approach.

1) Anisotropic Image Sampling:So far, we supposed that
high-resolution 3-D image data with the cubic voxel (say, about

mm ) are available. In case of noncubic voxels, the calculation
of co-occurrence matrix must be corrected. First, weights of 3-D
filter used should be appropriately scaled by multiplying relative
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sampling rates along , , and axes. Second, in the (1)–(4)
the image raster unit should be associated with the smallest
physical voxel dimension, distances measured in true physical
units (e.g., millimeters) and voxel pairs exceeding a predefined,
maximum distance truncated accordingly. Note that these
geometrical corrections do not avoid artificially high gradients
along the image axes with low spatial resolution (typically, the
interplane axis).

2) Rotation/Reflection Invariance:In practice, co-oc-
currence matrices are exactly the same for reflected images
and images rotated by angles that are multiplies of 90. For
arbitrary rotations, they would be slightly different. Differences
depend on the intensity interpolation algorithm but not the
texture feature computation.

3) Matrix Normalization: Summing elements for every dis-
tance separately is an appropriate way for matrix normalization
when the whole brain image and/or reasonably large segments
(brain compartments, brain lobes, etc.) are considered. In case
of characterization/comparison of small, equal-sized volumes
[e.g., 5 5 5 mm voxels of interest (VOIs)], there is no
need for normalization at all. Moreover, the above mentioned
“standard” normalization procedure emphasizes relatively rare
voxels pairs located at the opposite VOI edges.

4) Binning of Matrix Axes:The number of bins for every
matrix dimension should be relatively small. Bin sizes smaller
than the noise levels are useless because feature values may
not be reliably measured. Second, since we use considerably
large multidimensional matrices, combining multisort features
normally characterizes objects much better than more “precise”
measurements of a single (noisy) feature. Experimentation re-
vealed suitable bin count for feature axes of 4–16 and a distance
range of 1–5 mm.

5) Implementation Details:There are two key points of the
implementation of co-occurrence matrix calculation algorithm.
First, the condition of consideration of all possible voxel pairs
with no repetition can be satisfied by counting of pairs, formed
by every current image voxel andsubsequentones (in image
raster order). For instance, the number of different voxel pairs
in the nearest 3-D voxel neighborhood (radius 1) is
13. The second point is related to elimination of undesirable de-
pendence of matrix content on the specific order and direction
of the program loops over the image raster axes (equivalent to
image reflections and rotations to 90). Such independence can
be achieved by keeping a single-sort 2-D matrix subsections
(e.g., intensity–intensity) triangle that is with elements above
leading diagonal equivalent to zero. The simplest way is to swap
corresponding bin indexes [e.g., and ] before counting,
if .

The typical execution time of calculation of a general
IIGGAD co-occurrence matrix ( 1, , 4, MRI dataset with
about 10 brain voxels) on a mid-range PC workstation with
a 800-MHz processor is 3 min.

III. EXPERIMENTAL STUDY

Two important issues are addressed in this section: first, we
compare the sensitivity of the proposed co-occurrence matrices.
The second issue is concerned with the spatial image scaling
which is closely related to image registration problems.

(a) (b) (c)

(d)

Fig. 3. Sensitivity of different image descriptors to changes caused by additive
Gaussian noise. (a) Example slice of the original image. (b)–(c) Same slice
corrupted by Gaussian noise with STD five and 25 intensity units. (d)L1

distances between the original and the noisy images measured by different
descriptors.

A. Sensitivity of Co-Occurrence Descriptors

The sensitivity of co-occurrence descriptors can be evalu-
ated by quantitatively comparing their change with respect to
some predefined change in an image. For this purpose, we take
a - image of a normal healthy subject and add Gaussian
noise with zero mean and standard deviation (STD) at increasing
levels of five to 25 image intensity units [Fig. 3(a)–(c)]. All sug-
gested descriptors were calculated for the original image and its
noisy versions with the same binning parameters (ten feature
bins, distance range 1, , 4 mm) and normalized. The

distance from each noisy descriptor to corresponding noise-
less descriptor in feature space is used as a sensitivity measure.
Matrix cells of a co-occurrence descriptor are considered as a
feature vector with positive elements. Thus, for any two vec-
tors and , the norm is calculated a

(5)

The distance is symmetric, ranges from zero to one and ex-
presses the dissimilarity of two descriptors.

