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Independent pseudo-spectral and Galerkin numerical codes are used to investigate 
three-dimensional infinite Prandtl number thermal convection of a Boussinesq fluid 
in a spherical shell with constant gravity and an inner to outer radius ratio equal to 
0.55. The shell is heated entirely from below and has isothermal, stress-free 
boundaries. Nonlinear solutions are validated by comparing results from the two 
codes for an axisymmetric solution a t  Rayleigh number Ra = 14250 and three fully 

three-dimensional solutions at Ra = 2000, 3500 and 7000 (the onset of convection 
occurs at Ra = 712). In addition, the solutions are compared with the predictions of 

a slightly nonlinear analytic theory. The axisymmetric solution is equatorially 

symmetric and has two convection cells with upwelling a t  the poles. Two dominant 
planforms of convection exist for the three-dimensional solutions : a cubic pattern 
with six upwelling cylindrical plumes, and a tetrahedral pattern with four upwelling 
plumes. The cubic and tetrahedral patterns persist for Ra at least up to 70000. Time 
dependence does not occur for these solutions for Ra d 70000, although for 
Ra > 35000 the solutions have a slow asymptotic approach to steady state. The 
horizontal and vertical structure of the velocity and temperature fields, and the 
global and three-dimensional heat flow characteristics of the various solutions are 

investigated for the two patterns up to Ra = 70000. For both patterns at all Ra, the 
maximum velocity and temperature anomalies are greater in the upwelling regions 

than in the downwelling ones and heat flow through the upwelling regions is almost 
an order of magnitude greater than the mean heat flow. The preferred mode of 
upwelling is cylindrical plumes which change their basic shape with depth. 
Downwelling occurs in the form of connected two-dimensional sheets that  break up 
into a network of broad plumes in the lower part of the spherical shell. Finally, the 
stability of the two patterns to reversal of flow direction is tested and it is found that 

reversed solutions exist only for the tetrahedral pattern at low Ra. 

1. Introduction 

The study of thermal convection in highly viscous (i.e. infinite Prandtl number, P r )  
spherical fluid shells is important for its application to the structure and evolution 
of the terrestrial planets (Schubert, Stevenson & Cassen 1980). Mantle convection is 

manifest in the motions of tectonic plates at the Earth's surface (Oxburgh & 
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Turcotte 1978 ; Roberts 1987), in the seismically and gravitationally inferred thermal 
heterogeneity of the Earth’s interior (Busse 1983; Dziewonski 1984; Woodhouse & 
Dziewonski 1984; Dziewonski & Woodhouse 1987) and in the topographic 
undulations of the core-mantle boundary (Bloxham & Gubbins 1985; Bowin 1986; 

Creager & Jordan 1986; Morelli & Dziewonski 1987; Olson, Schubert & Anderson 
1987). Core-mantle boundary topography suggests coupling of mantle dynamics to 

flow in the Earth’s outer core and to the generation of the geomagnetic field (Gubbins 
& Richards 1986). The highly nonlinear nature of thermal convection dictates that 
investigation be done through experiment, either laboratory or numerical. However, 
the laboratory simulation of a central gravity field is sufficiently difficult (cf. Hart, 
Glatzmaier & Toomre 1986) that  numerical experimentation must be the primary 
tool for exploration of convection in spherical systems. 

The majority of numerical analysis done on infinite Pr convection in spherical 
shells (see review by Machetel & Yuen 1988) has assumed axisymmetry (Hsui, 
Turcotte & Torrance 1972; Zebib, Schubert & Straus 1980; Schubert & Zebib 1980; 

Zebib et al. 1983; Zebib, Goyal & Schubert 1985; Machetel & Rabinowicz 1985; 

Machetel & Yuen 1986, 1987). However, analytic studies (Busse 1975; Busse & Riahi 
1982) and stability analyses (Zebib et al. 1980; Schubert & Zebib 1980; Zebib et al. 

1983, 1985; Bercovici, Schubert & Zebib 1988) indicate that there are only a limited 
number of axisymmetric solutions that are stable to three-dimensional (i.e. 
azimuthal) perturbations. In  addition, the stability of solutions is strongly dependent 
on the shell thickness and mode of heating; for a shell entirely heated from within, 
no axisymmetric solutions have yet been found that are stable to azimuthal 
perturbations (Schubert & Zebib 1980; Bercovici et al. 1988). Even when an 
axisymmetric solution is stable, it is not necessarily a preferred solution to the full 
equations of motion (Young 1974). Only recently, with the advent of supercomputers, 
have strongly nonlinear, fully three-dimensional solutions been generated (Baum- 
gardner 1985; Glatzmaier 1988). Machetel, Rabinowicz & Bernadet (1986) studied 
axisymmetric and three-dimensional convective solutions for a shell with constant 
gravity and an inner to outer radius ratio of 0.62. They examined the multiplicity of 
nonlinear solutions that exist for a variety of initial conditions a t  a slightly 
supercritical Rayleigh number Ra. For Ra as high as 13Ra,, (Ra,, is the critical Ra 

for the onset of convection), they found that only ‘polygonal’ type solutions are 
stable. One such solution is similar to the ‘cubic‘ solution found in this paper. 

This work presents nonlinear convective solutions for a spherical shell with 
properties characteristic of the Earth’s whole mantle for Rayleigh numbers up to 
70000 (approximately lOORa,,). To validate the solutions, we have compared the 
results of two independently developed numerical codes for several test cases. Two 
distinct convective patterns arise in these numerical experiments : cubic and 
tetrahedral. These patterns are closely related to the geometric planforms predicted 
by analytical theories of slightly supercritical spherical convection (Busse 1975 ; 

Busse & Riahi 1982). We present a quantitative analysis of the horizontal and 
vertical structures of the velocity and temperature fields of these solutions and 
examine their heat transport propert$ies, including the total heat flow and the spatial 
distribution of the heat flux at the shell boundaries. Because the small-amplitude 
analytic theory predicts patterns of convection that are independent of flow 
direction. we test the stability of the finite-amplitude convective patterns to flow 
reversal. 
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2. Mathematical theory 

The two numerical codes used in this paper follow different theoretical 
formulations. One code uses a Boussinesq approximation in which incompressibility 
is assumed for all but the buoyancy force in the momentum equation. The other code 
employs an anelastic approximation in which the mass flux vector (instead of 
velocity) is assumed solenoidal. The anelastic code accordingly treats density 
stratification and adiabatic and viscous heating ; acoustic oscillations are neglected. 
Application of the anelastic code in this paper will be limited to Boussinesq cases. 
The Boussinesq code uses a fully Galerkin spectral method and shall henceforth be 
referred to as the BG code. The anelastic code employs a spectral-transform, 
Chebyshev collocation scheme and will be called the AS code. 

The non-dimensional equations of mass, momentum and energy used by the BG 
code for an infinite Pr, constant viscosity, constant gravity, spherical fluid shell are 

v - u = o ,  (2.1) 

(2.2) V2(V x u )  +RuV x (Or / r )  = 0, 

ao -+u.v(o,+o) = v20, 
at 

(2.3) 

where u is the velocity vector, r is the radius vector and 0 is the temperature 
perturbation to the conductive temperature profile 0, which is the solution of 

( 2 . 4 ~ )  

0, = 0 a t  r = r2 ,  0, = 1 at r = rlr (2.4b) 

( r l  and r2  are, respectively, the inner and outer radii of the shell and rJr2  = 0.55, a 
value typical of the Earth’s whole mantle). In  this study we only consider a shell 
heated from below and hence the dimensionless internal heating parameter e is zero. 
The Rayleigh number Ra is defined as 

gaATd3 
Ra = -, 

V K  

where g is the constant gravitational acceleration, a is the coefficient of thermal 
expansion, AT is the temperature drop across the shell, d is the thickness of the shell, 
v is the kinematic viscosity and K is the thermal diffusivity. All physical parameters 
are assumed constant throughout the layer. Time t is non-dimensionalized by d2/K, 
distance by d ,  and temperature by AT. Equations (2.1)-(2.3) obey isothermal, 
impermeable and free-slip boundary conditions, 

