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Three-Dimensional Texture Analysis of MRI Brain
Datasets

Vassili A. Kovalev, Frithjof Kruggel*, Hermann-Josef Gertz, and D. Yves von Cramon

Abstract—A method is proposed for three-dimensional (3-D) rodegenerative diseases. Understanding these disease processes
texture analysis of magnetic resonance imaging brain datasets. Itis involves detecting and describing pathologic changes as well
based on extended, multisort co-occurrence matrices that employ as monitoring of these changes with time. Lesions such as dif-

intensity, gradient and anisotropy image features in a uniform way. . . . .
Basic properties of matrices as well as their sensitivity and depen- fuse white matter hypointensities (DWMH) [8]-[10], periven-

dence on spatial image scaling are evaluated. The ability of the sug- tricular hypointensities [11] and enlarged periventricular spaces
gested 3-D texture descriptors is demonstrated on nontrivial clas- [12], [13] are typically faint, unsharp, and “cloudy” (without

sification tasks for pathologic findings in brain datasets. sharp borders). It is expected that these lesions might be seg-
Index Terms—3-D texture, co-occurrence, MRI, neurodegener- mented and characterized quantitatively with the help of texture
ative diseases. analysis methods. The unsharp nature of nonfocal brain lesions

does not give us a chance to define their precise borders. It ap-
pears more realistic to calculate brain lesion probability maps
instead. We may then evaluate visually how well it fits to ex-
I T has long been recognized that textural features play an igisrts expectations, use the map to segment the lesion for any
portant role in a wide variety of image analysis problemgjiven probability threshold and derive quantitative volumetric
Depending on texture type and specific goal of the problem ghd textural descriptors of a lesion.
hands, various types of two-dimensional (2-D) texture descrip-|n this paper, we propose a new method for 3-D texture anal-
tors have been proposed and studied in the literature, rangjRgs which is based on extended co-occurrence matrices. Gray
from general Wold texture features [1] to co-occurrence Mesye| co-occurrence matrices and gray level run length matrices
trices [2] and tree-structured wavelet transform [3]. Reviews ghyve been suggested by Haralikal. [2] and Galloway [14].
2-D texture analysis methods can be found in [4], [5]. Recefthese classical 2-D texture analysis tools have been success-
proliferation in three-dimensional (3-D) sensor technology angjly used for texture description, classification and segmenta-
continuous increase of spatial resolution of neuroimaging teGfyn in their original form in a number of applications including
niques call for new, natively 3-D texture analysis methods. Alrain image analysis (e.g., [15]). In the context of this paper,

though using slice-by-slice 2-D approaches is still possible, thityere are at least three different reasons for extending of the
suffer from the drawback that some important information coRyp-occurrence approach.

tained in original image data is ignored.

While 2-D texture analysis has been extensively studied, thexe Consideration of the Change of Original Image Data
has been very little work done in the area of characterizati@mensionality from 2-D to 3-D

and analysis of 3-D (volumetric) textgres. SO far, the extenSionThis is an obvious and rather technical point. In order to adapt
ggﬁ%igegﬁg Z(fglién eetf(ljczeotlzéfotrzr?: dlr?fgl?zggsszii laarg:rlzcbuire?nditional co-occurrence matrices designed for 2-D images to

9 €g., P ffee dimensions, there is no need to change original definitions
property of 3-D textures as spatial anisotropy [7].

There is a strong practical need for image analysis methof Scept for considering neighboring voxels on the 3-D voxel lat-

. 20 . ._tice. Precisely speaking, the increase of spatial dimensionality

that derive quantitative measures about tissue characteristi . . : .
. . s of N-dimensional arrays defined on the same set of discrete gray
Such measures may then be incorporated into statistics com-

aring clinical features to magnetic resonance imaging (M lues fromy' to A+ 1 changes neighborhood relations and,
baring gnet ging % erefore, changes mutual relationships between the sets of pos-
findings. The work proposed here is a part of the larger projec

: . sible V-dimensional “images” and their co-occurrence repre-

to develop automatic methods that will help to understand an : oS .

uantify diffuse pathologic processes, which occur with nesentatlons. However, in this paper we focus on the analysis of

d P gie p ' 4D brain datasets and do not elaborate these general theoretical
problems.
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texture is not very salient, we need to increase the sensitivibe matrix. Thus, av-dimensional co-occurrence matrix is a
and specificity of co-occurrence features in order to enabM-dimensional histogra@ whose elements have the general
detection and separation of rather faint and not well-definéorm w(ecy, co, ..., car; 7ara1, "ara2, - - -, 7N ), Wheree; takes
textural differences related to various normal and pathological possible (quantified) values of characterigtiandr; all pos-
structures. In order to achieve this, we increase the co-occsible values of relatior defined on a voxel pair. The value
rence matrix dimensionality (number of axes) by combiningf the matrix is the frequency of occurrence of given voxel pair
“elementary” image features of different sorts (e.g., intensity, the image, or the frequency of certain combinations of image
gradient magnitude, and mutual orientation) as described dRaracteristics.