Note that original intensity co-occurrence matrices are tra-
ditionally not used directly. Instead, various integral features
based on these matrices are computed (e.g., [2] and [15]). In
order to compare the sensitivity of such features with co-occur-
rence descriptors, we compute the four most commonly used
texture features based on IID matrices in three dimensions: ho-
mogeneity, local homogeneity, contrast, and entropy. Integral
texture features were normalized similar to other descriptors.
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(a) (b) (c) (d)

(c) (f)

Fig. 4. Change of brain textural properties with respect to image scaling and natural brain volume variability. (a)–(b) Example slices of a referencebrain image
scaled to 85% and 115% of its original size. (c) Change of textural properties due to image scaling measured asL1 distance to the IIGGAD co-occurrence matrix
of image (a). (d)–(e) Example slices of brain images of two individuals matched with the corresponding scaled images depicted in (a) and (b) by the brain volume.
(f) Same as (c) but with respect to natural brain volume differences in six controls.

Results of the sensitivity evaluation are shown in Fig. 3(d).
As expected, general IIGGAD matrices demonstrate the highest
sensitivity because they combine all kinds of elementary image
features (intensity, gradient magnitude, and mutual angles of
orientation tokens). Apparently, integral texture features which
“average” specific image variations are too robust for compar-
ative brain image analysis. The other three single-sort descrip-
tors have an intermediate sensitivity with respect to these ex-
tremes. However, it is important to note that sensitivity is not
the only criterion for choosing suitable descriptors in a partic-
ular image analysis task. For instance, intensity co-occurrence
matrices IID are reasonably better than gradient angle matrices
gAD [Fig. 3(d)]. However, in this experiment all six images are
well intensity adjusted, which is generally not the case. Ade-
quate intensity fitting may be problematic and IID matrices may
lead to unstable and even incorrect results. In contrast, gAD ma-
trices are independent on intensity range and even on the rate of
spatial intensity variation (i.e., gradient magnitude). They can
be used for estimating the amount of brain structure “disorder”
in comparison to control regions and are considered to be more
suitable for measuring the severity of lesions.

B. Texture and Spatial Scaling

Intersubject image registration is one of the common steps
when analyzing brain images. Therefore, it is important to es-
timate brain texture distortions caused by spatial scaling and/or
registration to a standard atlas representation.

We need a reference image that represents a “typical case” of
an image class or population under consideration. For this pur-
pose, we adopt the idea of an average representative. In context
of texture analysis, the straightforward way of computing an “av-
erage” image by registration and spatial averaging is question-
able. Instead, we use a mean co-occurrence descriptor that repre-
sents the center of a given image class in feature space. The va-
lidity of this approach is provided by the fact that our descriptors
are independent of the specific object size and are translation, ro-
tation, and reflection invariant. The “mean descriptor” technique
is tested by comparing object deviations from the mean matrix
and the matrix of a real image that is close to the mean one in fea-
ture space. Another consequence of these properties is that spa-
tial 3-D image patterns of the left and right brain hemispheres
may be compared without reflection and/or registration.

Changes of textural brain image properties with scaling were
evaluated by comparing IIGGAD matrices computed for a
scaled image with “natural” differences observed in datasets
which match scaled images by brain volume. Accordingly, two
experiments were performed. In the first one, we took a -
reference image of a healthy subject withmm voxel size
and scaled it from 85% up to 115% in 5% steps [Fig. 4(a)–(b)],
which corresponds to changes in the brain volume from 640 to
1540 cm. Textural changes are measured asdistance to the
IIGGAD descriptor of the smallest volume. The original image
is excluded to guarantee the homogeneity of the image set and to
ensure that measured differences are explicitly related to scaling
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but not to differences between interpolated and noninterpolated
versions of the dataset. Comparisons were performed for the
left and right brain hemispheres separately [see Fig. 4(c)]. In
addition, for every scaled image we also computed the individual
difference between the left and right hemispheres [Fig. 4(c), thin
solid line with triangle points].