0 = vr = a2(rvr)/ar2 = 0 a t  r = r1,r2, (2.6) 

where vr is the radial component of the velocity. Given the spherically symmetric 
viscosity and homogeneous boundary conditions, only the poloidal component of the 
velocity field can exist, and hence 

u = V x V x ( @ r / r ) ,  (2.7) 

where @ is a poloidal velocity potential. 
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Following the Galerkin method of Zebib et al. (1980) (see also Ali-Kahn 1982), 0 
and @ are expanded in terms of orthonormal functions 

L Z N l  

1-0 B=O k = l  N f  
0 = C C C -(71p]cCOS(P4)+glSksin(P4))Pf(cos8)2/2sin(Icn[r-rl]), (2.8) 

@ = Ra C C X - (Tlpk  cos (p4) +81pk sin (P4)) Pf (cos 8)  r f ik ( r ) ,  (2.9) 

where 8 and 4 are colatitude and longitude, the rlpk and QcPk are time-dependent 
expansion coefficients, Pf is an associated Legendre polynomial of degree I and order 
B and the normalization factor is 

L l N l  

C=O 8-0 k-1  Nf 

(2.10) 

(bp  = 1 +apo, in which S is the Kronecker delta function). The radial function chosen 
for 0 directly satisfies the boundary conditions on 0 in (2.6). The radial function f i k  
is independent of azimuthal order because its generating equations (obtained by 
substituting (2.8) and (2.9) into (2.7), r - V x (2.2) and (2.6) ; see Chandrasekhar 1961 ; 

Zebib et al. 1980) 

(2.11a) 

f l k  = d 2 f i k / d r 2  = 0 a t  T l ,  r2,  (2.11 b )  

@ f i k  = Tsin(kn[r - r , ] ) ,  d2 

[...I) 
i a  a Z(l+ 1 )  

where D1[. ..] = - - r 2 - [ .  ,.] -~ 
r2ar ar r2 

are degenerate in P. 

(2.11) and the expansions (2.8) and (2.9) into (2.7) and (2.3), multiplying by 
The evolution equation for the rlpk is obtained by substituting the solutions to 

1 
- (cos (84) PL (cos 8) 4 2  sin (jx[r - r l ] ) ) ,  

and integrating over r ,  8 and 4 from rl to  r2,  0 to  x and 0 to 2x, respectively. The 
evolution equations for the QCgk are similarly derived (only for PIS > 0) except that 
cos (84) is replaced by sin (64). This procedure yields two coupled dynamic equations 
for the r t p k  and #Qlgk (note that, because of orthogonality, the 1, P and k have been 
replaced by m, S and j) : 

d 

N L  

- dt7m8j = C L m k j 7 m 8 k -  C N l p k r y i a a S j ( ~ p y B 7 1 p k r ~ y i +  ypy88CpkQnyi),  (2.12a) 

k Cpk l y i  

where 
( 2 . 1 3 ~ )  

( 2 . 1 3 ~ )  
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Nl,9keyineSj = Ra(l(z + CliJk + D l i j k )  GfLL, ( 2 . 1 4 ~ )  

( f l k / r )  in cos (in[r - rl]) sin ( jn[r  - r J )  dr, (2 .14b)  

( 2 . 1 4 ~ )  

a/em = &qe+ i ) + H ( H +  1)--*n(m+ l ) ) ,  (2.14d) 

(2.14e) 

YfllYB = (bSn3)-iJrsin (/I$) sin (y$) cos (a$) d$. 

From (2.12), one can see that solutions initiated with even symmetry about $ = 0 

(i.e. with QIPk = 0) will remain symmetric. However, none of the solutions in this 
paper is initiated with this special symmetry. Nevertheless, the solutions obtaincd 
here do exhibit even symmetry about at least one plane of constant 4, though not 
necessarily $ = 0. 

The AS code employs the dimensional anelastic equations of motion (again, 
Pr = 00)  

v - ( P V )  = 0, (2.15) 

-VP'+V - cr-p'gr/r = 0, (2.16) 

pT , t+v -VS'  = V -  (kV(T'+T') )+Q+o:e .  (2.17) 

Density is decomposed into p(r), the basic state, hydrostatic, adiabatic, polytropic 
density profile based on the Murnaghan equation of state (Stacey 1977 ; Glatzmaier 
1988), and p'(r, 8, $, t ) ,  the superadiabatic perturbation density, related to P', the 
pressure perturbation, and S ,  the specific entropy perturbation through a first-order 
Taylor expansion with Maxwell's relations. Temperature is decomposed into T' and 
T in the same fashion as p. The superadiabatic perturbations include the effects of 
the superadiabatic conductive state that would exist if convection was prohibited. 
The strain rate tensor e has its classical definition and the stress tensor n = 2pve. For 

this study, the internal heating density Q is set to zero and the thermal conductivity 
k is assumed constant. The mass flux is solenoidal, hence 

pv = V x V x ( W r / r )  + V x ( Z r / r ) ,  

where W and 2 are, respectively, the poloidal and toroidal mass flux potentials. 
Again, because viscosity is assumed constant and the boundary conditions are 
homogeneous, 2 = 0. 

The non-dimensional number measuring the degree of compressibility is the 
dissipation number Di, equal to  the ratio of the thickness of the fluid layer to the 
adiabatic temperature scale height, that is, Di = (orgd)/c,. In  the simplest form of 

compressibility, Di and the Griineisen parameter y (where y = (p /T)  (aT/ap), = 

-r 1 
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(aK,) / (pc,)  and K ,  is the bulk modulus) are constant. In  this case, the adiabatic 
temperature T = exp ( -Di[r- r o ] / d )  and density p = Po exp ( - [ D i / y ]  [ r  - r o ] / d ) ,  

where and po are reference adiabatic temperature and density a t  a radius T o .  

Assuming that dynamic viscosity 7 and specific heat c p  (in addition to thermal 
conductivity k )  are constant through the shell, one may non-dimensionalize time by 
(pocpd2) /k ,  distance by d ,  pressure and stress by yk/ (pocp  d2) ,  entropy by c p  AT/To 
and the temperature perturbation by AT (where AT is the superadiabatic 
temperature drop across the shell). Use of these scales to non-dimensionalize 
(2.15)-( 2.17) yields 

(2.15') 
-Di v . u = -  

Y 
u, 

1Di pT Di 

3 Y  Po TI Y 
0 = WP' + V2u Vu, -k -Ras'r/r - - P r / r ,  

Di 

Ra 
= V2(p/AT+T)+--a:e, 

(2.16') 

(2 .17')  

where T' = (TIT)  s' + (Po/P)  aT(Di /Ra)  P' and Ra is with respect to kinematic 
viscosity and thermal diffusivity a t  ro. All dependent and independent variables are 
non-dimensional while the adiabatic temperature and density p are treated as 
material properties and hence are left dimensional. I n  this paper, Di is set equal to 
zero, which recovers the Boussinesq case exactly. 

The dependent variables, W ,  s' and P' are represented in terms of spherical 
harmonics and Chebyshev polynomials, for example, 

L +Z N 

W =  (2/N)i Z C C W,m,( l -~(6 ,0+S, , ) )Tn(~)  Y y ,  (2.18) 
Z=O m=-2 n=O 

where 

( 2 . 1 9 ~ )  

T,(x) = cos (n c0s-l x), (2.19b) 

2z+1 (Z-m)! 4 
YF = (--) 4~ (Z+m)! P F  (cos8)eimb, ( 2 . 1 9 ~ )  

and the W,,, are complex, time-dependent expansion coefficients. To ensure that W 
(as well as s' and P') is real, 

WI(-m)n = (-l)mw?mn? (2.19d) 

since Y;, = ( -  l ) ,Yy* .  The spectral representation resulting from substitution of 
the above expansion into (2.15)-(2.17) will not be shown since the AS code solves the 
equations of motion as much in physical space as in spectral space. 