[17]. In this respect, we may say that traditional co-occurrencepe selection of an appropriate matrix type, i.e., type of

matrices ares!ngle—fzrt matrices; namely, mte(;mty C,]?'F’C'elementary voxel characteristics and relations used is a mathe-
f#rren%e ma}tr;ces.b ethlncreasifslinsn;wtydan spedq |c||ty matically intractable problem. It depends on the purpose of the

ese descriplors by the use wiulusort and, accordingly, analysis, intrinsic image properties and the way image classes
multidimensional co-occurrence matrices. Such an exten&g@der comparison manifest their differences. As a general way
pr_owdes means for dealing \.N't.h different features in a syste%-r multidimensional co-occurrence matrix construction, one
atic and uniform manner. It is important to note that there are

no relations between image dimensionality and co-occurrencay follow the principle of “orthogonal” sets of elementary

matrix dimensionality. The image dimensionality correspon(!i@age f'eatures associated with differfant matrix axes. According
to the spatial dimensionality of input data while the matri{® studies of human texture perception conducted by Rao and
dimensionality reflects the number of image characteristics ah@hse [19] and Tamurat al. [20], such features capture visual
intervoxel relations under consideration. properties expre_s;ed by the tgrm_s_“granulanty” (coarseness,
contrast), "repetitiveness” (periodicity or randomness), and
“directionality” (anisotropy). Based on these results and ex-
perience using of traditional intensity co-occurrence matrices,
According to the definition (e.g., [18]), classical co-occurwe suggest the following three basic characteristics: intensity,
rence matrices use a positional operator to define direction agiddient magnitude and relative orientation of gradient vectors.
distance for the pixel pairs under examination. Selection Bking considered together with their variations in spatial do-
these directions is not critical when we are dealing with uninain, these image features could be accepted as an “orthogonal
form, anisotropic textures or, just opposite, analyzing stronghasis” for co-occurrence matrix axes.
isotropic objects placed into image origin in a predefined way. For a formal definition of the corresponding co-occurrence
In all other cases, the co-occurrence matrices computed {Ratrix, let us consider an arbitrary voxel péirk) defined on
original and rotated/reflected images may be very different. Fgscrete voxel lattice by voxel indexés= (zisyir ), kb =
overcome this drawback we do not use predefined directions, . ) and with the Euclidean distandé:, k). Let us de-
for voxel pairs in three dimensions. Instead, all possible voxghte intensities of these voxels bi) andI(k), local gradient
pairs (with no repetition) are considered at a certain distangggnitudes by3(i), G(k) and the angle between their 3-D gra-

range. Hence, such a co-occurrence matrix describes {figntvectors byi(i, k). Then the general, six-dimensional (6-D)
internal structureof a given image or an arbitrarily shaped 3-0y5_gccurrence matrix can be defined as
gray scale segment, while being independent of its orientation
relative to the image origin.

In Section Il, we define extended multisort co-occurrence ma- W = ||w(1(4), I(k), G(i), G(k), a(i, k), d(i, k). (1)
trices formally and consider their basic properties. In Section lIl,
we discuss issues related to the matrix sensitivity and depen- , )
dence on spatial image scaling. Section IV provides exampfg&adient magnitude&(i), G(k), and the angle between gra-
of application of the method suggested. We draw our concld€nt vectors:(i, k) can be calculated as

sions and outline future work in Section V.

C. Rotation and Reflection Invariance

Gi) =\/G20) + G3(0) + G2(i),
Il. METHODOLOGY a(i, k‘) :COSfl(g(i) .g(k,))7 (11)
A. General Approach

Following the basic concept of elementary image structureereg(i) e g(k) is the dot vector product and:), g(k) corre-
[17], we assume that the image of any object can be consgpond to the normalized gradient vectors. Gradient vector com-
ered as a composition of voxel pairs. The elements of a pawnents., G,, andG. can be calculated by any suitable 3-D
carry somecharacteristics(e.g., gray value, gradient magni-operator. Since we are dealing with high frequency textures, we
tude, semantic label) and have somations(e.g., distance be- use a filter with a small % 3 x 3 window proposed by Zucker
tween them, relative gradient angle, and intensity differencand Hummel [6].

To represent the voxel pairs that constitute an image, we use aDenoting integer intensity bin(i), I(k) by indexesh; =
N-dimensional co-occurrence matrix where each of the char-..., By, gradient magnitude bing(z), G(k) by bg =1, ...,
acteristics and relations correspond to a different dimensionBg;, relative gradient angle bins(é, k) by b, = 1,..., B,
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and distance bing(¢, k) by by 1,...,D, the matrix ele-
mentw((¢), I(k), G(1), G(k), a(i, k), d(, k)) can be formally
defined as

w(bri, bri, bai, bar, ba, ba)
= card{(i,k) € R® | i # I,

b = I(4), by = I(k), bgi

bex = G(k),

by = a(i, k), by = round(d(i, k)),

o = (@ + Az), e = (i + Ay),

zr = (2 +Az),—D < Az < D,
—D<Ay<D,0<Az<D,
AzS? 4+ AyS + Az > 0,

S=2D+1}

G(2),

(1.2)

whereAz, Ay, andAz are offsets onX, Y, andZ axes mea-

sured in image raster units. The last five lines of the definiti
formalize the requirement of selection of all possible voxel pairs
with no repetition. When calculating the matrices, we alwa
follow the original image raster and round Euclidean distanc
d(i, k) to integer matrix bins in order to avoid incorporation o
nonexisting intensity values caused by interpolation. Therefonq1
theroundoperator in (1.2) is defined in the common sense, i.¢; 4 (k)
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gAD:

W3 =[luwd(ai, k), (i, k),
w3(b,, by) =card{(i,k) € R* | i £k,
b, = a(i, k), by = round(d(i, k)),
o = (@i + Ax), yp = (vi + Ay),
2= (2 + Az),—D < Az < D,
- D<Ay<D0< A2 D,
AzS8% + AyS + Az > 0,

S=2D+1}. 4)

Itis easy to see that single-sort matri¢€4—I1'3 can always be
derived from basic IIGGAD matrix by summation along the cor-
responding axes. They may be considered as reduced, low-res-
olution versions ofi¥’. Conversely, the original IGGAD ma-

trix can not be restored from thH& 1-W 3 matrices. Therefore,

any combination of “low-resolution”, particular co-occurrence
features can not describe the image structure as detailed as the

0Irl-'GGAD matrix.

Note that the 11D co-occurrence matiX 1 is a simple 3-D
ersion of the traditional co-occurrence matrix. It describes
age spatial structure based explicitly on the intensity infor-
ation with no respect to other important features. Indeed, all
age voxel pairs at given distantgwith intensity levels/ ()

fall into a single matrix bimo1(bz;, by, ba), While

asrounding to the nearestinteger value. According to axis typgS mytisort 1IGGAD matrices they are additionally separated

we call this kind of co-occurrence matrices IIGGAD for brevitypatween the three ax€¥(i), G(k), anda(i, k) according to the
In many practical occasions, some reduced versions of g, intensity slopes and mutual orientétions.
above general IGGAD matrix can be used as well. In particular,

gradient magnitude (GGD) and gradient angle (QAD) matrices:

IID:

W1 =|lwl(I(), I(k), d(i, k),
wl(br;, b, ba) =card{(i, k) € R® | i # k,
br; = I(2), b, = I(k),
by = round(d(s, k)),
zr = (i + Az), yp = (vi + Ay),
2 = (2 + Az),—D < Az < D,
—D<Ay<DO0<Az<D,
AzS? + AyS + Az > 0,
S=2D+1}

(2
GGD:

W2 =||w2(G(&), G(k), d(i, k)],
w2(bci, bak, ba) =card{(i,k) € R® | i # L,

bgi = G(4),bgr = G(k),

by = round(d(i, k)),

z = (2 + Az), ye = (yi + Ay),

2z = (z +Az),—D < Az < D,
—D<Ay<DO0<AzLZD,
AzS? + AyS + Az > 0,

S=2D+1}

3

In this section, we briefly discuss important properties of ex-
tended co-occurrence matrices and some aspects of their prac-
tical use for brain image analysis.

1) Resolution of the Co-Occurrence Representatidhe
“resolution” property of an image descriptor can be evaluated
by considering cases where two or more different images
have exactly the same descriptor. According to the definitions
(1)—(4), any given image and its rotated/reflected versions have
the same co-occurrence matrix. In the context of brain image
analysis, with the characteristic “reflected” intensity distribu-
tion in the left and right hemispheres and unpredictable sulcal
variability, this is a highly desirable property. Applying such
transforms as rotation, reflection, and translation to an arbitrary
image segment does not change the corresponding co-occur-
rence matrix (provided the segment surrounded by a uniform
background with thickness greater than maximum considered
distanceD). Therefore, in the general case, one co-occurrence
matrix may correspond to a set of different images, which are
indistinguishable by a given kind of descriptors.

2) Statistical Properties of the Inverse Matrix-Image Trans-
form: As mentioned earlier, finding interrelations between the
direct and inverse co-occurrence transforms is a hard combi-
natorial problem, which is not studied in this paper, theoreti-
cally. Statistically, this problem is closely related to the syn-
thesis (reconstruction) of textures with given properties (e.g.,
[21]-[23]). In order to examine co-occurrence properties rele-
vant to the practical aspects of the analysis of brain datasets, we
adapt the texture synthesis method suggested by Lohmann [23].
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© (d)

Fig.1. Example of 2-D images with the same intensity co-occurrence matrices.
(a) Original image slice. (b)—(c) Images reconstructed from the original intensity
co-occurrence matrix with distance ranges: 1, 4 andd = 1, 30, respectively.

(d) Same as (c) but with normalization of the co-occurrence matrix for every
distance bin separately.

The method is based on an iterative stochastic procedure that (© (d)
reconstructs a 2-D textural image from a given intensity co-og- . ) ) .

