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ABSTRACT
A coordinate-space method is developed to solve thé three—dimensional
time-dependent Hartree-Fock equations. It is applied fo the study of
16O;+160 collisions at Elab = 105 MeV for incident angular mbmehta from
0 to 40h. We find fusion for L= 13h through 27h and‘highly ineléstic

scattering for L<11h.
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I. INTRODUCTION

Time-dependent Hartree-Fock theory (TDHF)1 has emerged in recent
years as a promising candidate for a tractable microscopic theory of
large-amplitude c%llective motion. Al;hough investigations of TDHF's
theoretical content daté from the last decade,z’3 cufrent interest in the
method is dué largely to the realization that it might adequately describe
heavy~i§n reactions and fission;4'8 The first application of TDHF to
reaction.phenomena was made by Bonche, Koonin and Negele,g who numerically
studied the éne—dimensional collisions of slabs of.nuclear matter. This

work was followed by the studies of Cusson and Maruhn for 12C;+12C,10 and

by those of Koonin11 and Koonin et al.l2 for 16O+160 and 40Ca+4OCa.
These calculations were two-dimensional in the sense of treating axially-
symmetric three-dimensional systems. In the latter papef some effects of
finite impact parameters were accounted for by a phenomenoldgical rotating
frame approximation. The axially-symmetric work has been extended to
. 14 12 | . 13

the mass-asymmetric system ~ N + ~C by Maruhn-Rezwani, et al. :
Some truly fwo—dimensional calculations of the collisions of rods of nuclear
matter which allow for axial asymmetries have been performed by Bonche et al.14
Fully three-dimensional calculations were first reported by Maruhn and

15 . s 16, 16 . o
Cusson, ™ who studied some collisions of "~ 0+ 0 using a zero-range
effective interaction, and then included the Coulomb force in a more

14 12

extensive series of calculations which treated the “'N+ ~“C system as well.16

Detailed reviews of much of this activity have been given by Kerman17 and
Bonche.18
In this work we present a technique for solving the TDHF equations

in three dimensions (3-D) and demonstrate its application by an extensive
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ustddy ofuthe 160 16O system at E1 b = 105 Mev. Out‘study is complementary
to that of Bonche et al.l9 who have explored many energies at a 11m1ted |

'nomber of impact parameters in order to determine ‘the fusion excitation |
function. We feel 1t is 1mportant to do these calculatlons in SVD so as

~to e11m1nate the necessity of assumptions other than the TDHF approx1mat10n.

Our calculations have been motlvated by severalvcon51derations._ At |
the most practical level, the non-linear nature'of the TDHF eqnations makee
analytic study impossibie and numeri cal calculationé.eSsential.. Our‘under-
standing is stilliat'the:stage of asking questions about what the TDHF
equations "do." " The calculdtions presented here3impose a,minimum of
constraints on.the‘symmetry of the TDHF determinant and so beginvto give:

- answers to these questions which are free from the uncertainties_due-tol
simplified geometries. They are also stringent tests of the validity of
the simpler two-dimensional calculations. iAtcthe phenomenologicalvievel,
TDHF has the appeal of naturally extendingvtheishell model to dynamical
prohlems. As a result, phenomenological‘modeisAot heavy-ion teactions

" such aé'the liquid drop.modelz0 and ‘the one- -body v1sc051ty 21 can he'related
to the 1ndependent particlé picture realized 1n the Hartree Fock (HF) and
TDHF approaches; There are also natural analogies‘between TDHF and a

fluid dynamical picture.zlz’z-3 Our results‘heip‘to‘understand these connections.

,Flnally, at a fundamental level, many aspects of TDHF remain unclear Some

results have been obtained in connectlon with the translational 1nvar1ance,

rotational invariance 3 ‘and continuity equa‘tionss’24

of the theory and
both the small amplitude (RPA) and ad1abat1c4-7 limits have been related'
to ordinary quantum mechanics. However the 1nterpretat10n of the results

of the general theory remains vague and has been'limitedvalmost exclusively

to the most naive classical picture. In particular, a precise understanding
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of the relatioﬁship between the TDHF initial conditions and -the Schroediﬁger
wave-packet used in ordinary fime—dependent collision theories25 is still
missing. ‘QUantai and'ciassical aspects are intertwined in a way such thaf
it is‘difficult to determine the prédictive powers of the theory. However;
our incomplete EOmpréhension dqés hot méan tﬁat-contact with experiment:
is not pqssible, but only that we do not know hoﬁ to fullyvextractvthe
information contained iﬁ our results.

The remainder of the paper is organized.as fpliows: In Section II
we review the basic TDHF equations and présént the effective interaction
wevhaye uéed. The symmetries imposed.on theJTDHF detérminant for computa-
tional are treated in Chapter III; Sectioﬁ iV bresentsvthe starting
conditions and Section V‘Eontaihs our results. Section VI is a discﬁssion'
of the results, and Section VII is our conclusion.  The technical details
of our calcﬁlations are coﬁtained in the.Appendiées.  Appéndix A is concerned
with the numerical discretization éf the‘TDHF énergy functional and its
beffect on the translatioﬁal invariance propérties Qf the finite difference
equations. In Appendix E, we discuss severaiJmethodékfor evolving;théf
three-dimensional TDHF équatiohs with a finite’time-step. Finally,
Appehdix C contains a discussioﬁ of a method fbr sleing the discrete
Poisson and Helmholtz equations which is necessary fdr obtaining the one;

body Coulomb and Yukawa potentials.



 II. THE TDHF EQUATIONS

A detéiled diséﬁsgion of the'TDHF theory can be fbﬁnd in‘ﬁaﬁy'papérs.‘
Forucqmbietenesé, we will only outfine thé dgrivatidnlbf fhe equatiohs here.

fn the TDHF appfoximatibn, thé many—body wavefuhction of an‘A-npcieoh'
system- is constrained at all time to be a singie’SIater determinant, y.
The equations covering the evolutioﬁ.of the associated or thernormal
single-particle (s.p.) wa&efunctioné, {wj, j=1,;.;?A} caﬁ be derived froﬁfé
‘variational principle which makes thé’"action”»"‘ |

t .
¢ - f e v | i o - H¥e) W
t, o , _
stationéfy with'resPect'tovthe Qariation-of thése wavéfunctioﬁs. ? Heré;
A is the many—Body Hamiltohian operator, which in practice.is taken.to be
the kineti;'energy and ‘a two-body effective ihteraction. The vafiation-of._
Eq. (lj then leads to the coupled TDHF équations