For the second experiment, we selected six – images
of different subjects [see Fig. 4(d)–(e)] where brain volumes
correspond to scaled versions of the reference image (mean
volume deviation is 3.8%). These six subjects matched the
reference one by age, health status, and image resolution. The
corresponding measurements to the average descriptor are
shown in Fig. 4(f).

The first experiment [Fig. 4(c)] strongly suggests that spatial
image scaling in the range of natural brain volume variability
leads to dramatic changes of textural properties of brain
datasets (correlation of the dissimilarity measurewith brain
volume is 0.99, 0.0001). Most likely, such transform
substantially changes spatial frequency of texture and other
related properties. Because these changes are similar for the
both hemispheres, we suppose that they are not associated
with brain shape and sulcal variability. Individual differences
between the left and right hemispheres are almost preserved
with image scaling ( 0.01) and seems to be an individual,
“constant” characteristic of a subject’s brain.

Thesecondexperimentdidnot revealanydependencybetween
textural properties and brain volume. The analysis of variance
method reported 1.23, 0.38 for the left hemisphere and

0.20, 0.69 for the right one. To avoid selection effects,
this hypothesis was tested additionally on the large sample of
210 - brain datasets of young healthy subjects including
103 male (group A) and 107 age-matched female (group B) with
mean age 24.8 and STD 3.9 years in the same way. Again, no
statistically significant correlation of textural properties and
brain volume was found (group A: 0.35 and 0.69, group
B: 0.32 and 0.51 for the left and right hemispheres,
respectively). Fig. 5 illustrates these findings for all controls in
form of the scatterplot of distance to the average brain
IIGGAD descriptor and brain volume ( 0.62, 0.19).

IV. EXAMPLES OF APPLICATION

Now we demonstrate how the proposed method can be used
for the analysis of MRI brain datasets. Two different examples
are given: a brain pathology classification task and the segmen-
tation of diffuse brain lesions.

A. Classification of Brain Datasets

This example is related to the characterization and clustering
of patients with (clinically apparant) mild cognitive distur-
bances (MCD) and normal, healthy elderly subjects. Note that
we do not focus on the extraction of specific, particular features
of the image classes. Instead, we use the 6-D IIGGAD co-oc-
currence matrices (1) which incorporate intensity, gradient,
and anisotropy information as a single descriptor. Although
such an approach may be considered “too straightforward,” the
elimination of the feature extraction stage provides an unbiased
analysis without risking (possibly voluntary) preferences.

Fig. 5. Dissimilarity of brain texture of 210 normal controls versus brain
volume.

Nevertheless, once IIGGAD matrices are computed for every
image, corresponding particular features always can be derived
from these matrices and considered separately.

Forty-three volumetric - brain datasets (28 pa-
tients and 15 controls) obtained on a 1.5-T Siemens scanner
(MPRAGE sequence, TR 11.4 ms, TE 4.4 ms, 128 slices,
matrix 256 256, voxel size 0.9 0.9 1.5 mm) were
used for the experiment. Patients were diagnosed clinically as
either suffering from WM encephalopathy and/or Alzheimer’s
disease, while controls are healthy elderly individuals (patients’
spouses). Images were interpolated to an isotropic resolution
of 1 mm and aligned with the stereotactical coordinate system
using fourth-order b-spline interpolation [26]. The intracranial
cavity is segmented by the method described in [8]. Only the
part of the brain that above the plane defined by the anterior
commissure (AC) and posterior comissure (PC) (AC–PC
plane) is used. Since intensity and gradient magnitude are
both scaling-dependent, the intensity of peeled brain images
was rescaled prior to computing co-occurrence matrices. This
rescaling is performed by calculating the histogram over
intracranial cavity and cutting down of 0.5% of “noise” voxels
from both ends. Examples of preprocessed images are given in
Fig. 6(a)–(b).