. . . . . 2. Intensity co-occurrence matrices and texture anisotropy. (a) Original
currence matrix defined in the classical way. Note, we use a ZrJSture patch selected from a slice of a braifRI-T, image. (b) Texture
version of the 11D matrix defined by (2). Along with visual esti-reconstructed from the co-occurrence matrix. (c)—(d) Anisotropy histograms of
mation of the “equivalent” images the main g0a|S were to ﬁn(aiginal and reconstructed textures that plot cumulative directionality according

. - . . t? local texture gradients.
out an appropriate way for matrix normalization, selection o

suitable distance range, and consideration of texture anisotropy. . . . .
Fig. 1 shows an originaRI-T; image slice [Fig. 1(a)] and Is"used explicitly for anisotropy analysis of 2-D images [24],

images reconstructed by its 11D co-occurrence matrix under d[]2_5]._C0mparat|ve study of 3-D versions of GLDH-based and
ferent conditions. For calculating the original matrix, we do n&rad|ent—based ap_proaches showed that GLD_H-.based approe.lch
limit ourselves to the intracranial cavity but background pixe much less s_ensmve and t_oo rob_ust for _br_aln 'mage analysis
are also considered for demonstration purposes. From Fig. 1 i; Whe'? appllgd fo the anisofropic, multidirectional textures

it can be seen that for a relatively small distance rangé f €.g., brain sulci) both approaches produce results that largely

1,..., 4, the IID co-occurrence matrix describes local textuerIEpe?]OI gn f!n_d_lwdu?l orientation structure ofr;[he |mager3]. e
properties reasonably well while the “global” image structure N the definition of 3-D 11D matrices (2), we have emphasize

is almost ignored. Increasing the distance range to a maximigir rotation invariance. Indeed, we consider all possible voxel

D = 30 [Fig. 1(c)] results in the opposite behavior: the g|ob£a|rs with no respect on what direction they appear. Thus, we

brain shape is similar to original one, but local textural propeFrJay expect.that the;e matrices .do nof[ capturg (i.e., are inde-
gwdent of) image anisotropy. This fact is experimentally tested

ties are completely lost. This is because the number of possi . X )
the 2-D inverse co-occurrence transform (see Fig. 2) in the

pixel pairs for greater distances is much bigger than for a lo . g , . \ hi
neighborhood. Therefore, global spatial relations strongly doff2y described in previous section. Anisotropy histograms were

inate the local ones. Matrix normalization is relevant for conf:°MPuted by the gradient-based method described in [7].

paring objects with different size (e.g., brains of two individuals In this paper, we suggest t_o use gradient an_gle co-occurrence
but do not help to avoid large distance domination. The natutg)form Of separate gAD matrices (4) or fuse anisotropy together

solution is to normalize the matrix for every distance bin sepﬁ’-'th other texture features in general IGGAD matrices (1). Both

rately [see Fig. 1(d)] are reflection/rotation invariant because they only take relative
Considerati(;n of Texture AnisotropyConsideration of the orientations into account. Another suitable property is that these

texture anisotropy properties based on co-occurrence descripf§Scriptors are insensitive to the global (low frequency) shape of
is a bit more complicated issue. It depends on both anisotrd .mu|t|d|re_ct|ona_l 3-D image pattern if the range of intervoxel
properties of the image analyzed and the type of co-occurre Stancesis relatively small. For smooth, laminar 3-D structures,

tools employed. First, let us conditionally categorize image te§‘—JCh (locally defined) matrices WQUId p_rodu_ce similar dgspnp—
ture anisotropy into the following three classes: torsindependent of their mutual orientations in space. Thisis not

« isotropic; the case for other approaches where local orientations summed
« anisotropic, unidirectional; up over predefined solid angle bins [24], [7]

* anisotropic, multidirectional. .
In case of classical co-occurrence matrices [2], [18], anisotrofy Technical Remarks
is not considered directly. However, since a positional operatorLet us close this section by enumerating particular points crit-
is used to define directions for pixel pairs, it should be synchraal for implementing of this approach.
nized with the unidirectional texture orientation to avoid this 1) Anisotropic Image SamplingSo far, we supposed that
“undesirable” property. In contrast, the directional dependenbigh-resolution 3-D image data with the cubic voxel (say, about
is emphasized in a subclass of these matrices, the so-called graym®) are available. In case of noncubic voxels, the calculation
level difference histograms (GLDH), where all possible dire@f co-occurrence matrix must be corrected. First, weights of 3-D
tions are examined. With such modification, this kind of matrifilter used should be appropriately scaled by multiplying relative
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sampling rates alond, Y, andZ axes. Second, in the (1)—(4)
the image raster unit should be associated with the smallest
physical voxel dimension, distances measured in true physical
units (e.g., millimeters) and voxel pairs exceeding a predefined,
maximum distanceD truncated accordingly. Note that these
geometrical corrections do not avoid artificially high gradients
along the image axes with low spatial resolution (typically, the
interplane axis).