3. Methods of solution 

The BG code solves the initial-value problem presented by (2.12) with an implicit 
time integration scheme based on stability analysis. The nonlinear interaction of 
modes is fully accounted for within truncation levels. Small wavelength disturbances 
that are unresolved are merely truncated and not folded back into the large 
wavelength modes, which would lead to aliasing. With the implicit time integration, 
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all spectral coefficients (i.e. risk and are coupled. Thus, a linear system of 
equations of order equal to the total number of coefficients must be solved at least 
once per timestep; for a moderate resolution of L = 10 and N = 8, this system of 
equations is approximately of order 1000, requiring almost lo6 words of memory. 
However, an advantage of the implicit scheme is its unconditional stability such that 
the timestep is usually two orders of magnitude greater than that for an explicit 
scheme and, when a steady solution is approached, the timestep can grow without 
bound. (However, if a solution is inherently oscillatory or chaotic, its time- 
dependence may be suppressed unless the timestep satisfies the Courant condition.) 
Steadiness of a solution is assumed when the maximum fractional change of the 
coefficients over a timestep is less than or equal to lo-'. A more thorough discussion 
of the computational technique can be found in Zebib et al. (1980). 

The AS code solves the equations of motion with a semi-implicit scheme; the 
nonlinear terms are treated explicitly with an Adams-Bashforth method and the 
linear terms treated implicitly with a Crank-Nicolson scheme. The nonlinear terms 
of two adjacent time levels are calculated in physical space and transformed to 
spectral space via fast Fourier transforms (for radial and azimuthal dependences) 
and Gaussian quadrature (for latitudinal dependence) whereupon the spectral 
ooefficients of the dependent variables are found a t  the next time level from the 
equations of motion and energy. This allows for partial decoupling of the coefficients 
and hence faster solution of the system of equations as well aa much less memory. 
Also, since only the linear terms are implicit, the matrix inversion for each I need only 
be done once for a given timestep size. However, with a partially explicit scheme, the 
timestep is highly constrained and must always satisfy the Courant condition for 
convective velocities. The aliasing of modes is reduced by calculating the nonlinear 
terms on a physical space grid with the number of nodal points in excess of that 
necessary to complete a discrete transform of the linear terms; the transform of 
nonlinear terms to spectral space is done with all the grid points and the resulting 
modes that are above the truncation level are dropped. A more complete discussion 
of the AS code can be found in Glatzmaier (1984, 1988). 

Since the two codes use different radial expansions for the spectral representation, 
their radial resolutions will be different, even if the expansions are of similar degree. 
The density of Chebyshev collocation grid points varies as l/P near the boundaries 
and 1/N a t  the middle of the shell. The comparable points for a sine series (i.e. the 
zeros or the extrema of the smallest wavelength term of the series) have a density 
that varies as l/N uniformly through the shell. This implies that the Chebyshev 
series can resolve boundary layers at  the top and bottom of the shell better than the 
sine series. 

4. Verification of methods 

Four Boussinesq comparison test cases were run with both numerical codes in 
order to establish their validity. The test cases involve axisymmetric convection a t  
Ra = 14250 and fully three-dimensional convection a t  Ra = 2000, 3500 and 7000. 
Given that the minimum critical Rayleigh numbers for odd and even 1 are Racr = 712 

for 1 = 3 and Racr = 729 for 1 = 4 (Bercovici et al. 1988), these Rayleigh numbers are, 
respectively, about 20, 3 , 5  and 10 times Ra,,. At these values of Ra, all solutions are 
at steady state (time-dependence for an 1 = 2 dominant axisymmetric solution occurs 
at Ra x 30Ra,, according to Machete1 & Yuen 1986). 

Because the BG code is the more cumbersome of the two programs, it  dictates the 
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1 

2 
4 
6 
8 

10 
12 
14 
16 
18 

(09 

BG AS 

1 .o 1 .0 
7.010 x lo-' 7.061 x 

1.001 x 10-1 
1.197 x 1.202 x 
2.703 x 2.826 x 

2.055 x 2.130 x 
3.857 x 4.275 x 

1.439 x lo-' 1.899 x 

1.019 x 10-1 

4.473 x 1 0 - 4  6.320 x 10-4 

TABLE 1. Variances of temperature (or entropy) for spherical harmonic degrees 1 = 1 to 18 for the 
axisymmetric comparison test case at Ra = 14250 for both the BG and AS codes. All variances are 
normalized to the maximum value of (0'). 

maximum level of truncation a t  which the comparison test cases arc run. Thus, the 
maximum N (the radial truncation level) used for the three-dimensional cases is 10. 

This unfortunately imposes limitations on the AS code since Chebyshev expansions 
are not efficient for N < 30. With such a low N ,  the AS code tends to be noisy. Thus, 
steadiness of a solution is defined slightly differently for the AS code than for the BG 
code; a steady solution is attained when the maximum fractional change in 
expansion coefficients whose amplitudes are above the level of machine noise is less 
than or equal to lop6. The machine noise level is defined as lo-' (for double precision 
on an IBM 3090 or single precision on a Cray XMP) of the absolute value of the 
coefficient with maximum amplitude. 

For the axisymmetric case, an axisymmetric version of the BG code requires 
truncation levels of L = 18 and N = 16 for a 2.5 % error between Nusselt numbers Nu 
a t  the top and bottom of the shell (Nu is equal to the ratio of spherically averaged 
total heat flow to conductive heat flow). The Nusselt number a t  the top of the shell 
is 3.9778. The solution a t  Ra = 14250 has a two-cell ( I  = 2 dominant) configuration 
with downwelling at  the equator; a similar solution was found by Machete1 & 
Rabinowicz (1985). The AS code obtains the same solution using truncation levels of 
L = 19 and N = 16 with less than 1 % error in Nu. (The values of L and N for the two 
codes cannot always be matched exactly since the AS code has restrictions on L and 
N owing to use of the fast Fourier transform.) The error in heat flow is less for the 
AS code because, as stated previously, the Chebyshev collocation points allow for 
greater resolution of boundary layers. The Nu for the AS code is 3.9776. 

Table 1 shows temperature (or entropy) variances ( 02) (brackets indicate volume 
averages) for the even spherical harmonic degrees I = 2 to  18 (the solution is purely 
equatorially symmetric) for both codes. The variances are normalized to the 
maximum value of (02)1, and the I = 0 mode is not listed since its correlation is 
implied by the agreement of Nusselt numbers (which represent the spherically 
symmetric temperature field). In  this paper, the spectral content of solutions is only 
discussed in terms of ((9') since, for a spherically symmetric viscosity, the only other 
relevant spectral energy, i.e. kinetic energy, derives from velocity which is a linear 
function of temperature (or entropy). 

For the three-dimensional cases, the BG code requires L = 10, N = 8 for Ru = 2000 

and 3500, and L = 10, N = 10 for Ra = 7000. To match the resolution of the BG code 
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BG AS 

Ra Nu,,, Nu,,, % error Nu,,, Nu,,, % error 

2000 2.3257 2.2191 4.8 2.2507 2.2532 0.1 
3500 2.8106 2.6520 5.9 2.7954 2.7568 1.4 
7000 3.6171 3.4593 4.5 3.4657 3.5293 1.8 

TABLE 2. Nusselt numbers at the top and bottom of the spherical shell (and the resulting 
percentage error) for the three-dimensional comparison test cases for both the BG and AS codes. 