GGIIAD co-occurrence matrices were computed for the left
and right brain hemispheres separately, with considerably low
resolution at every dimension: eight intensity bins (32 units
each), six gradient magnitude bins (160 gradient units each),
six angle bins (30each) and four distance bins ( 1–4 mm).
Classification was done by measuring the distance to the
“typical control” for each brain dataset. As the typical control in
feature space we consider the average IIGGAD co-occurrence
matrix calculated cell-by-cell over 15 controls for the left and
right hemispheres separately. Classification results are shown
in Fig. 6(c), where patients are clearly separated from controls.
Values for controls follow the diagonal line of the scatterplot
closely, because their deviation from the typical control is
similar for both hemispheres. However in pathological cases
(shown as triangles), textural changes manifest differently in
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(a)

(b)

(c)

Fig. 6. Clustering of patients with mild cognitive disturbances based on
WM encephalopathy and/or Alzheimer’s disease and normal, healthy elderly
subjects. Upper two rows: example slices of a patient (a) and normal control
(b). (c) L1 distance between the average IIGGAD co-occurrence matrix of
controls for the left and right hemispheres separately.

both hemispheres. Note that reduced co-occurrence descriptors
defined by (2)–(4) do not provide such a good separation of
classes in feature space. For instance,-means clustering
based on gradient angle co-occurrence matrices gAD resulted
with five missclassified cases, i.e., a 88.4% of classification
accuracy. This is not surprising because these descriptors
capture particular features only.

B. Segmentation of Diffuse Brain Lesions

This example demonstrates how the proposed descriptors can
be used for 3-D texture segmentation. Changes in the cerebral
hemispheric WM are often detected in MRI brain datasets of
elderly persons [9]. The pathogenesis, clinical significance and
morphological substrate of these changes are incompletely un-
derstood [10]–[13]. In order to deduce the clinical significance
of these findings, it is necessary to derive quantitative descrip-
tors for them. The usual clinical practice is to evaluate images

visually on the basis of a semi-quantitative rating scale [27].
Common types of WM lesions are DWMH, periventricular hy-
pointensities and enlarged periventricular spaces. One of the
open questions is whether the first two are distinctive patholog-
ical features at all. Using texture features to segment DWMH
appears a worthwhile and attractive approach, which we will
discuss as an example of texture-based segmentation in the fol-
lowing.

Based on the co-occurrence texture descriptors, the segmen-
tation can be performed in four steps.

1) Calculation of the Typical (Representative) Descriptor
of an “Elementary” VOI of the Lesion to be Segmented:A
VOI training set that including sample lesion regions and
corresponding control regions is constructed. Selection a
proper VOI size is a compromise: it should be big enough
to capture typical structure of the lesion, but small enough
to provide a reasonably precise segmentation of the lesion
borders. Since image VOIs are supposed to be of the same
size, there is no need to normalize co-occurrence descriptors.
Similar to the previous example, the representative descriptor
can be calculated as an average matrix over the lesion image
VOIs given in the training set.

2) Fitting of a Mapping Function Based on Distances Mea-
sured on the Training Set:The purpose of this step is to select
and tune a suitable function, which maps distances between the
current and representative VOI descriptors into a lesion proba-
bility map. A suitable choice is a simple linear mapping which
addresses a nonzero probability to distances found for lesion
samples and zeros for distances close to control VOIs. Note that
control VOI samples are included for this tuning process only.

3) Segmentation:Segmentation is performed by scanning
the image with a given VOI size, calculating the distance from
the current VOI to the representative one in feature space and ad-
dressing a corresponding probability label to thecentral voxel
of the current VOI. Thus, a voxel of the probability map corre-
sponds to the similarity of a neighborhood with the lesion VOI.

4) Post-Processing of the Probability Map:It is unlikely
that all image VOIs within the box-shaped scanning area
are consistent with respect to the lesion similarity criteria.
Therefore, some post-processing is necessary to remove
false-positive map labels outside of the typical lesion space
(here, the WM compartment).