i

2) Rotation/Reflection Invariancetn practice, co-oc- A -0 0 mabix
currence matrices are exactly the same for reflected imag 042 H-0- 30 mair
and images rotated by angles that are multiplies of. $or g ghD mabry
arbitrary rotations, they would be slightly different. Difference: ~ “ 5[ == nacan matre
depend on the intensity interpolation algorithm but not th o 030 —* features of IO
texture feature computation. E

3) Matrix Normalization: Summing elements for every dis- -E 024 = -0
tance separately is an appropriate way for matrix normalizatic @ _

o - OB - =

when the whole brain image and/or reasonably large segme —; O
(brain compartments, brain lobes, etc.) are considered. In ci 042 T
of characterization/comparison of small, equal-sized volum:
[e.g., 5x 5 x 5 mm voxels of interest (VOIs)], there is no au0e T P
need for normalization at all. Moreover, the above mentione 000 e ——
“standard” normalization procedure emphasizes relatively ra s 5 10 15 20 25

voxels pairs located at the opposite VOI edges.

4) Binning of Matrix Axes:The number of bins for every
matrix dimension should be relatively small. Bin sizes smaller (d)
than the noise levels are useless because feature values may. Sensitivity of differentimage descriptors to changes caused by additive
not be reliably measured. Second, since we use considergBayssian noise. (a) Example slice of the original image. (b)—(c) Same slice
large mulidimensional matrces, combining mulisor feaurd§7LALEd b Caussan nse Wi ST fue and 25 ensiy i),
normally characterizes objects much better than more “precisgscriptors.
measurements of a single (noisy) feature. Experimentation re-

vealed suitable bin count for feature axes of 4-16 and a distangeSensitivity of Co-Occurrence Descriptors

range of 1-5 mm. - . The sensitivity of co-occurrence descriptors can be evalu-
5) Implementation DetailsThere are two key points of the Lo . . .
. . : . .. ated by quantitatively comparing their change with respect to
implementation of co-occurrence matrix calculation algorithm. , . : -
First, the condition of consideration of all possible voxel paird. o predefined change in an image. For this purpose, we take
’ P P MRI-T; image of a normal healthy subject and add Gaussian

with no repetition can be satisfied by counting of pairs, formed
P y g ot pairs, noise with zero mean and standard deviation (STD) atincreasing
levels of five to 25 image intensity units [Fig. 3(a)—(c)]. All sug-

by every current image voxel arslibsequenbnes (in image

raster order). For instance, the number of different voxel pairs . N .
in the nearest 3-D voxel neighborhood (radis= 1) is26,/2 — gested descriptors were calculated for the original image and its

13. The second point is related to elimination of undesirable gisy versions with the same binning parameters (ten feature

pendence of matrix content on the specific order and directi msd,. dlstanc1:£e rangéhz l.’ d 4 ”.‘m) and normallzgq. Thg
of the program loops over the image raster axes (equivalenﬁ % Stanc_e rom (feac noisy es_crlptocrjto corresponaing noise-
image reflections and rotations to90Such independence can eSS escriptor in feature space Is usedas a sen5|t|v_|ty measure.
be achieved by keeping a single-sort 2-D matrix subsectio trix cells of a co-occurrence descriptor are considered as a
(e.g., intensity—intensity) triangle that is with elements abovgaturslvectorr\:v ithV" positive glements. Thus, for any two vec-
leading diagonal equivalent to zero. The simplest way is to SWEHSV andVv™, the L1 norm is calculated a
corresponding bin indexes [e.d(3) and/ (k)] before counting, I Zf;l |zl — 2]
it 1(i) < I(k). LIV VY = SF S ey ©)
: . . . Z4= !t 4+ Z4= xh

The typical execution time of calculation of a general ) , —i=1 =t

IIGGAD co-occurrence matrix= 1, . .., 4, MRI dataset with The distancd.1 is symmetric, ranges from zero to one and ex-

about 16 brain voxels) on a mid-range PC workstation witfPrésses the dissimilarity of two descriptors. _
a 800-MHz processor is 3 min. Note that original intensity co-occurrence matrices are tra-

ditionally not used directly. Instead, various integral features
based on these matrices are computed (e.g., [2] and [15]). In
order to compare the sensitivity of such features with co-occur-
Two important issues are addressed in this section: first, wence descriptors, we compute the four most commonly used
compare the sensitivity of the proposed co-occurrence matricesxture features based on 11D matrices in three dimensions: ho-
The second issue is concerned with the spatial image scalinggeneity, local homogeneity, contrast, and entropy. Integral
which is closely related to image registration problems. texture features were normalized similar to other descriptors.

(Saussian noise (STOD)

I1l. EXPERIMENTAL STUDY
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Fig. 4. Change of brain textural properties with respect to image scaling and natural brain volume variability. (a)—(b) Example slices of ebrefarenage
scaled to 85% and 115% of its original size. (c) Change of textural properties due to image scaling measumidtaace to the IGGAD co-occurrence matrix
of image (a). (d)—(e) Example slices of brain images of two individuals matched with the corresponding scaled images depicted in (a) and (b)) bplinadbrai
(f) Same as (c) but with respect to natural brain volume differences in six controls.