Y. ' . R o ’
J . s ‘ e
-g't— - h(t)wj > , J ‘— 1: v ’A_ . (2)

ih
where h is. the time—dependent hermitian one-body HF Hamiltonian. A non-
linear coupling among the equafions (2) arises from the functional dependence.
of h upon the'{wj}. As a consequence,.the superposition principle,does
not hold for the TDHF equations. Two important properties of the TDHF

equations are the conservation of the total energy
E = (¥ [d]vy . - IR € I

which follows directly from the variational formulation.of the theory, and

~the time-independence of the inner products of thé'{wj} among themselves.
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The most general expressions for E and h in terms of H can be
found in references 3-6. We shall henceforth consider only the'effective
interaction used in our work and follow ref. 12 in writing the total

energy as é functional of the nuclear density
A : — : '
> T B
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The first term in the brackets is the kinetic energy, while the follOWing‘
two terms are the expectation value of the zero-range density-dependent

two-body effective interaction

S(x .2 _t3 ntT, > > A 7
ty 8(r,-T,) + 5 ol—5=) sGF -%) . Sm
The last two terms in Eq. (7) are the ekpectation values of a Yukawa inter-
action and the direct Coulomb interaction (pp is the proton density defined
similarly to Eq. (4)).

The functional variation of the energy E, as depicted in Eq. (6),

with respect to the {w§} leads directly to the TDHF one-body Hamiltonian
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T TP T 1e R T Yy T e -
'Héte, the Yukawa potential is
->->‘ ; : : .
- -lr-r']/a L L S :
> > e T 7 > Co C :
WY(I') = vofdr‘ —":"__';-—D(I") Coe - o (8b) _'
o . . lr-1t)/a U R T
and the Coulomb pdtential (which is-effectivé oniy for pro;ons):is |
- _ 2 l—> 1 -, ‘ _‘ I 7
W () = -efdr' ST eE NGO

Equationé (2) and (8) are the TDHFFequations;we solve by means of the
codrdinate—space methods outlined in the appendices. The parameters tg,

t

3 V0 and-aﬁ used in the present paper are those of Ref. 12 and are given

. below in Table 1.

»TABLE 1. Values of the cbéffigients of the
" Skyrme and the Yukawa“interaction.

t, Mev fm® t, MeV fm® SV, Mev a  fm

-497.66 . 17288 | -363.044 - 0.4598




IIT. SYMMETRIES

Tﬁe historyfof numerical TDHF'calculatioh§ has been One.of the
gradual relaxation of symmetry constraintS'impbsed on the determinantal
wavefunction. Such symmetries have been usefﬁl in reducing the magnitude
df the numerical effort involved and have therefore allowed basic investi-
gations of the TDHF equationé. Howevef, it nqw seems probable that a full ~
ﬁest'of the possibilitiesbbf the TDHF theory in realistic situations w111 
require the breaking of as many symmetries as is'poésible. ﬁnfortUnately,
while we would like to relax as many ”built-inﬁ éonstraints as.we cén,,
practical reasons'have forced us to retain the four Symmetries we discuss-
below. | |

In solving the TDHF equétions we have éssﬁmed'a perfect spin:
isospin degeneracy, éo that each spa;iallorbitai is dccupied by four
nucleons. In this case; the proton densify in Eqs. (6) and (8) is replaéed
by.oﬁé-ha1f of thé nucleon.density and the Coulomb potential (Eq. (8c))
écts'oh all spétial orbitals. This imposed degeneracy makes our calculations
gpplicabie only to 4-N systems.. Since each spatial orbital is tﬁen
effectively occupied by.an o particle, one or fWObnuéleon transfer
are not accurately described in our model and nucleon emission
(which does oécur in TDHF!7) is incorfectly accountéd for. The isOsﬁin
degeneracy; which ié very accuratély conserved iﬁ TDHF calculations of
light syéteﬁs which allow for the neutron-proton degrees of it’reedom‘,l.‘z.’16
can be easily removed with an increase of a factor of two in computing
time and storage. Removal of the spin degeneracy would be.more complicated.
A spin-orbit interaction demands thaf each wavefunction be partially spin;up

and spin-down. Therefore, including the spin degree of freedom would

increase storage and computation by at least a factor 4.
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We.have alsollmposed tmo spatial symmetries on the lDHF'determinant;
lhese are reflect1on symmetry with respect to. the react1on plane (taken to
| h be the Z=0 plane) and po1nt reflection symmetry through the center- of- mass.

{(c.m.) of the total system (taken to. be the or1g1n) These symmetrles,
together reduce our numerical effort by a factor of four. ln.Apbendix A |
we show how practically they'haye been implemented in our ealeulation

| Of the two Spatial.symmetries, the second lS'orobably the morev
restrictive; since it limits the caloulations to Systems.ofrtwo.identical
ions. Homever, it seems unlikely that mass-asymmetric degrees of freedom,
would be signiflCant,in an unconstrained calculation of the light symmetric
systems;We consider here. Despite the four symmetries we have lmposed;
our calculations represent a significant advance over the.preylous two-
dimensional work.lof13 As we shall.seevin Sections V andﬁyl{_theiinclusion'
of»trlaXial degrees-of freedom;leads to substantialvqualitative effects on .
.the TDHF results * although ax1al symmetry abpears to be an adequate approx—
~ imation for nearly head -on collisions. L 0f course, the effects of the
'centrlfugal force due to finite impact parameters are naturally taken
into account in our 3-D calculations and we do not have to make any.

assumptions about the moment of inertia, as is done in Ref. 12.

*In terms of the usual B,y parameterlzatlon of tr1ax1al shapes, 26 the _
“dynamics of the two-dimensional calculations are restricted to the lines.
Y=0 and y = 7/3, while our three-dimensional calculations cover the
entire range 0 < Y S < n/%
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IV. INITIAL CONDITIONS

. The TDHF equetionsv(Z) are first—otder in time, se that tﬁe valuesf
‘of all of.the 51ng1e partlcle wavefunctlons at some t1me t=0 are requlred
as 1n1t1a1 condltlons. Since we solve the equatlons in the overall c.m.
frame, these sﬁould be chosen to represent identical nuclei apprdaching
_one another at a finite impact parameter with equal end epposite telocities ,
; = ihz/m. We have thetefdre constructed the initial state by multiplyihg‘
each of the 51ng1e particle wavefunctions of the static HF solutlon of