1 m  BG AS 

3 2 1.0 1 .o 
4 0 6 . 2 5 3 ~  lo-' 6 . 5 2 5 ~  
4 4 3 . 5 6 4 ~  lo-' 3 . 6 3 0 ~  10-1 
6 0 7 . 7 4 0 ~  7 .602~  
6 4 1 . 1 4 9 ~  lo-' 1 . 1 3 5 ~  
7 2 1 .152~  lo-' 1 . 1 6 9 ~  lo-' 
7 6 1 .784~  lo-' 1 . 8 0 9 ~  lo-' 
8 4 5.381 x 5 . 4 6 5 ~  
8 8 9 .609~10-~  9 . 8 5 2 ~  

4 4 7 . 1 4 2 ~  LO-' 7 .143~  lo-' 
6 0 6.557 x 6 .702~  
6 4 4.587 x 4.692 x lo-' 
8 0 5 . 4 6 5 ~  lo-' 5 . 5 7 6 ~  lo-' 
8 4 1.547 x lo-' 1.577 x 
8 8 3.589~ lo-' 3.661 x 

10 4 6 .969~  6 . 9 4 0 ~  
10 8 9 . 8 6 8 ~  9 .832~  

Ra = 2000 2 0 1 .006~  lo-' 1.014~ 10-1 

Ra = 3500 4 0 1.0 1 .o 

10 o 3.434~ 10-3 3.417 x 10-3 

Ra = 7000 3 2 1.0 1 .o 
4 0 1.202 x lo-' 1.202 x 10-1 
4 4 8 . 5 8 6 ~  8 . 5 8 8 ~  lo-' 
6 4 1 .907~  lo-' 1 . 9 0 2 ~  
7 2 1 .704~ lo-' 1.701 x 
7 6 1 .442~  lo-' 1 .439~  lo-' 
9 6 3 .895~  lo-' 3 . 9 0 2 ~  lo-' 

10 0 9.381 x 9.431 x 
10 4 1 . 9 0 6 ~  1 .915~  lo-' 
10 8 2 .700~  lo-' 2 . 7 1 3 ~  lo-' 

TABLE 3. Variances of temperature (or entropy) for the ten largest modes of spherical harmonic 
degree 1 and azimuthal order m for the fully three-dimensional cases at Ra = 2000, 3500 and 7000 
for both the BG and AS codes. Ail variances are normalized to the maximum value of (W). 

as closely as possible, the AS code uses L = 10, N = 8 for the two lower values of Ra 

and L = 10, N = 12 for Ra = 7000. 

All steady solutions are first generated by the BG code. They are then transformed 
to the representation employed by the AS code and used as initial conditions by the 
AS code for a time integration. In all cases, a steady state is rapidly found and the 
AS code successfully maintains the solutions of the BG code. 
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Table 2 summarizes the values of Nu at  the top and bottom of the shell for both 
codes and all three values of Ra. The NU range of the BG code either contains that 
of the AS code or strongly overlaps it. The error in N u  for the BG code is substantial 
because the solutions are underresolved radially for this code. The energy spectrum 
of the sine series radial expansion drops less than two orders of magnitude from 
the largest wavelength to the smallest ; hence, truncation error is significant. 
Alternatively, the energy spectrum of the Chebyshev series drops four orders of 
magnitude. The ten largest temperature (or entropy) variances (02)lm of both codes 
are listed in table 3, showing the close agreement of results. (Again, the 1 = 0 mode 
is not listed because its information is redundant with the Nu comparison.) The 
successful comparison of results from the tests of the two codes offers sound 
verification of the methods used in our numerical experiments. 

5. Nonlinear three-dimensional solutions and the patterns of convection 

The nonlinear three-dimensional solutions generated in the comparison tests of 
the codes are characterized by two different convective patterns. The solutions at 
Ra = 2000 and 7000 are odd solutions (i.e. non-equatorially symmetric) and have 
a tetrahedral symmetry. The solution at Ra = 3500 is even (equatorially symmetric) 
and has cubic symmetry. Additional calculations presented in this section show that 
both patterns of convection exist for 712 < Ra < 70000. Figure 1 illustrates the 
geometric planforms of the two patterns by showing the three-dimensional 
isothermal (or isentropic) surfaces defined by constant values of 

s' - s;,, 
&lotto* -Slop ' 

@,-to = 

for three Rayleigh numbers in the aforementioned range. Since a fluid parcel 
undergoing convectivc transport moves virtually adiabatically (or isothermally for 
the Boussinesq case), these surfaces are very close to  material surfaces, especially at 
high Ra. The protrusions represent upwelling regions or plumes, while the apparent 
canyons are downweiling areas. If the upwelling regions are assumed to  mark the 
apexes of a polyhedron, then the odd solution forms a tetrahedron and the even one 
is an octahedron. We will refer to the odd solution as tetrahedral and the even one 
as cubic (to denote a certain family of polyhedrons with cubic symmetry to which the 
oct,ahedron belongs). All solutions have even symmetry about a t  least two planes of 
constant cjb (the cubic pattern has four such planes), although not necessarily about 
cjb = 0, which is an arbitrary coordinate. Both tetrahedral and cubic patterns exist 
because the two smallest Racr occur at 1 = 3 and 1 = 4 and differ by very little (see 
previous section) ; at convective onset (for Ra > 730), both patterns have nearly 
equal likelihood of occurring, and one pattern is not preferred over the other. 

The convective solutions shown in figure 1,  as well as other solutions discussed 
later in this paper, were obtained with the AS code using the truncation L = 21, 

N =  16for712 < B a d  14000andL = 31,N= 18for14000,<Ra$ 70000.Theradial 
(Chebyshev) energy spectrum of the solutions always falls a t  least five orders of 
magnitude and the horizontal (spherical harmonic) energy spectrum falls four orders 
of magnitude or more (figure 2 ) .  Time dependence was not found in the range of 
Rayleigh numbers investigated. (Even tests with N = 20 at Ra = 70000 did not yield 
time-dependence.) Although the solutions appear adequately resolved in time and 
space, the onset of time-dependence for Ra < 70000 cannot be precluded until 
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FIGURE 1. Three-dimensional isothermal (or isentropic) surfaces for tetrahedral and cubic patterns 
of convection for Ra = 2000, 14000 and 70000. Two surfaces are shown for each case: one for 
0, + 0 = 0.5 and the other for 0, + 0 = 0.2. 

further analyses with higher spatial resolution are performed. For Ra > 35000, the 
solutions have a slow asymptotic approach to steady state, i.e. global characteristics 
(e.g. Nu) of the solutions change monotonically and almost insignificantly after long 
time integrations, without any variation in the convective pattern. As Ra approaches 
70000, transients at the start of the time integrations require more time to decay 
away, implying that growth rates for oscillatory modes are approaching zero at 
Ra = 70000. If time dependence does not in fact occur within the Ra range of this 
study, it may set in for Ra not much greater than about lOORa,,. Axisymmetric 
solutions undergo time-dependent, even chaotic motion, a t  considerably smaller 
Rayleigh numbers (Machete1 & Yuen 1986, 1987). 
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5.1. Comparison with analytic theory 

Both the cubic and tetrahedral patterns were predicted by the perturbation analyses 
of Busse (1975) and Busse & Riahi (1982), respectively. If two or more dominant 
spherical harmonic modes exist within a convective pattern, then i t  is possible to 
compare the relative energies of these modes from our numerical results with those 
from the analytic studies. However, the tetrahedral solution has only one dominant 
mode (for 1 = 3, m = 2) ; thus, a quantitative comparison of modes cannot be done for 
this case. 

The cubic pattern, predicted by Busse (1975) (and also found numerically by 
Young (1974) and Machete1 et al. (1986)) has two dominant modes (1  = 4, m = 0 and 
I = 4, m = 4), and hence a quantitative comparison is possible. The perturbation 
analysis (Busse 1975) represents a dependent variable, say 0, for a given 1 as 
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with the appropriate normalization, and even symmetry about q5 = 0 assumed. For 
the cubic solution, the only non-zero am predicted by the theory are 

a. = ;($, a, = +($, (5.3) 

for 1 = 4. The ratio of the volume-averaged spectral energies or variances of these two 

modes is (a , /01~)~ = 5, since gl ( r )  is independent of m. This number is unaffected by the 
assumption of symmetry about q5 = 0 since thc origin of the longitudinal grid ($ = 

0) is arbitrary, and, the solution displays symmetry about four planes of constant q5, 
let alone one. Examination of the volume-averaged variances of the numerical 
solutions in table 3 for Ra = 3500 shows that (02),,,, which is normalized by 
(02)4,0, is also C. This ratio is in fact maintained for Ra up to 70000, although other 
small wavelength modes become more significant. Machetel et al. (1986) also found 
that the relative importance of modes for their ‘polygonal P44’ (cubic) solution 
remained essentially unaltered up to 13Ra,,. 