Results of the sensitivity evaluation are shown in Fig. 3(d). We need a reference image that represents a “typical case” of
As expected, general IGGAD matrices demonstrate the highastimage class or population under consideration. For this pur-
sensitivity because they combine all kinds of elementary imagese, we adopt the idea of an average representative. In context
features (intensity, gradient magnitude, and mutual anglesadtexture analysis, the straightforward way of computing an “av-
orientation tokens). Apparently, integral texture features whigrage” image by registration and spatial averaging is question-
“average” specific image variations are too robust for compaable. Instead, we use a mean co-occurrence descriptor that repre-
ative brain image analysis. The other three single-sort descrients the center of a given image class in feature space. The va-
tors have an intermediate sensitivity with respect to these dixlity of this approach is provided by the fact that our descriptors
tremes. However, it is important to note that sensitivity is natre independent of the specific object size and are translation, ro-
the only criterion for choosing suitable descriptors in a partit¢ation, and reflection invariant. The “mean descriptor” technique
ular image analysis task. For instance, intensity co-occurrerisg¢ested by comparing object deviations from the mean matrix
matrices IID are reasonably better than gradient angle matrigesl the matrix of areal image that is close to the mean one in fea-
gAD [Fig. 3(d)]. However, in this experiment all six images aréure space. Another consequence of these properties is that spa-
well intensity adjusted, which is generally not the case. Adéal 3-D image patterns of the left and right brain hemispheres
quate intensity fitting may be problematic and 11D matrices mayay be compared without reflection and/or registration.
lead to unstable and even incorrect results. In contrast, gAD maChanges of textural brain image properties with scaling were
trices are independent on intensity range and even on the ratewfluated by comparing IIGGAD matrices computed for a
spatial intensity variation (i.e., gradient magnitude). They cagaled image with “natural” differences observed in datasets
be used for estimating the amount of brain structure “disordeshich match scaled images by brain volume. Accordingly, two
in comparison to control regions and are considered to be mesgeriments were performed. In the first one, we todKRI-T

suitable for measuring the severity of lesions. reference image of a healthy subject withmm? voxel size
i . and scaled it from 85% up to 115% in 5% steps [Fig. 4(a)—(b)],
B. Texture and Spatial Scaling which corresponds to changes in the brain volume from 640 to

Intersubject image registration is one of the common step§40 cn?. Textural changes are measured.aglistance to the
when analyzing brain images. Therefore, it is important to eBGGAD descriptor of the smallest volume. The original image
timate brain texture distortions caused by spatial scaling andieexcluded to guarantee the homogeneity of the image setand to
registration to a standard atlas representation. ensure that measured differences are explicitly related to scaling
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but not to differences between interpolated and noninterpolal
versions of the dataset. Comparisons were performed for 1 0,22 o
left and right brain hemispheres separately [see Fig. 4(c)]. : o
addition, for every scaled image we also computed the individt
difference between the left and right hemispheres [Fig. 4(c), tt
solid line with triangle points].

For the second experiment, we selectedRRI-T; images
of different subjects [see Fig. 4(d)—(e)] where brain volume
correspond to scaled versions of the reference image (me
volume deviation is 3.8%). These six subjects matched t
reference one by age, health status, and image resolution.
corresponding measurements to the average descriptor 0.07
shown in Fig. 4(f).

The first experiment [Fig. 4(c)] strongly suggests that spati D'ﬂ'%m 800 900 1000 1100 1200 1300
image scaling in the range of natural brain volume variabilit 3
leads to dramatic changes of textural properties of bra Volume, cm
datasets (correlation of the dissimilarity measltewith brain
volume isr = 0.99,p < 0.0001). Most likely, such transform Fig. 5. Dissimilarity of brain texture of 210 normal controls versus brain
substantially changes spatial frequency of texture and otffaime:
related properties. Because these changes are similar for the
both hemispheres, we suppose that they are not associaiedertheless, once IIGGAD matrices are computed for every
with brain shape and sulcal variability. Individual differencermage, Corresponding particu|ar features a|WayS can be derived
between the left and right hemispheres are almost preseryiefin these matrices and considered separately.
with image scalingz = 0.01) and seems to be an individual, Forty-three volumetricMRI-T; brain datasets (28 pa-
“constant” characteristic of a subject’s brain. tients and 15 controls) obtained on a 1.5-T Siemens scanner