> > :
each_nucleus ,by the phase elk.r. In the absence of numerical inaccuracies,
(cf. Appendlx A), this determlnant represents two'160 nuclei which translate
uniformly w1th the required velocities prior to collision. ' Iﬁ.practice,
we start the nuclei along the classical Coulomb trajectory they weuld
" have followed from infinity to the relatively 1arge separation we chooee
at t=0 (~16 fm). Our initial conditions therefere-ﬁeglect the presumably_
small effects of Coulomb-induced deformations prier to t=().- |
.Such an initial.conaition is usually interbreted as a weve—packet

despite the fact that we have only mu1t1p11ed the. statlc Slater determlnant
by the plane wave exp(ikR) where Z r In fact the_wave packet
is already contalned in the static HF solutlon which is not an eigenstate

of the total momentum. If we assume that we can factor out the center-of-

*To find the static HF solutions used in our calculation, we evolve -
equations similar to (2) and (8), beginning with an arbitrary trial
determinant constructed from single-particle orbitals with the required
symmetries. The evolution is done on the discrete spatial mesh described
in Appendix A, using an evolution method similar to those described in
Appendix B with the replacement At + iAt. When the single particle wave-
functions are orthonormalized after every 'time" step there is rapid
convergence to the ground state solution, provided the magnitude of At
is sufficiently small.



- mass motiqnf we may write
wHF(statlc) = :G(R)X o : . ‘ 9)

where G(R) stands for the wavefunction of the c.m. and X :-for the internal

wavefunction. The Fourier transform of G(E) would be th¢ Wave—pécket in
momentum space. The only result achieved by the multiplication by e?kRuis

a shift of the center of momentum of this wave-packet by the vector k

without any change in its shapé. The translatihg TDHF wavefunction

' A | 2. 2. :

.t “hk ‘

S Y (e -))
*‘(j (N

GR-VOX  (10)

'WOuld then be

QTDHF(traﬁslating) ~ ¢
t'In Eq. (10), the ei afe‘the static HF single-pérticlg_energiés, .Fgr a'léb_n:
'ﬁucieﬁs.of,oscillator wavefunctions, the kinetic énergy associatedeith
the'é.m. motion is»1/24 of the totél kinetic enérgy. Using this rétio
for the static HF wavefunction we find a épfead in energy of»abéut»lO MeV;_
A'diréct cofre5pondence of the TDHF wave_péckét tb a Schroedinger'waﬁe—
packetYWOuid lead us to conclude that IOIMeV giyes a measure of the ene?gy E
ré§olution of the incident Beams asspciatéd wifﬁ eaéh 169 nucleus.
Therévére,however,se&eral crucial differences between tranélaﬁingja TﬁHF
solufion and‘a Schroedinger wave-packet. vThese>c§me mainly from théiﬁoh;
1inearity of the TDHF equations, which isiitself a consequencé of-the restficted
yériational space (one Slater determinant)‘uséd_in theithedry. .Wé éré not:

free to change arbitrarily the shape ofvthévc;m,_Wave?pécket. The static HF

vahis is certainly a good approximation for an 160 nuclei. - Indeed, the
HF single-particle orbitals of light nuclei are very close to-oscillator
wave functions, for which the factorization is exact.
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equations give at the same time the wavefunctions for the internal degrees
of freedom and for the center of mass. In contrast to.the-Schroedingef
picture, all the degrees.of freedom are coupled by the minimizetion

process in the space of the Slater determinants;* The same coupling is
responsible for the fact that the TDHF wave-packet aoes not spread 20
function of time,+ as does the Schroedinger wave-packet.. In féct, formula
(10) is identical‘to the formula (15) of Ref.eZS describihg a Schreedinger
wave-packet in the_limit where spreading is neglected. In the same reference
one finds an expression (formula 19) for a queetifyuea which should stay

small for the spreading of the wave-packet to be negligible;

Here At is the total time, during which the Wave;pécket_is fbllowed; w the
spatial width of the:function G(E), and hj the total mass of the.system;\
vawe use At = 10'21 s, which corresfonds in our ealeulations fo a ﬁypical
full colliéionltime; then e=0.5 (we take w=¥2_Fm).-_ThiS numbef.is certainly
not negligible, but may be sufficiently smell'toaallow correepondence>.

' Abetween the.TDHF solutien and a Schroedingef ane-packet. If we were to
adopt this viewpeint, fhen qﬁantitative comperison'betweeh our results aﬁd

e normal Schroedihger equation would reqeireean undefStanding of the
evolution of a Schroedinger wave-packef with 10 Mév spread dqring a-eollision

over times of the order of 10 -2l s.

*One could imagine changing the shape of the HF wave-pagket by solving
the static equations with an external constraint like P2 where P is ‘the
total momentum. However, this would induce a change in the internal
wave-function X. '

Ji.Excep’c for the trivial case A=1, where the HF and Schroedlnger wave-
packet are identical. :



&
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~"An élternative poéition.one may take is_that we are feally_dﬂly"
"'interested.in foilowing the wave-packet for 2 % 10;22 seé, the time'for'our,
nuclei to move from their initial position to contact. Theﬁ'e==0.1.and
one does not haVé to worry about spreading.

| In the foliowing we shall méinly intefpret our TDHF.resglts from a
classical poiﬁt of view. Thisvis consistent Qith the fact that‘a non_
spreading wave—paékef is the characterisfic of'a.classicalvbarticle as can

be seen from the linear dependence of the spreading parameter e on h.

(formula 11).
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V. RESULTS

Our numerical methods provide, atveaCh‘time step, the sef of s.p.
wave-functions wj(?,t), or equivalently,the'one-bbdy den;ity matrix. -
Eecause this represénts'far more information than can be comprehended
easily, we have elected to display soﬁe of the physically relevant quantities
derivable from thése wave—fﬁnétions.

In Figs.-lfS we show the nucleon'density:p at various times for
collisions with impact parameters corresponding to L=40h, L=13h, and
L=5h. The figures show contour plots of the den§ity integrated along the
direction perpendicularbto the reaction plane. |

For the largest value of the angular momentum (i.=40ﬁ) the‘nuclei
- appear to pass each other withoﬁt excitation. A cbmparison with the Ciaséical
Coulomb trajectory shows that indeed no nucleér intéraction takes placé and
that Coulomb excitation is ﬁegligible. Within the precision of our.calcu;
1atidn, L =40h correspoﬁds to the,minimﬁm angulaf ﬁéﬁéntum for pufe Cbﬁlomb-
scattering. | .