IIGGAD co-occurrence matrices were employed as texture
descriptors for segmenting DWMH regions. Experimentation
revealed a VOI of 7 7 7 mm to be adequate. Dimensions
of matrix axes are the same as in the previous example, ex-
cept that the number of intensity bins was reduced to four to
provide a better reliability on the relatively small image VOIs.
For calculation of the representative DWMH descriptor and fit-
ting of a mapping function, a VOI training set was formed from
three - patient datasets and four controls described in
Section IV-A. The training set included 130 VOIs, 65 control
samples and 65 DWMH samples. Fig. 7 shows typical exam-
ples of the lesion VOI (upper row) and distances to the rep-
resentative descriptor as a bar plot on the bottom. To compute
DWMH probability maps, a linear mapping of the distance
to the label range 0–255 was used, where the maximal value 255
was associated with 0.42 (mean distance over 65 DWMH
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(a)

(b)

Fig. 7. Calculation of a representative IIGGAD co-occurrence matrix for
segmentation of DWMH. (a) Typical example of DWMH sample region
defined as7 � 7 � 7 mm VOI with the center pointed out by crossing lines.
(b) Distances to the mean lesion co-occurrence matrix for 65 lesion and 65
control VOIs.

(a) (b)

(c) (d)

Fig. 8. Result of the DWMH segmentation. (a) Original image slice. (b) Prob-
ability map of the lesion for the slice depicted in (a). (c)–(d) Two directly rendered
views of the 3-D lesion map.

VOIs) and the minimal label 0 with 0.69 (median distance
between two VOI classes of the training set).

Fig. 8 shows example segmentation result as 2-D section of
the probability map for a reference image slice (upper row) and

two directly rendered views [28] of the map in three dimensions
at the bottom. Lesion maps produced by this technique have a
voxel-by-voxel correspondence with the original brain dataset
and can be used for a quantitative estimation of lesion severity.
Detailed description and validation of the use of these maps,
however, is the subject of a separate neurobiological paper.

V. CONCLUSION AND FUTURE WORK

In this paper, we have suggested a new method for 3-D tex-
ture analysis of MRI brain datasets. The method is based on ex-
tended, multisort co-occurrence matrices that combine intensity,
gradient and anisotropy image features in a systematic and con-
sistent way. Depending on a given problem, reduced versions
of the general 6-D co-occurrence matrices can be employed for
texture analysis as well. The suggested co-occurrence descrip-
tors are natively 3-D, reflection and translation invariant and,
to some extent, rotation-insensitive. Normalization of co-occur-
rence descriptors provides a basis for intersubject analysis and
comparisons of brain regions with different size.

A comparative study revealed that general 6-D matrices are
the most sensitive texture descriptors. Traditional integral tex-
ture features appear too robust for analyzing faint, not well-
defined brain textural changes. Another important issue is the
dependency of textural properties with spatial image scaling,
which renders this operation as unacceptable in neurological re-
search involving texture measurements.

We have demonstrated that the extended co-occurrence de-
scriptors can be used as an efficient tool in various MRI brain
image analysis tasks such as classification of brain datasets and
segmentation of diffuse brain lesions. In general, the problem
of choosing basic features (matrix axes) depends on the image
data modality and the specific analysis to be performed. The
process of matrix design and selection of appropriate bin sizes
can be partly formalized by the use of suitable statistical proce-
dure. For instance, one may take all “promising” features, eval-
uate their usefulness for the problem in hands separately, and
design corresponding multisort co-occurrence matrix so that it
combines useful features as matrix axes. Then the bin sizes can
be tuned based ona priori knowledge about the reliability of
feature measurements and/or the criteria of an optimal separa-
tion of test objects in the feature space.

Our future work will concern the quantitative characterization
of textural properties of anatomical brain datasets acquired from
normal subjects. In addition, textural properties are quantitative
features of brain tissues that may statistically be compared to
clinical features such as cognitive abilities measured on perfor-
mance scales.
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