The second experimentdid notreveal any dependency betwg@PRAGE sequence, TR 11.4 ms, TE 4.4 ms, 128 slices,
textural properties and brain volume. The analysis of varianggatrix 256< 256, voxel size 0.9x 0.9 x 1.5 mm) were
method reported’ = 1.23,p = 0.38 for the left hemisphere andysed for the experiment. Patients were diagnosed clinically as
F =0.20,p =0.69 for the right one. To avoid selection effectseither suffering from WM encephalopathy and/or Alzheimer’'s
this hypothesis was tested additionally on the large samplediease, while controls are healthy elderly individuals (patients’
210MRI-T; brain datasets of young healthy subjects includinghouses). Images were interpolated to an isotropic resolution
103 male (group A) and 107 age-matched female (group B) wigh 1 mm and aligned with the stereotactical coordinate system
mean age 24.8 and STD 3.9 years in the same way. Again,i¥ing fourth-order b-spline interpolation [26]. The intracranial
statistically significant correlation of textural properties angavity is segmented by the method described in [8]. Only the
brain volume was found (group A:=0.35ang = 0.69, group part of the brain that above the plane defined by the anterior
B:p =0.32andp = 0.51 for the left and right hemispherescommissure (AC) and posterior comissure (PC) (AC—-PC
respectively). Fig. 5 illustrates these findings for all controls iplane) is used. Since intensity and gradient magnitude are
form of the scatterplot ofL1 distance to the average brainpoth scaling-dependent, the intensity of peeled brain images

L1 distance
o o O
— -t —
W o m

o
o

IIGGAD descriptor and brain volume (= 0.62,p = 0.19). was rescaled prior to computing co-occurrence matrices. This
rescaling is performed by calculating the histogram over
IV. EXAMPLES OF APPLICATION intracranial cavity and cutting down of 0.5% of “noise” voxels

Now we demonstrate how the proposed method can be ufrlO 622;:?;%' Examples of preprocessed images are given in

for the analysis of MRI brain datasets. Two different examples GGIIAD co-occurrence matrices were computed for the left

are given: a brain pgtholqu classification task and the SEIMey right brain hemispheres separately, with considerably low
tation of diffuse brain lesions.

resolution at every dimension: eight intensity bins (32 units
o . each), six gradient magnitude bins (160 gradient units each),
A. Classification of Brain Datasets six angle bins (39 each) and four distance bing £ 1-4 mm).

This example is related to the characterization and clusteri@¢pssification was done by measuring thé distance to the
of patients with (clinically apparant) mild cognitive distur-“typical control” for each brain dataset. As the typical controlin
bances (MCD) and normal, healthy elderly subjects. Note tHatiture space we consider the average IIGGAD co-occurrence
we do not focus on the extraction of specific, particular featuresatrix calculated cell-by-cell over 15 controls for the left and
of the image classes. Instead, we use the 6-D IIGGAD co-aight hemispheres separately. Classification results are shown
currence matrices (1) which incorporate intensity, gradien Fig. 6(c), where patients are clearly separated from controls.
and anisotropy information as a single descriptor. Althoug¥alues for controls follow the diagonal line of the scatterplot
such an approach may be considered “too straightforward,” ttlesely, because their deviation from the typical control is
elimination of the feature extraction stage provides an unbiasgdilar for both hemispheres. However in pathological cases
analysis without risking (possibly voluntary) preferencegshown as triangles), textural changes manifest differently in
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visually on the basis of a semi-quantitative rating scale [27].
Common types of WM lesions are DWMH, periventricular hy-
pointensities and enlarged periventricular spaces. One of the
open questions is whether the first two are distinctive patholog-
ical features at all. Using texture features to segment DWMH
appears a worthwhile and attractive approach, which we will
discuss as an example of texture-based segmentation in the fol-
lowing.

Based on the co-occurrence texture descriptors, the segmen-
tation can be performed in four steps.

1) Calculation of the Typical (Representative) Descriptor
of an “Elementary” VOI of the Lesion to be Segmentedl:
VOI training set that including sample lesion regions and
corresponding control regions is constructed. Selection a
proper VOI size is a compromise: it should be big enough
to capture typical structure of the lesion, but small enough
to provide a reasonably precise segmentation of the lesion
borders. Since image VOIs are supposed to be of the same
size, there is no need to normalize co-occurrence descriptors.
& Similar to the previous example, the representative descriptor
can be calculated as an average matrix over the lesion image

= B
& &
=
BF

0.00 3) Segmentation:Segmentation is performed by scanning
oo Q0 015 023 030 038 045  the image with a given VOI size, calculating the distance from

T}

@

g

E '*',E: AT VOlIs given in the training set.

= 0301 5 iy i;,;., 2) Fitting of a Mapping Function Based on Distances Mea-
X 4 & & sured on the Training SetThe purpose of this step is to select

B 023 1 and tune a suitable function, which maps distances between the
‘5’ current and representative VOI descriptors into a lesion proba-
3 015 (a4 bility map. A suitable choice is a simple linear mapping which
3 ‘ﬁp addresses a nonzero probability to distances found for lesion
o 008 o samples and zeros for distances close to control VOIs. Note that
& 4  Patients . . .

m O Controls control VOI samples are included for this tuning process only.

i — ALk

-

L1 to average control (right hemisphere) the current VOI to the representative one in feature space and ad-
dressing a corresponding probability label to temtral voxel
© of the current VOI. Thus, a voxel of the probability map corre-

Fig. 6. Clustering of patients with mild cognitive disturbances based @ponds to the similarity of a neighborhood with the lesion VOI.