For a-smgllér value of the angularvmomentum'(L; 13h), the collision
leads‘td fusion. The two nucleiffemain in céntactifor a timellonger than
3x 10_21‘sec; the time at which we stopped this’calgulation. Some shapes
exhibit strong non-akial deformations. In fact, thé_analysis of the
quadruﬁole moment tensor shows that the ¥y asymmetfy angle'sometihes reaches
vaiues higher fhan 20° (fof L = 154, Y has temporarily exceeded 30°).. |

At an efen smaller impact parameter_(L==5h)5 fusion no longer occurs B

and two fragments emerge directly after the collision.% One must remember

*The density at the origin does not go back to exactly zero after the
separation of the main fragments. It stays within 10-3 to 10-2 of the
density in the center of the outgoing fragments (to be compared to the
value 10-7 before the collision). We cannot determine whether this is
due to some small probability fusion process or to numerical inaccuracies.
"In the same analagous way, when a fusion takes place (as with L=13h),
the density at the edges of the box gradually rises to a 10-° to 10~“ ratio
to the density at the origin, as if some matter was being radiated out of
the fused system.
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that these fragments do not correspond to on1y1160'nuc1ei.siﬁce some
transfer has occurred during the reaction.lz- In addition, é large amount .
of the initial kinetic energy (~80%) has been trénsferred to interngl
degfees of freedom, as can be seen in the large octupole oscillations

of the fragments after the collision.

A more physical description of the collision procéSsbcanbbe obtained by
plotting the trajectories of the c.m. of each fragment for different L.
However, the reduction of such a complex dynamical system to a single
Foordinaté éanlléad to some unusual effects; as we discuss below.
in addition, there is no unique way to define a fragment and this notiop
even loses meaning for complete fusion configurations. in this paper we -
have adopted the following definition. After having determined the
principal axes of the inertia tensor of the mass Aensity,'we definé a
fragment as the matter located on one side of the inertial axis associated
with the largest eigenvalue and then take its center of mass .~

In Fig. 4 we have plotted the trajectories of the vectorﬁﬁ joining
the c.m.'s of the fragments for several values of the angular
momentum.

The trajectories can be divided into three grdupé. Large.values of
L (L > 27h) do not lead to fusion. As mentioned before, L = 40h yields
pure Coulomb scattering. The rainbdw angular momentum is found around

35h, and between L=30h and L=27h the deflection angle'becomes negative

*Another possible prescription consists in diagonalizing the mass quadru—
pole tensor and choose the orientation of the c.m.'s axis as those
associated with the largest moment Q (Q>0). The distance R between

the c.m.'s of the two 160 is then defined as R = (Q/A)2, where A =16

in our case. For the results presented here, this definition and the

one used above lead essentially to the same trajectories. The difference
in the angle never exceeds 2° and the difference in distances R is never
larger than 0.3 fm. A significant difference would only occur foér very
compact mass distributions. '
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as the nuclear attraction overcomes the Coulomb repulsion.

The second group of trajectories leads to fusion (13h < L < 27h) .
Different examples of these are shown separately in Fig. 5. They are
qualitatively very different. For the large values of L (L=274 and 25h)
tﬁe dbmingnt factors are the nuclear attraction combined with dissipation.
These lead to a smooth orbiting trajectory. For lower impact parameters
(L=13h énd 20h) the trajectory is more complex. After an initial
attraction the two nuclei reach a configuration where the collective
potential leads to a repulsion.. As the nuclei begin to mpvevapart under
the influence of this repulsion, they are unable to separate because o%
the laige amount of energy'that has been dissipated.

The third group of trajectories (L < 13h) does ﬁot lead to fusioﬁ..
We therefore do not find the expected result that fusion, if it occurs, does
so at zero impact parameter. The existence of a low L-window for which
fusion does not occur is energy-dependent. Indeed, we show in.Fig. 6 an

example of a trajectory at.much lower energy (E = 32 MeV) for which a

lab
héad—oh collision does lead to fusion. This had already been noted in
Ref. 12 for the 40Ca +4OCa system. |

In Fig. 7 we display a collision at E .= 192 MeV and a large
impactvparameter, 6 fm (L = 42h).->This‘figure complements Fig. 2 which
showed a fusion process for a small value of the impact.parameter. Non-axial
effects are vefy important. A comparison of the shapes at t = 7><1O-22 s and
15x10—22_s shows two extreme stages of a wiggling mode. Note how. the Shdpel
becomes more compaét (i,e._more fhsed) during the collision. iA more
~detailed study ‘of the'fusion{?égimg may be found in Ref. 19.
In Fig. 8 we givgrfﬁe aefleCtioﬁ'anglg and'tﬁe total kinetic eﬁergy

loss (in the c.m. frame) as a'functiQn of the angular momentum. For small

P
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impact‘pafameters (L<;13h) the kinetic ehergy loss is constant ét abQut 35
MeV to be éomparedvto the 52.5 MeV available initially in the centef—of-ﬁass
ffame; Because of the total é.m.'mption'these trajectoriegbwould result in
the fragments mbving forward in the laboratory frame. Accordingvfé ouf_
éalculatiohs, one would expect heavy fragments moving with_kineti; energy
_ rahging between 5 and 65 MeV in a forward cone'éf aboﬁt 35%, (Recall
~ that fhe beam energy is 105 MeV.) Since thé‘fragments are stfongly
~excited the mass distribution would certainly nof be cehtéfed around
A=16 due to_de+excitation via nucleon oi.alpha particle emission.
When the fragmenfs emerge, they have néarly the same angular momenfum
with which they enfer. This is in spite of the fact that at timeé dufing '
the collision the total angular momentum-is almost entireiy absérbéd'by
the internal.aﬁgular.momentum.of the fragments.‘ -

'Tﬁére is ‘a difference between our results and those ovaef.-16,
since we do get fuéion. Because the energy used for.the 160+160 .
collisions in Ref. 16 is slightly higher than fhe one we use (8 instead |
of 6.6 MeV per nucleon in-the lab) we haye made”one calculation with the
energy of Ref. 16 and with an angular mqméntum L = 30h. vConsistent with
our previous results we find fusion. The trajectory was foilowed'up to
‘a deflecfion of -3m/2 without any indication of separation, in cohtfasf
to the finite deflection:angle, -7/3 found-ih'Ref. 16 (Fig.'7)m The
difference couldvcome,from our inélusion of a»Yukawa interactionvnét
present in their calculation. Our intéfacfion provides a bettef‘reprof
ductidn_of the surface of the nuclei, a feature which iéicertainly needed .
to deséribe éorrectly the heavy-ion collisions; However, the appérent |
sensitivity to the interaction indicated by their results lead us to

hope that TDHF calculations combined with appfopriate’experiments will
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. : ' L .1
lead to increasing our knowledge of the effective interaction.