Polygonal patterns are the spherical analogues of hexagonal patterns in planc 

layer convection (axisymmetric patterns are analogous to plane layer convective 
rolls). Since convection in a fluid layer without midplane symmetry can only have a 

hexagonal planform (Busse 1978), Busse (1975) predicts that the polygonal 
convective patterns in a spherical shell (lacking midplane symmetry) would be the 
only stable patterns, and would exist for Rayleigh numbers much greater than the 
slightly supercritical Ra used in small-amplitude theory. Our results verify this 
prediction. 

As is evident from table 3 for Ra = 7000, the tetrahedral solution has, along with 
the dominant ( 02),, variance, small yet significant (02),, and (02)4, variances ; 
the ratio of these two minor variances is also $. The tetrahedral solution is, in fact, 
a mixed-mode solution that combines a dominant tetrahedral signature with a small 

cubic signature. This mixed-mode solution was predicted by Busse & Riahi (1988). 

However, the radial function of the analytic solution (gJr )  in (5.2)) is dependent on 
1 and must therefore be known (or at least the integral of its square over the volume 
of the shell must be known) in order to calculate the relative variances of the mixed- 
mode solution. The analytic work does not explicitly determine the radial function 
and hence a quantitative comparison of the analytic solution with our numerical 

results cannot be done. 

6. Three-dimensional structure of convective solutions 

6.1. Horizontal structure of velocity and temperature Jields 

Radial velocity and temperature anomaly contours midway through the shell are 
shown in figures 3 and 4, respectively, to quantify the horizontal structure of the 
three-dimensional patterns. The figures additionally illustrate how the structure 

changes with increasing Ra. For both the tetrahedral and cubic patterns, the 
upwelling areas are cylindrical and are separated by downwelling fluid. Although 
downwelling regions have local extrema, they are usually connected in a network of 
linear features. This structure is characteristic of the ‘polygonal ’ solutions found by 

Machetel et al. (1986). As Ra increases, the upwelling and downwelling regions 
become more confined to narrow areas and the virtually stagnant region between 
them grows in width (i.e. the spacings between the zero-contour and the next nearest 
contours increase). At high Rayleigh numbers, t,he downwelling regions are manifest 
as a network of narrow linear sheets. 

Features of the temperature field (especially at Ra = 70000) whose horizontal 
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FKHJRE 3. Radial velocity contours (in a Hammer-Aitoff equal area projection) of the tetrahedral 
and cubic patterns on a spherical surface midway through the shell for Ra = 2000, 14000 and 
70000. Dashed contours indicate downwelling and solid contours denote upwelling : the  solid 
coritour separating the negative velocity region from the positive one is the zero value contour. The 
numerical values are the maximum upwelling and downwelling non-dimensional velocities ; the 
other upwelling and downwelling areas have the same maximum velocities as those shown, unless 
otherwise indicated. Contouring information is given in table 4 (a) .  

dimensions are less than 5" in longitude or latitude are not well resolved and are 
possibly numerical noise. However, the larger wavelength complex structure 

surrounding the upwellings a t  Ra = 70000 is well resolved. 
At all Ra, and for both patterns, the maximum velocities and temperature 

anomalies always occur in the upwelling regions. Midway through the shell, the 
maximum upwelling velocities are three to four times the maximum velocities of the 
downwelling regions and the magnitudes of the hot temperature anomalies are three 
to five times the magnitudes of the cold temperature anomalies. However, the 
horizontal velocity and temperature gradients in the downwelling regions are less 
than those in the upwelling regions; this accommodates the constraint that  surface- 
averaged velocities and temperature anomalies a t  any radius must be zero. The 
velocity and temperature maxima of upwelling are greater for the tetrahedral 
pattern than for the cubic pattern, while the reverse is true of the downwelling 

velocity and temperature. For both patterns, as R?ayleigh number increases, the 
maximum (non-dimensional) temperature anomaly of the upwelling region increases, 
while that of the downwelling region decreases slightly. This probably reflects the 
narrowing and subsequent intensification of upwelling plumes and the spreading of 
downwelling fluid more uniformly into sheets. The temperature anomalies of these 
regions are more detailed than the velocity features because in large Pr systems 
internal (thermal) energy undergoes much less diffusion than momentum. 
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FIGURE 4. Isotherms (in equal area projection) relative t o  the spherically-averaged temperature on 
a spherical surface midway through the shell for the same patterns and Rayleigh numbers as in 
figure 3. Dashed lines are for negative (cold) temperature anomalies and solid lines are for positive 
(hot) temperature anomalies; the solid contour separating the cold and hot regions is the  zero value 
contour. The maximum hot and cold non-dimensional temperature anomalies are shown ; the  other 
upwelling and downwelling regions have the same extremum temperatures unless otherwise 
indicated. Contouring information is given in table 4 ( a ) .  

For all Ra,  the velocity and temperature maxima of the upwelling regions coincide. 
However, for the tetrahedral solution a t  Ra = 2000, the downwelling temperature 
and velocity maxima do not coincide ; the extrema of the downwelling velocity occur 
a t  the equator while the extrema of the temperature occur at the same latitude as the 
upwelling plumes. At higher Ra,  the downwelling maxima of both temperature and 
velocity in the tetrahedral solutions occur a t  the high latitudes. This indicates that 
a t  low Ra the locations of horizontal flow convergence a t  the upper boundary are 
more important in determining the locations of downwelling than are the sites of 
coldest temperature anomaly ; this situation is reversed a t  higher Ra.  

For both patterns, the areas of negative radial velocity in the downwelling zones 
are broader than the corresponding areas of negative (cold) temperature anomalies. 
Therefore, areas of downwelling overlap areas of relatively warm material. Despite 
the relative buoyancy of this fluid, i t  is entrained into the downwelling currents. 

The upwelling and downwelling regions of both patterns do not maintain the same 
horizontal structure throughout the depth of the shell (figure 5 ) .  At all Rayleigh 
numbers, the upwelling regions of the cubic pattern are nearly circular a t  the top of 
the shell. Near the middle of the shell the upwelling regions are quite complex, as 

though undergoing a sharp transition with depth, and a t  the bottom of the shell they 
are distinctly in the shape of diamonds. At low Ra,  the upwelling regions of the 
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( a )  Figure 
number Pat tern 

3 Tetrahedral 

Cubic 

4 Tetrahedral 

Cubic 

7 Tetrahedral 

Cubic 

Rayleigh 
number 

2000 
14000 
70 000 
2000 

14 000 

70 000 

2 000 
14 000 
70 000 

2 000 
14 000 
70 000 

2 000 
14000 
70 000 
2000 

14000 
70 000 

Minimum 
contour 

-8 
- 50 
- 180 
- 12 
- 50 
- 200 

-0.2 
-0.1 
-0.1 
-0.2 
-0.1 
-0.1 

-0.48 
-0.48 
-0.18 
-0.18 
-0.48 
-0.18 

Maximum 
contour 

30 
210 
780 
30 

200 
700 

0.60 
0.65 
0.70 
0.56 
0.65 
0.70 

0.48 
0.48 
0.72 
0.72 
0.48 
0.72 

Contour 
interval 

2 
10 
60 

2 
10 
50 

0.05 
0.05 
0.05 
0.04 
0.05 
0.05 

0.06 
0.06 
0.06 
0.06 
0.06 
0.06 

Cubic 

( b )  Figure Rayleigh Radius 
number Pattern number ( r / r 2 )  

5 Tetrahedral 70000 0.97 
0.89 
0.78 
0.66 
0.58 

14000 0.97 
0.89 
0.78 
0.66 
0.58 

70 000 0.97 
0.89 
0.78 
0.66 
0.58 

10 Tetrahedral 70000 1 .oo 
0.55 

Cubic 70 000 1 .oo 
0.55 

Minimum Maximum 
contour contour 

-0.15 0.65 
-0.15 0.65 
- 0.10 0.70 
-0.10 0.80 
-0.39 0.55 

-0.12 0.52 
-0.15 0.60 
- 0.10 0.70 
-0.10 0.75 
-0.20 0.40 

-0.16 0.60 
-0.12 0.60 
- 0.10 0.70 
-0.10 0.75 
-0.20 0.60 

0 32 
2 22 

0 29 
2 21 

Contour 
interval 

0.05 
0.05 
0.05 
0.05 
0.05 

0.04 
0.05 
0.05 
0.05 
0.04 

0.04 
0.04 
0.05 
0.05 
0.05 

2 
1 

1 
1 

( c )  Figure Minimum Maximum Contour 
number Pattern Function contour contour interval 

13 Tetrahedral Radial velocity - 49 70 7 

Cubic Radial velocity - 48 80 8 
Temperature -0.24 0.44 0.04 

Temperature -0.24 0.48 0.04 

TABLE 4. Contouring information for figures 3, 4, 7, 5 ,  10 and 13. 
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r / r z  = 0.97 

0.89 

0.78 

0.66 

. .  