WM encephalopathy and/or Alzheimer’s disease and normal, healthy elderly4) Post-Processing of the Probability Magpt is unlikely
subjects. Upper two rows: example slices of a patient (a) and normal control . L .
(b). (c) L1 distance between the average lIGGAD co-occurrence matrix dpat all image VOIs within the box-shaped scanning area

controls for the left and right hemispheres separately. are consistent with respect to the lesion similarity criteria.
Therefore, some post-processing is necessary to remove

both hemispheres. Note that reduced co-occurrence descrip@rtzfe'pos't've map labels outside of the typical lesion space

defined by (2)—(4) do not provide such a good separation
classes in feature space. For instan&&means clustering
based on gradient angle co-occurrence matrices gAD resul

, the WM compartment).
IIGGAD co-occurrence matrices were employed as texture
geeécriptors for segmenting DWMH regions. Experimentation

with five missclassified cases, i.e., a 88.4% of classificatidl vealed a VOI of 7x 7 x 7 mm to be adequate. Dimensions

accuracy. This is not surprising because these descript8 ST?;”); ;Xes arc—i‘) the fs.artne e}ts 'B. the prewodus egatm?le, ?X'
capture particular features only. cept that the number of intensity bins was reduced to four to

provide a better reliability on the relatively small image VOIs.
. . _ . For calculation of the representative DWMH descriptor and fit-
B. Segmentation of Diffuse Brain Lesions ting of a mapping function, a VOI training set was formed from
This example demonstrates how the proposed descriptors ttamee MRI-T; patient datasets and four controls described in
be used for 3-D texture segmentation. Changes in the ceref8attion IV-A. The training set included 130 VOls, 65 control
hemispheric WM are often detected in MRI brain datasets shmples and 65 DWMH samples. Fig. 7 shows typical exam-
elderly persons [9]. The pathogenesis, clinical significance aptes of the lesion VOI (upper row) arfdl distances to the rep-
morphological substrate of these changes are incompletely vesentative descriptor as a bar plot on the bottom. To compute
derstood [10]-[13]. In order to deduce the clinical significand@WMH probability maps, a linear mapping of tdd distance
of these findings, it is necessary to derive quantitative descrip-the label range 0—255 was used, where the maximal value 255
tors for them. The usual clinical practice is to evaluate imagess associated withl = 0.42 (mean distance over 65 DWMH
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two directly rendered views [28] of the map in three dimensions
at the bottom. Lesion maps produced by this technique have a
voxel-by-voxel correspondence with the original brain dataset
and can be used for a quantitative estimation of lesion severity.
Detailed description and validation of the use of these maps,
however, is the subject of a separate neurobiological paper.

V. CONCLUSION AND FUTURE WORK

In this paper, we have suggested a new method for 3-D tex-
ture analysis of MRI brain datasets. The method is based on ex-
tended, multisort co-occurrence matrices that combine intensity,
gradient and anisotropy image features in a systematic and con-
sistent way. Depending on a given problem, reduced versions
1.1 : T of the general 6-D co-occurrence matrices can be employed for
10 DPWMH control texture analysis as well. The suggested co-occurrence descrip-
tors are natively 3-D, reflection and translation invariant and,
to some extent, rotation-insensitive. Normalization of co-occur-
rence descriptors provides a basis for intersubject analysis and
comparisons of brain regions with different size.

A comparative study revealed that general 6-D matrices are
the most sensitive texture descriptors. Traditional integral tex-
ture features appear too robust for analyzing faint, not well-
defined brain textural changes. Another important issue is the
dependency of textural properties with spatial image scaling,
which renders this operation as unacceptable in neurological re-
search involving texture measurements.

We have demonstrated that the extended co-occurrence de-
VOl nirnber scriptors can _be used as an efficie_n_t to<_)l in vario_us MRI brain

image analysis tasks such as classification of brain datasets and
(b) segmentation of diffuse brain lesions. In general, the problem

Fig. 7. Calculation of a representative IIGGAD co-occurrence matrix fo(?f choosing basic features (matrix axes) depends on the image

segmentation of DWMH. (a) Typical example of DWMH sample regioflata modality and the specific analysis to be performed. The
defined as7 x 7 x 7 mm VOI with the center pointed out by crossing lines.process of matrix design and selection of appropriate bin sizes

(b) Distances to the mean lesion co-occurrence matrix for 65 lesion and &3 pe partly formalized by the use of suitable statistical proce-

dure. For instance, one may take all “promising” features, eval-
uate their usefulness for the problem in hands separately, and
design corresponding multisort co-occurrence matrix so that it
combines useful features as matrix axes. Then the bin sizes can
be tuned based oa priori knowledge about the reliability of
feature measurements and/or the criteria of an optimal separa-
tion of test objects in the feature space.

Our future work will concern the quantitative characterization
of textural properties of anatomical brain datasets acquired from
normal subjects. In addition, textural properties are quantitative
features of brain tissues that may statistically be compared to
clinical features such as cognitive abilities measured on perfor-
mance scales.

L1 distance
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