VI. DISCUSSION -

The most strikiﬁg feature of our results is the absence of fusipn
for small values of thé incident angular momentum. We find that for any
angular momentum from 13 to 27h the nuclei\ffuse" in the sense thét they
remain either in ¢lose contact for timesllarger than'SXIO_zl sec or thaf
the deflection angle exceeds -180°. If wé interpret this range of
impact parameters classically we obtain a fusion cross section of ébout
0.8 barns. | .

All trajectories with L<20h exhibit a loop at the point of closest
approach, as can be seen in Figs. 4 and 5. At this pbint, the relative
orbital angular momentum df the fragments has become negétive, changing
sign from its value at t=0. This phenomena haé its Qrigin_in the single-
particlé degrees of freedom treated expiicitly in a TDHF calculation.
Similar behavior, which is due to the motioﬁ of the single—particlebﬁ
wavefunctions in the time-dependent mean field,.has beeﬁvobserved in
both one-9 and two—dimensional12 calculations; we shall sketch the same
reasoning here to ¢xp1ain our three—dimensipﬁal results. When the‘th
nuclei begin to interact, thé barrier between their separate mean fiéld
potentials disappears and all wavefuncfions begin to move in one large »
common well. The velocities of the orbitals from one nucleus -as ﬁhey v
traverse the other-nucléus differ according to their internal kinetic

energy. Thus, in the 160+16O system, some lp orbitals move faster and
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reflect f1rst from the opposite wall of. the potentlal Their resulting
».backward motlon ‘cancels the st111 forward motlon of the remalnder of the
orbitals. As a reSult,_the net orbital angular veloc1ty of the fragment
c.m.'s can become hegative. This example of the exchange-of anguiar
momentum betmeen single-particle.and collective degreeseof freedom is
the essence of the one-body dissipation process. However,hin.this
relatively small system, the non-statistical.dynamics of a few orhitals.
soon restores much of the angular momentum to the o.m.;motion. In fact,.
there is hardly any angular momentum loss in the low impect-perameter
events. In heavier‘systems, the greater diversity of'Single—particle
motionsvwiil affect theocollective variables in a much smoother manner,
so that the notion of a macroscopic dissipatidh:COefficient will become
_epplicable.lg_ One can also note that‘the'sighificant differences,between .
the different fusion trajectories 13h‘< L <.27hA(Fig. 5) would be,diffiéuit
to reproduce by a model taking only into accouht thezmotion of the Cim.'s.
We have shown that it is unlikely'that one could explaih allvour
results by a potemtial and a viscosity coefficient. However, this‘is‘_
- possible within a limited range of anguiar momenta. | We_demonstrete
this for the.low values of the angular momehtom.whichvlead to inelastic
scattering.
For values of L between 0 and 20h the polnt of closest approach
corresponds to an almost constant value of the dlstance between the c. m 's:
4.1 fm. (see Fig. 4). Thls gives us the locatlon RB, of the 1nterna1.

v;'repulsive part of the heavyelph nuclear potentlel (Fig. 9) .- ThlS 1nterna1

*Effective mass effects are neglected as it can generally be done in a -
one-dimensional problem by a proper re- definition of the potentlal
The mass is therefore the reduced mass W = 8m.
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barrier is of dynamical origin, and probably comes from the inability

of the fragments to significantly change their shell structure during

the collision. Static constrained HF caiculations performed for the'

same system,27 which can.bé thought of a§ describing the potential for an
infinitely slow collision, do not give a pdtential Qitﬁ an intexnal barrier.
There, the system of 32 nucleons adjusts itsélf to the best possibié |
shell_structure for a given separation of the c.m.'s. Fdr small
'separations, the ;ZS configuratibn is enefgefically the most stable.
Figurerlo shows the behévibr of the s.p. enérgies:as a function of time for
aa négrly head-oﬁ ch1i$ion (L = 0.5h, Eléb =;lb$'MeV). 'Initiélly: this'
s.p.:spectrum exhibits thé degeneracy charaétéristic of tw6.160 nucleiﬁ
The_degéﬁerécy is lifted during the collision, although thevshell structure
~is remarkably wellvpreservedvaﬁd_the:spectrumihevgf comes_éldse to tHat of
328.- Since thé_distance of closest approach, RB’ is almost iﬁdependent of
.the:éngular momentum, the pofentiél at that‘pointrmust»be very steep.
Indeéd; although the classical centrifugal eﬁergy;thz/ZuR; changes by
about. 60 MeV for L varying between 0 énd ZOh, its effectAdﬁ RB is‘very

: Small; This stiffness of the potential ié‘édnfirmed by théAfact that RB is
| = 32 MeV).

independent of the incident énergy, as can be seen in Fig. 6 (Elab

To pursue the analysis, the velocities'of‘the.c.m.'s must be considered.
We do this in Fig. 11, which again cofresponds to fhe L=0.5h, Eiab:z
105 MeV collision. The energy EC in the upper part of the figure is

*We defined the s.p; energies as the diagonal'élements of the matrix
eij(t) =f dr'wi(t)ﬂ‘wj. It is not an unambiguous definition since the

the wi's,are defined up to 'a unitary transformation. Another possibility
would be to choose as s.p. energies the eigenvalues of the {¢:} matrix.
This choice would probably not change the qualitative aspect o% our
argument.

TRecall that our calculation does not include a spin-orbit force.
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is the point Coulomb energy ZzeZ/R. We have also’plotted‘the‘quantity EM
which is larger than EC by the total kinetic energy of the relative motion

of the c.m.'s. The evolution of E_ can be understood in terms of a motion

M
with dissipation in a collective potential well such as that shown in
Fig. 9. Between the initial time and point A, EM is constant.  The
Ipoint A corresponds to the beginning of the nuclear interaction; neglecting

internal degrees of freedom makes E  the total energy before the nuclear

M
interaction begins. We have, thefefore, an estimate‘of the distance at.
vwhich nuclear effects become important:"Rr ;»st.fm. Between A'and B;.v-
Ey ipcreeses, corresponding to motion in‘the deseending part of the. -
.vpotehtial. However, the increase of EM is less than the depth of_the

_ potential VM because of dissipation effects. For the same reasOﬁ_the
dietance between the c.m.'s atvpoint B is 1arger than RM (Fig. 9).