0.58 

. . . .  

0.66 
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FIGURE 5 (a, b ) .  For caption see next page. 
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FIGCRE 5. Isotherms (in eyual area projection) relative to the spherically-averaged temperature for 
(a)  the tetrahedral pattern a t  Ra = 70000, ( b )  the cubic pattern a t  Ra = 14000 and ( c )  the cubic 
pattern at Ra = 70000 on five spherical surfaces at radii r / r z  = 0.97,0.89,0.78,0.66 and 0.58; these 
five radii correspond to depths of 3, 25, 50, 75 and 97% of the shell thickness. Contouring 
information is given in table 4 ( b )  

0 0.2 0.4 0.6 0.8 1 .o 
@,+@ 

FIGURE 6. Spherically-averaged profiles of total non-dimensional temperature 0, + 0 a t  Ra = 2000, 
14000 and 70000 for the tetrahedral pattern (the profiles of the cubic pattern are essentially 
identical). 
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FIGURE 7. Isotherms of total temperature in a vertical plane of constant longitude (q5 = 0) for the 
tetrahedral and cubic patterns at  Ra = 2000, 14000 and 70000. Contouring information is given in 
table 4(a). 

tetrahedral pattern do not change shape with depth. However, for R a  > 35000, the 
upwelling regions are approximately triangular a t  the top and almost clover-shaped 

a t  the bottom. This appears to be caused by the break up of the downwelling regions 
from a network of linear sheets a t  the top, to a pattern of connected plumes a t  the 
bottom. This effect is most striking a t  R a  = 70000 where the break up begins 
midway through the shell. Since the downwelling sheets do not have uniform 
intensity, when they impinge on the bottom boundary they do not spread out into 
the boundary layers uniformly. Hence, the mass flux which the boundary layers feed 
into the upwelling plumes is not isotropic with respect to the axes of the plumes. In  

4-2 
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FIGURE 8. Velocity vectors in the constant longitude plane q5 = 0 for the convective solutions of 
figure 6. Vector information is listed in the following table. The magnitudes of the maximum 
velocity vectors for the tetrahedral solution a t  Ra = 2000, 14000 and 70000 are 26.3, 135.0 and 
361.0, respectively. The magnitudes of the maximum velocity vectors for the cubic solution a t  
Ra = 2000, 14000 and 70000 are 31.2, 205.0 and 742.0, respectively. 

contrast, the upwelling regions impinge on the upper boundary as narrow cylinders 
(especially a t  R a  = 70000) and are more likely to spread uniformly. 

6.2. Vertical structure of velocity and temperature fields 

Figure 6 shows spherically-averaged temperature profiles for various Ra (for only the 
tetrahedral pattern since the profiles of the cubic. pattern are essentially identical). 
As Rayleigh number increases, a large central portion of the shell becomes more 
stably stratified as the boundary layers narrow. Figures 7 and 8 show isotherms and 
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velocity vectors in a plane of constant longitude for both the tetrahedral and cubic 
solutions a t  Ra = 2000, 14000 and 70000. The upwelling and downwelling regions 
narrow as Ra increases. The upwelling regions in general appear more intense than 
the downwelling ones ; however, the cross-sections of constant longitude do not 
always pass through both the upwelling and downwelling maxima. The isotherm 
plots a t  high Ra reveal the delamination of the upper cold boundary layer : fingers 
of cold fluid sink from the top boundary layer before the layer reaches the major 
downwelling . 

Conservation of energy for steady solutions requires the heat flow across the lower 
boundary to be ( r2 / r1 ) ,  of that across the upper boundary (since the net heat flux into 
the shell must equal the net heat flux out). The spherically-averaged profiles of figure 
6 show that this constraint is almost completely satisfied by the relative temperature 
drops across the upper and lower boundary layers : the temperature drop across the 
bottom thermal boundary layer is approximately ( r2 / r1 )2  times the temperature drop 
across the top thermal boundary layer. Thus, the thermal boundary layers a t  the top 
and bottom of the shell have essentially the same thickness (see also Zebib et al. 

1980). However, given the differences in horizontal velocities (see figure 8) and 
characteristic horizontal lengths of the boundary layers a t  the top and bottom 
boundaries, there is no a priori reason to expect the thermal boundary layers to be 
of equal thickness. One possible explanation for their comparable thicknesses is that 
such an arrangement minimizes the net amount of gravitationally unstable fluid in 
the boundary layers. The net amount of unstable mass in the boundary layers is 
proportional to M = ATl 8, rt  + A E  8, r i ,  where AT is the temperature drop across the 
boundary layer, S is the boundary-layer thickness and the subscripts on AT and 6 
have the same meaning as those on r .  Since, by conservation of energy, AT,r;/S, = 

AT, r i /S2 ,  then M = A% r iS l ( f+  l/f), where f = S,/Sl. The value off that minimizes 
M is f = 1. Therefore, a temperature field with top and bottom boundary layers of 
equal thickness creates optimal stability for the fluid layer. 

Geometric compression of the flow field is manifest in the vertical velocity 
structure in two ways. First, the velocity vectors of figure 8 show that the velocity 
a t  the bottom of any convection cell is larger than at  the top. Secondly, the centres 
of the cells are shifted slightly towards the top boundary. Both of these effects 
facilitate the conservation of mass under geometric compression. 

7. Heat flow 

7 .1 .  Global characteristics 

Figure 9 shows Nusselt number versus Rayleigh number for the tetrahedral and 
cubic solutions in the Ra range of this study. Since the solutions for Ra < 14000 have 
different resolution from those with Ra 2 14000, the Nu curves are not necessarily 
continuous across Ra = 14000. The worst error in Nu is between 1 YO and 2%. The 
fit of a power-law relationship to the high Ra end of these curves (Ra > 15Ra,,) shows 
that Nu - Ra0.283 for the tetrahedral solutions and Nu - Ra0.280 for the cubic 
solutions. These exponents are about 20 Yo less than predicted by either boundary- 
layer theory or mean field theory (Turcotte & Schubert 1982; Olson 1981). 

The heat flow for the cubic solution surpasses that of the tetrahedral solution for 
Ra as large as 70000. However, this does not imply that the cubic pattern is preferred 
over the other. In  fact, the spectral content of the tetrahedral pattern (table 3) has 
significant 1 = 4, m = 0 and 1 = 4, m = 4 signatures; if the cubic pattern was indeed 
preferred, these modes would grow a t  the expense of the 1 = 3, m = 2 mode. 
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FIGURE 9. Nusselt number Nu versus Rayleigh number Ra for both tetrahedral and cubic patterns. 
For 712 < Ra < 14000 the truncation levels of the numerical scheme are L = 21 and N = 16; for 
14000 < Ra < 70000 L = 31 and N = 18. 

Similarly, we also found that the cubic solutions are stable against an 1 = 3, m = 2 
tetrahedral perturbation for several Rayleigh numbers covering the Ra range of this 
study. 