Between B and C the potential rises, therefefe EM decreases until it

equals the Coulomb energy E _The distance between the c.m.'s at>point

c
C giyes the radius of the interﬁal core RB.' The pointe D and E.are the
analogé of B and A on the ohtgoing pert of the'trajectory. This time;

" because of the dissipation effects, the distance between the c.m.'s at
point D.gives a lower limit for the value of Ry The distance at the.
.1ast-point of interaction E is larger thah:the distanee.at pointAA_
reflecting both fragment elongetion'and an overall increase in the size
~of the fragments after the coliision. Fot exameie? the root mean square

- radius of the fragments increases by about 0.3 fm as a consequence of

*The small decrease of ~1 MeV is due to the numerical inaccuracies
discussed in Appendix A. It is a measure of the precision of our
calculations. '
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of the transfer of energy'févfhe internal degfeéé of fréedom'qf the
fragments. If there were no dissipation, all the curVés shown in Fig. 11
would be symmetric with respéct to the vertical‘liﬁe going through |
point C.. Analyzing the éxtremé of the energy éurve EM(t) and thev‘
distance éurvé R(t) with the above interbfetafion givés é minimum qf

‘the nuclear potential between —14‘ana -24 MeV at a distance befﬁéen 5.5
and 6.5 fm. 'The upper bdﬁhdéry.forithe depth.of pdtential (24'MeV).is

3,

occurs only when

obtained with the assumption that the dissipation of Ey

the two nucléi move toward each other (faster velocities). If one were
to assumevthat,%he same amount o%'éhergy is lost during the iﬁgoing and

outgoing phases of motion, the lower'vélué'(14 MeV) would be obtained.

Lap = 105 MeV is about 35 MeV. Within

The energy 1oss for L=0.5h, E
fhe precision Sf our'caiCUIafion (1 MeV)‘thié_number is constant for L
varying between 0 and liﬁ'(Fig. 8). This inditétes,fha£ for thesé Qalues
of the angular momentum it is not heCessar} tovinfroduce a téngential
friction: Using a simple model, neglecting'poténti31‘éffects in first
'approximatibn and assﬁming a viscoSity propdrtional'fo the ;elatiQe'radial
velocity of the cfm.ls toitake'place for a disténée equal té.zviRIE-ﬁB),
we.find'tﬁat a radial viséosity‘coéffiéient ofIZXIQ_ZZ MeV.ﬁnfzséc '
éxplains our 35 MeV energy Ioés. Within the'same.piuae model this
viscosity leads to a value of 0.9 MeV per nifc1é_c'>ﬁ‘”in'thhé &.in. tEla}') =58
MeV), for the threshold of no fusion at L?=Qﬁ,;in:gdod agfeeﬁenf'with
the results of Ref. 19.. Although we are not in a.positioh td discuss
the energy dependence of the collective poten;ial, we note that this

dépendgnce will arise_napurally,in similar énalysis;of TDH% calculations

at other energies.
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VI CONCLUSION
" The most interesting phenomenon we hgve.ohsefved in oﬁr_calchletien.

is a region of fusion.which yields'a quiohvcross—seetion‘consisteht‘
wifh experiment. 28 This-is in contraet to hrev1ous calculatlons in two
di_niensionsll—13 wh1ch showed no fusion for high- energy colllslons
Thefefore, triaxiality is 1mportant in the dissipative process that
leads to fusion. | | |

It is also importent to note the'laekvef‘fusien fer small_anguiar
momehtﬁm at high bombardihg ehergy. For,these'smail»velues ef the angular
bmomentum we calcuiate the scatteriﬁg angle ehd energy loss of the outgoing
fragments. These predictions are amenable to”experimentai Verifieation.kl
We also fih& that the absence of fueiohxfdr heed-en collisiohs diseppearsh
at sufficiently low bombarding energies.e HeQevef,vour eeichlationS'
cehtain several fechnieal resfrictions (e.g. spin, isospin,_and‘two
spetial symmetries) which mayvaffect the specific numerical Valhes
presented in this paper.

A comparison with other 3-D calculationslé_ihdicates aAdependence

of the results on the effective interaction. This dependence is confirmed

\
i

by the detailed study of the fusion excitation function contained in
Ref.,19. For this reason the TDHF method appears -as a promising tool
for extractlng from the experlmental data on heavy ion scatterlng,

additional knowledge of the nUcleon—nucleon effective interaction:
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APPENDIX A: DISCRETE REPRESENTATION OF THE TDHF EQUATIONS

We solve the TDHF equationsvin coordinate space»using'methodéjsimilar“"
to those of Refé. 9 and 12. In our three—dimensiqnal éalculations, the
single-particle wavefunctiohs are described by/their.valugs)on a uniformly
spaced caftesian me sh contained within a‘;ectangular box. ,Vanishing
boundary conditions are imposed outside of this box. The choices of box
dimensions and mesh-spacing are influenced by two competing considerations.
: dn the one hand, computing speed and storage consideration fafor a small |
box and large mesh spacing to reduce the number of variables des;ribing
the system. On the other hand, the box must be iqrge enoﬁgh to contaih ‘
the TDHF solution without the system "hitting the wa115" and the mesh
.spacing must be small enough to give an accurate représeptafion of tﬁé.
TDHF energy functional. Our method therefore employs‘a relatively largé
mesh spaéing (1 fm in all three directions) yet uséS high-order discret-
izations of the kinetic energy and Yukawa potentiéls; The(box size has
been varied‘accordiﬁg fo the collision being calculatéd. We‘choqsg the
center of the box to thé time—independeht c.m. of the whole System and
orient the reaction plane normal to one edge (z axis). Typicél box
dimensions are 30 fm X 28 fm x 16 fm in the x, y, and z.directions,v
_respectively. The spatial symmefries we imposé on the.geterminanﬁ
(of Section III) restrict the actual numerical work to one-quarter of
the box volume. How thése symmetries are impleﬁented in our ﬁode*is:
described in Fig. 13. As discussed in Appendix C,>the non—cdnseryationv
of energy associated with the boundary-conditions of the Yukawa poténtial

provides a stringent check against spurious_effeéts of the mesh boundaries.
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A discrete representation of the TDHF Hamiltonian can Be obtained
by the variation of a discrete approximation.to theieﬁergy functional
with respect to the values of the single-particle wavefunctions at the
- mesh points. This procedure preserves the variational aspects of the
discrete TDHF equations. It has been discussed in detail for cylindriq51 
coordinate systems in refs. 11 and 12 and can be directly extended to
three cartesian dimensions. We therefore discuss only those new
problems presented by the three-dimensional calculations.

Experience has sthn that the zero-range (to and ts) terms of the
energy functional (Eq. (6)) are accurately discretized dn our lafge_mesh
spacing by a trapezoidal approximation to the integréls (cf. Table IIIj.
.Similarly, an adequate accuracy is easily achieved for the Coulomb energy.

(cf. Appendix C). However, the accuracy of the discrete approximations
to the kinetic energy and short-range YukaWa'potential is very gensitive
.to the mesh spacing and techniques used. We treat the kinetic energy
below aﬂd discuss the Yq$awa potential in Appendix C.

The total kinetic enérgy is the sum of the'kinetic energies for
each of the single-particle wavefunctions in each of the_three spatial
directions. It is therefore sufficient to conSider a single wavefunction
in one dimension. The fundamental quantity we are intereéted in approxi-

mating is then
' xi+Ax

1 8y 2 | R

x. -Ax
i

~
1]

where x; is the coordinate at the ith mesh point, Ax is the mesh spacing,

and Y(x) is the wavefunction. A Taylor expansion of Ti in Ax leads to
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(A.2)
The notation wgn) is used here for the nth derivative of Y at x; .

The lowest order difference approximation to {wgl)lz_results in

. . . s s 29
the three-point approximation to the kinetic energy

2
|

3 _ 1

-1

, |
- ¥l ) (A.3)

(3)

*
The variation of the quantity Ti with respect to wi leads directly to

the three-point approximation for ¢£2) used in Ref. 12;. A simple analysis
of T§3) gives

. ( (2),2 N
1 =y D2 G0 we (407 P+ 2 P 12) 4 o)

1

| - (A
'so that the error term in T§3) is e((Ax)é).
The next order approximation to the kinetic energy is obtainedrby

~using an approximation of the form

) . 1 v 12w e e w 12)
B el (AR A AR KPS, i LR AR SR R
2(Ax) _ ‘ : T ' . ‘ .
_ (A.S)
where the coeffi'cient's'bov+ are chosen* SO'that.Tgs)'approXimatés Ti ;

*Our choice (A.6) is one member of a onergarameter-fémily of c0mp1ex-'
solutions by = 2/V3, by = -1/vV3t% e 0 <a<mw Equation (A.7)
holds for any value of o. '
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through 6((Ax)5):

by = 2 | |
b, o= - Loil
SV S
The variation of T§5). leads to a five-point approkimation to ¢§2).29
The error term is (B(Ax)s).
(5) . (&x) (2)* ,(4) 14, (3) 2
T- T = e RelwgTowy o 2le (A.7)

The use of the fiVe—point approximation fdr the kinetic energy -
6peratqr complicates the time-evolution of‘the'TDHF'equationsL For
_ example; in one dimension the HF Hamiltonian is then-repfeseﬁted by_a
penté-diégbnal matrix, rather than a tri—diagonal oné.' HoWevér, in view'
of the 1 fm mesh spacing we are forced to use, the extra effprt-is justified,
as caﬂ'be_éeen by:a simple example. We have calculated thé kinetic energy _
of thé lowest state in a one-dimensional oscillatorvpotential with v |
oécillator'parameter nw/h = 0.275,fm—2, aAtypiéaI humber for the nucleon
problems. The results of the three- and fivé-point formulae with vari§us 
mesh sizeé are shown in Table II. Thé Superidrity of the five-point.
method is eyident. In fact, with a mesh spacing of 1 fm, this method is
more accurate than the three-point method With Ax = 0.5 fm. |

The translational invariance of the TDHF equations is also éffected
by»éur discretization procedure. We aﬁply the‘gaﬁge transformation |

> :

eik'r to the orbitals of the static HF solufibn_in order to generate the

- - - . 3 . . - v - + + ) .
initial state of a nucleus moving with velocity v = hk/m. Because we use

a Gallilean-invariant two-body interaction, the HF potential is unaffected



by this boost .and the single—partiéle kinetic energy of each orbital

o o, :
increases by the translational kinetic energy E. = %mv . - Although these

T
properties are true for the TDHF équations, ihey need not Holdvfér their
diSérete approximations. In ordér to test this aspect‘éfldgr discrefi- |
zation, we have applied various boosts io the'groundfétate éécillgtorv‘
wavefunction used to construct Table II; Oﬁrvresﬁlfs are shbWﬁ in Fig.

..‘13 whefevwe display thé.fractional‘differeﬁce.between,the caléhlated -
vkinétic energies of the boosted and stationéry'stéteé. For the calculations
presented in this paper (ET < 2 MeV); the.general level Qf'accuracy should
Be_l,to 2% an& for ET < 25 MeV, thevfive—pdintbformyla'with Ax =1 fm.is
more'accurate than the three-point formuiavwitthx = 0.5 fm. Howefer;

some caution is necessary in applying thes¢ resu1ts to our aptu31 ..'.
caiculations. Figure 13 refers to the loweét étate of ‘an oscillator well. .
However, our nuclei alsb contain p-shell orbitals. The'differéncévr
‘formulae are less accurate for thegé higher lying sfates, S0 thatifor 160,
the translational kinétic energy of the bodsted nucigus'is.in efror by as '
much as 5%. The different errors invfhe'different wavéfunctions also

lead in a different way to the breaking 6f translational invariance for

the discrete equation. Because of differencing errors, the transformation
> > . .

iker . . . . L o ' .

e sets each orbital in motion with a slightly different velocity.

Since the HF mean field binds all orbitals togéthér; some energy is

gradually transferred from translation into internal excitation.

1 . . o ‘. o .',
In 160-P 60, this phenomenon leads to at most a 7% loss in translational

kinetic energy in our calculation over a time of 1.5 X10-21'set.
We close this appendix with an overall assessment of the accuracy

- of our discretization of the energy'funttiOnal, We consider two 16—0
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nuclei builtvfrom oscillétor wavefunctions (mw/h = 0.275 fm_z) and
positioned 16 fm aparf.. They are boosted.toﬁard eéch;other with a
translational kinetic enérgy per nucleon of;ET = i.74 MeV. In Table II
we show the”caléulated tAx ='Ay = Az = 1 fm, five-poinf fofmula) and
analytic contributions to the energy functional. The Coulomb and Yukawa
_energies have béen'calcuiated as déscfibed in Appendix C; the overall
accuracy is quite acceptable, with the mospvserious discrepancy bgiﬁg

some 3 MeV out of 460 MeV in the kinetic energy.