7.2. Three-dimensional nature 

Figure 10 shows total heat flux contours at the top and bottom of the shell for the 
tetrahedral and cubic patterns a t  Ra = 70000. The maximum heat flow a t  a 
boundary occurs where vertically moving fluid impinges on the boundary (down- 

wellings a t  the bottom, upwellings at the top) since the fluid increases the 
temperature contrast a t  the boundary and compresses the isotherms in the boundary 
layer ; the minimum heat flow a t  a boundary occurs where fluid moves away from the 
boundary since the fluid has almost the same temperature as the boundary and its 
motion stretches the isotherms towards the middle of the shell (see also figure 7).  
Although the mean heat flux a t  the bottom is larger than a t  the top, the maximum 
heat flux a t  the top is greater than a t  the bottom. The maximum heat flux out of the 
shell over upwelling regions is approximately nine times the mean heat flux at  the 
top for the tetrahedral solution and seven times the mean heat flux for the cubic 
solution (even though the mean heat flux for the cubic solution is 10 O h  greater than 
that for the tetrahedral solution). Alternatively, the maximum heat flux into the 
shell beneath downwelling regions is less than twice the mean heat flow a t  the bottom 
for both convective patterns. At the bottom boundary, the minimum heat flux 
(occurring where fluid moves away from the boundary) is usually one order of 
magnitude less than the maximum heat flux. At the top boundary, the minimum 
heat flux is usually two orders of magnitude less than the maximum heat flux and 
can be negative, which may relate to the entrainment of warm material into the 
downwelling currents (see 06.1). 
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FIGURE 10. Contours of total heat flux for the tetrahedral and cubic patterns at the top ( r / r ,  = 1) 
and bottom ( r / r z  = 0.55) of the shell a t  Ra = 70000. Dashed lines are for heat fluxes that are less 
than the mean (spherically-averaged) heat flux, solid lines are for heat fluxes greater than the mean 
heat flux. Numerical values are maximum and minimum heat fluxes, non-dimensionalized by 
kAT/d.  The mean non-dimensional heat flux of the tetrahedral pattern at the top of the shell is 
3.61, and at the bottom it is 12.00. The mean heat flux of the cubic pattern at the top is 3.92 and 
at  the bottom it is 13.07. Contouring information is given in table 4(b). 

8. Stability of patterns to flow reversal 

The patterns of convection in spherical shells in the small-amplitude analytic 
theory of Busse (1975) and Busse & Riahi (1982) are independent of flow direction. 
This implies that the finite-amplitude convective patterns of this paper might be 
stable to flow reversal. Stability to flow reversal is well established in three- 
dimensional convection in a plane layer where upwellings and downwellings are 
symmetric with respect to the midplane (Busse 1981). However, spherical geometry 
destroys the midplane symmetry. Accordingly, upwelling and downwelling regions of 
the tetrahedral and cubic planforms are morphologically distinct. Thus, we 
attempted to test the existence of reversed solutions for both patterns by changing 
the sign of the velocity and aspherically symmetric temperature fields of solutions at 

Ra = 2000, 7000 and 14000 and, using them as initial conditions, time integrating 
the convective equations to steady state. 

At Ra = 2000 and 7000, the reversed cubic solution temporarily settles into a 
metastable solution that maintains the cubic signature (the ratio of the two 
dominant entropy variances is also 8). However, the upwellings are again cylindrical 
and concentrated a t  the corners of a cube (making the pattern exactly cubic), while 
the downwellings are also cylindrical and at the cube’s faces (figure 11). The Nusselt 
numbers of these solutions are 2.28 at Ra = 2000 and 3.85 a t  Ra = 7000 (compared 
to 2.25 and 3.63 for the original cubic solutions a t  these Ra). 

After time integrating these metastable solutions further they become unstable. At 
Ra = 2000, the metastable solution evolves into a steady, purely axisymmetric 
solution with two dominant modes whose normalized temperature variances are 
(02)+, = 1 and (02),_, = 0.62, corresponding to a pattern with four zonal cells in 
which downwelling occurs a t  both poles and uniformly along the equator (figure 11). 
The Nusselt number of this axisymmetric solution is 2.24. This solution is the same 
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FIQURE 11. Three-dimensional isothermal surfaces of the metastable and final steady solutions 

obtained after reversal of the cubic solutions for Ra = 2000 and 7000. Two surfaces are shown for 
each case : one for 8, + 8 = 0.5 and the other for 8, + 8 = 0.2. 

as the ‘e14’ solution found by Bercovici et al. (1988). The R a  = 7000 metastable 
solution evolves into a steady tesseral pattern with four elongated cylindrical 
upwelling regions all on the equator (figure 11) ; this pattern has two dominant modes 
with normalized variances (02)E,4,nz-4 = 1 and (82)L,,,,,,, = 0.51 and Nu = 3.54. 

This pattern is similar to the ‘M44’ pattern found by Machete1 et al. (1986). At 
Ra = 14000, the reversed cubic solution becomes immediately unstable and evolves 
into a steady purely axisymmetric, 1 = 2 dominant solution similar to the one used to 
test the numerical codes in $4;  the Nu for this solution is 3.91 while the original 
non-reversed cubic solution has Nu = 4.49. 

At Ra = 2000 and 7000, the reversed tetrahedral solutions evolve into steady 
solutions that also have a tetrahedral signature. However, the secondary cubic 
signature of the tetrahedral pattern has almost vanished and the second largest mode 
has 1 = 6, m = 4. These solutions have four cylinders of downwelling surrounded by 
a network of upwelling (figure 12) in which the most intense upwelling occurs within 
cylindrical features located at the apexes of a tetrahedron. The Nu of these two new 
tetrahedral solutions are 2.29 at Ra = 2000 and 3.81 a t  Ra = 7000 (compared to  2.20 

and 3.51 for the original tetrahedral pattern a t  these Ra) .  At Ra = 14000 the 
reversed tetrahedral solution becomes unstable and returns to the original 
tetrahedral pattern (with a 90” longitudinal shift). The instability of steady solutions 
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FIGURE 12. Three-dimensional isothermal surfaces of the  steady solutions obtained after reversal 
of the tetrahedral solutions at Ra = 2000 and 7000. Two surfaces are shown for each case at the 
same isotherm values as in figure 1 1 .  

to flow reversal was also experienced by Machete1 et al. (1986) for an 1 = 4, m = 3 
dominant solution which (upon flow reversal) became an axisymmetric solution. The 

instability of the reversed tetrahedral solution a t  Ra = 14000 is manifest as the 
growth of the concentrated upwellings at the expense of the upwelling bridges to 
form the original tetrahedral pattern. 

Small-amplitude analytic theory offers insight into why, at low Ra, the tetrahedra1 
(odd 1) pattern is stable to flow reversal while the cubic (even 1)  pattern is not. In the 
perturbation analysis of Busse (1975) and Busse & Riahi (1982), the Itayleigh 
number Ra is expanded in terms of a small amplitude parameter E such that 

Ra = Racr + ~Ra( l )  + . . . + e(n)Ra(n) + . . . . 
The sign of the solution, hence the flow direction, is determined by the sign of ERa'l). 
When 1 is odd, Ra(n) is zero for odd n, and the flow direction is degenerate for odd 1 
patterns. As shown in Busse & Riahi (1982), solutions with &a(') < 0 are unstable. 
Thus, reversing the flow of the stable cubic pattern yielded a metastable solution 
which might correspond to  the unstable solution with negative ERa(l) predicted by 
small-amplitude theory. Since &a(1) is zero for the odd 1 patterns, the stability of the 
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Tetrahedral Cubic 

Radial 
velocity 

Temperature 

FIUUW 13. Radial velocity contours and isotherms (relative to the spherically-averaged 
temperature) on a spherical surface midway through the shell for the metastable solution obtained 
after reversal of the cubic solution and the steady solution found after reversal of the tetrahedral 
solution at Ra = 7000. Labelling of maxima is the  same as in figures 3 and 4. Contouring 
information is given in table 4(c) .  

tetrahedral pattern does not preclude the stability of the reversed tetrahedral 
pattern. Since the tetrahedral pattern is, in fact, a mixed mode pattern with a minor 
cubic signature, its reversal may result in the destabilization and elimination of the 
cubic component and the maintenance of the tetrahedral component. 

The metastable cubic solutions obtained after flow reversal at R a  = 2000 and 7000, 
while they exist, have slightly greater N u  than the original cubic solutions, yet when 
they grow unstable and evolve to truly steady patterns, N u  drops well below that of 
the original cubic solutions. At R a  = 14000 the reversed cubic solution immediately 
transitions to an axisymmetric pattern with a N u  that  is 60% less than that of the 
original cubic solution at  the same Ra.  Similarly, the steady tetrahedral solutions 
obtained after flow reversal are characterized by greater heat flow than the original 
tetrahedral solutions, yet at R a  = 14000 they return to the original tetrahedral 
pattern. 

Finally, the horizontal velocity and temperature structures of the (metastable) 
cubic and (stable) tetrahedral solutions obtained after flow reversal are not 
quantitatively the negative of the original cubic and tetrahedral solutions (figure 13). 
instead of the maximum velocities and temperature anomalies occurring in the 
clownwelling regions (as they should if the flow is truly reversed), they again occur 
in the upwelling regions. Therefore, even if a convective pattern is stable (or 

metastable) to flow reversal, the convective solutions change in detail. 

9. Discussion 

9.1. Physical interpretation 

Several results of numerical experiments in thermal convection do not support the 
assumption that convection acts to maximize heat flow. In previous work, with 
bifurcations from one steady state to another, Nusselt number is as likely to decrease 
as increase (e.g. Machete] & Rabinowicz 1985). In this study, neither the cubic nor 
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tetrahedral pattern is preferred over the other, even though their heat flow 
characteristics differ. I n  addition, when the reversed solutions ($8) become unstable, 
they always transition to solutions characterized by lower Nu. 

Alternatively, numerical experiments in convection often indicate a tendency of 
convective solutions to assume planforms that reduce, or minimize, the viscous shear 
on upwelling and/or downwelling regions. For example, it has been found that for 
axisymmetric spherical steady state convection, bifurcations with increasing Ra tend 
to increase convection cell wavelength ; that  is, a four- or three-cell structure changes 

to a two-cell structure (Machete1 & Rabinowicz 1985; Bercovici et al. 1988). This 
reduces the shear between upwelling and downwelling regions and the effective 
surface area of the vertically moving regions upon which the viscous shear acts (e.g. 
by fusing two upwelling regions into one). A possible reason for this tendency is that 
given a force balance in an upwelling (or downwelling) region, the reduction of shear 
causes the upwelling (downwelling) velocity to increase in magnitude in order to 
maintain the viscous force that balances the buoyancy and pressure forces of the 
rising (sinking) fluid. The greater upwelling (downwelling) velocity allows for more 
efficient release of gravitational potential energy. In  the above example of 
bifurcations of axisymmetric steady solutions, it has been found that upon 
bifurcation with increasing Ra, boundary deflection (along with convection cell 
wavelength) always increases, which reflects the increase in upwelling and 
downwelling velocities (Bercovici et al. 1988). 

In  three-dimensional convection with any geometry, a cylindrical upwelling or 

downwelling will necessarily be surrounded by a sheet-like return flow. The 
hexagonal pattern of convection in a planar geometry maintains upwellings and 
downwellings with both sheet-like and cylindrical natures since the pattern is 
symmetric about the midplane of the fluid layer. For example, upwellings emanate 

from the bottom boundary as three sheets a t  120" to each other and converge into 
a cylindrical plume at their axis ; downwellings simply mirror this behaviour. 
However, in spherical convection the midplane symmetry is broken and the 
preferred mode of upwelling is in cylinders and that of downwelling is in linear sheets 
throughout most of the shell. Although the downwelling regions lose most of their 
sheet-like signature near the bottom of the shell, as in the plane-layer hexagonal 
pattern, the upwelling regions are distinctly cylindrical throughout the entire fluid 
layer. Because the lower boundary layer has a greater temperature drop across it  
than the upper one, the buoyant density anomalies and hence velocities of upwelling 
regions will be greater than those of the downwelling regions. Accordingly, the 
upwelling plumes will, by conservation of mass, have smaller cross-sectional (i.e. 
horizontal) area than the downwelling regions. Therefore, since the upwelling regions 
have both a small cross-sectional area and large velocity, they are more sheared than 
the downwelling regions. The net shear on the upwelling and downwelling regions is 
minimized by allowing the region with maximum shear (the upwelling region) to 
assume the shape with minimum effective surface area (a cylinder), while the region 
with less shear (the downwelling region) assumes the shape with the larger surface 
area (a two-dimensional sheet). The prominence of upwelling cylinders and 
downwelling sheets leads to the large vertical velocities that allow for efficient release 
of gravitational potential energy. 

The predominance of upwelling cylinders and downwelling sheets may also be 
largely determined by the spherical geometry of the fluid layer. When two planar 
horizontal boundary-layer flows converge, they are eventually forced to bend and 
move away from the boundary surface in a sheet-like flow. If the boundary-layer 
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flows are constrained to move on a spherical surface, the sheet-like flow away from 
the surface will be stretched (compressed) along the plane of the sheet as it  moves 
radially outwards (inwards) from the spherical surface ; radial outward (inward) 
motion corresponds to upwelling (downwelling) in the spherical shell. Hence, a 
downwelling sheet tends to thicken and become concentrated as i t  descends. An 
upwelling sheet would become stretched and dispersed. Downwelling motion in a 
spherical geometry therefore tends to preserve sheet-like structures, while upwelling 
motion tends to disrupt them. The cylindrical shape of upwelling plumes may then 
occur because once the sheet-like structure disintegrates, the flow coalesces into 
shapes with minimum surface area to  reduce the net viscous shear opposing their 
motion. In  plane-layer convection with temperature-dependent viscosity, the least 
viscous region (hot upwelling in a liquid, cold downwelling in a gas) always occurs 
along the plume-like axis of a hexagonal convection cell (Busse 1978). Thus, the 
narrowest, most sheared region of flow may form in a way that best reduces viscous 
resistance. 

9.2. Geophysical interpretation 

The tendency of downwelling regions to be in the form of two-dimensional sheets in 
three-dimensional spherical convection is geophysically significant since that is the 
mode of downwelling in the Earth’s mantle. Descending slabs represent the 
fundamental mode of downwelling in spherical convection; it  is not necessary to 

appeal to considerations of temperature dependence of rheology to explain the sheet- 
like character of cold downwellings in the Earth’s mantle (although this rheological 
behaviour obviously enhances the integrity of the slabs). The break up of 
downwelling sheets may also have a bearing on the fate of cold subducting slabs as 
they sink into the mantle. Measurements of seismic velocity anomalies around 
subducted slabs indicate that descending slabs penetrate well into the lower mantle 
(Creager & Jordan 1984). I n  addition, measurements of core-mantle boundary 
topography show a downward deflection of the boundary beneath subduction zones, 
implying that slabs a t  least influence downwelling currents to the very base of the 
mantle, if they do not reach the core-mantle boundary itself (Creager & Jordan 1986; 

see review by Silver et al. 1988). However, there is still uncertainty about the 
existence of a well-defined slab signature in the deep lower mantle. This is often 
attributed to the retardation of slab descent by a stabilizing compositional density 
increase or a viscosity increase (associated with phase or compositional changes) a t  
the upper mantle-lower mantle interface. However, this study indicates that simple 
dynamical considerations can account for the break-up of downwelling sheets into 
broader, more cylindrical features. Therefore, if basal heating at the core-mantle 
boundary is significant (as implied by recent high-pressure experiments on the 
melting temperature of iron; Williams et aE. 1987), then descending slabs may 
undergo natural disruption, accounting for the apparent absence of a well-defined 
slab signature in the deep mantle. Cold material still reaches the lower boundary yet 
the sheet-like downwellings begin to disintegrate halfway through the shell. While a 

temperature-dependent rheology would probably delay such a slab break-up, a 
viscosity increase (continuous or discontinuous) with depth in the mantle might 
cause disintegration to occur even further from the lower boundary. The presence of 
internal heating would also affect slab break up;  for example, a purely heated from 
within convecting layer has no lower boundary layer into which a downwelling region 
must diverge. 

The geophysical implications of our numerical experiments are limited by (i) the 
Rayleigh number being a t  least an order of magnitude less than the Earth’s, (ii) the 
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simple Newtonian rheology of our experiments, and (iii) evidence that internal 
heating is significant (if not predominant) in the Earth’s mantle while it  is not 
included in this study. 
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