TABLE III. Contributions to the total energy of two 1%
nuclei, as described in the text (values in MeV).

value

Kinetic Contribgtign Contribu&iog-of Yukawa Coulomb
‘energy of tOG(rl-rz) t,/6 pé(r,-r,) energy energy
Discrete ‘ S ' S
energy 457.560 -423.785 1230.088 -458.594  36.752
functional ' ‘ R ’
Analytic — 460.504  -423.784 230,100 ~  -458.393  36.489




TABLE - II. ~The kinetic energy of the ground-state of a
. one-dimensional oscillator potential (mw/h =

0.275 fm-2) calculated with the three- and
five-point formulae. Ax is the mesh spacing. -

Kinetic . - _ .
_energy : . 3-point o 5-point

Ax (MevV) . formula : .. formula

(fm)
Analytic value | 2.8512f  - |
| 0.5 2.8269 - : ~ 2.8507
0.75 | - -2.7968 | o o 2mass
1.0 | 2:.”_7554 o - ,' -  2,84$0 .
| v;.z's," ,_ '2.7034 | S I vzv’.ssv':z__o‘,




APPENDIX B: SOLUTION OF THE TDHF EQUATIONS WITH A FINITE TIME STEP

1. Conservation of the Total Energy

Although the discussion contained in this'paragraph.is vélid fOr"
any two-body interaction, we diséuss here only th¢ casé‘of a ierb—range
interaétion.which depends linearly on‘the density. We thérefore deal

'only with the density and the kinetic energy’density (fo?mulae 4, Sj.
However, it is sfraightforward to show that 6ur_arguments can be extended_
fo the.full one-bodyidensity operator, i.é.,.to aﬁy two-bédy intéraction.:
We shall also.neglectlfhe_spin and isospin degfees'of freedoﬁ whi;h.are
irrelevant to thé argument.

If {w(n)} (1< j <A) is a set of single- partlcle wavefunétlons at

time step n, the HF energy at that time step for a two- body 1nteract10n v2

-> > =
r. +71,.

. 3 1 2 >
2 t, 6(r 2) t < p<—2——> 8(r, -;2)-

<
IH

is - _v ' - o .
g™ - /dr( (“)(r) 2 (“)( ) (“)( ) ) B.1)
where o™ (& (n) > . . .

Te O (r) and Tt (r) are, respectively, the density and kinetic energy
density at time-step n. |

(n+1 . - . . ' - ' N
If {wj )} is the set of single-particle wave-functions at time-step

(n+1), we define the quantity Sp as

o= oo™ BT Iw(“)l EECEN
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In the same way we have

Y

Some algebraic manipulations then show that -

2 2 S
plmt ) oy 6p(p(nf1)" o™y @

. o oy 2y
p(n+1)3' - p(n) * 50( (n+1) v pMptrD) () ) (B.5)
: These equatlons are exact and do not represent a truncated expan51on of

(n ) and p (n+ 1) . With Eqs. (B.4 and B.5) the energy at time n+l,

E(n 1) can therefore be written as

S E(n J{ @u¢)* p () wﬁwl) Q) hﬁw/);fmv
(B.6)
‘_where_the Hamiltonianr h(n+1) is,defiﬁec as :
:hﬁ&}) _ %;A4-§to<p(m-kﬁhfn>-*f%t3< Uﬂ (n)(nﬂ) 0w1)>

In order to.conserve the . energy exactly, the Uﬂn )'s must be constructed

sc as to cancel the second term of the right-hand side of (B.6). Then

choosing

C o (n¥l) (n) - | . L '
= | (B.7)
' where U is any unltary operator which commutes wh1ch h(n ) will-lead to -

an exact'cancellatlon_of (E(n+1)t- (h)). Since we want, in addition:to use,

a numerical scheme approximating the continuous TDHF equations

(E;S)tf
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we can use the unitary operator
_ _ . At (ne) ' .
UE = exp <-1 _f—l_ h < > 3 ) (B. 10)

or any unitary approximation to the exponential, such as the Crank-
Nicholson (CN) operator: -

iAt h(n+%)

SR R~ 11 o |
Uoy = 2h e oD
N I -

7] :

For the calculations presented in this paper we have'eXpanded»the exponential

operator Up in a power series through 6(At5);' Indéed, as the discrétized

h (n+k)

opérétor amounts to a 3000 x 3000 dense matrix for a typical mesh

size, it would be difficult to use the exact exponential operatof.' In

fact with a time step of 4x 10724

s, five terms in the exponential suffice
to conserve the wavefunction norm to one part in 10§ and the total energy .
of the system to better than 0.5% (~1 MeV) over periods longer than

1.5x 102! s, a‘typicai collision time.

The relation betWeen h(n+%), and-the‘Hamiitbﬁians h(n)_and h(n+1)
defined by |
M L b, 3 |
h*™ = - EE'A * 7P *'ig tsp (B.12)
is |

L) %(h(n) , h(h+1)> '%<p(’_’;’i) - o(n))z’ 513
ﬁ(nf%) R w§n+1)}

Thus the construction of Tequires the knowledge of the {

which are not known ahead of time. In practice we use the following

, and h(n—Z)

%)

procedure. From the Hamiltonians

h(n),_h(n_1) , We construct

with Lagrange extrapolation a first guess of h(n+ We then compute a
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. a flrst estlmate of {w(n 1)} ‘with UE We can then obtain h(n ) a

better approx1mat1on of h( ) u51ng the formulae (B. 12) and (B 13).

E’

~iterations of this procedure combined w1th an exact handl1ng of- the

Flnally we compute the w(n )'s w1th U It can be shown that further 2

operators UE‘or UCN would lead to a convergence toward the exact solution

+1
h(n 4), and therefore an exact conservat1on of the energy The method

used in this paper has therefore the advantage of being ea51ly controlled

for any value of the tlme_step by 1ncreaslng e1ther the number of terms -

in the expansion of U, or the number of iterations in the calculation of

+4 . : S o .
h(n 2). In practice we found that to reach a precision of 1 MeV in the

conservation of the energy, one iteration.in the calculation. of h(n z)

sufficed (At = 4X10—24-s). In addition, the precisionurequired (i.e.,i
the number of terms in the expan51on of U ¥ to obtain the first estlmate
of {w(n 1)} is less than the prec151on needed for the final set- of w(n 1)

In practice, the first two terms in the exponentlal operator are suff1c1ent.

I1. Comparison with the Exact Solution .

We will restrict our discussion to the case of the exponentialrb
operator U (formula (B.10)) and mention’at the end of this appendix the

.results obta1ned with the CN method and two. approx1mat10ns of the CN method:'

the alternate direction (AD) and the local one dlmen51ona1 method (LOD). 30
W1th the exponent1al operator the wavefunctlons at time At {w(l)}
are obtalned from the wavefunctions at t1me zero {w( )} as
RN R )Y 4 T e
. = exp|- —-At h i : g : B.14
Vs - exe (- g l‘PJ’ | ( ‘)_
)

where the operator h( is constructed according to formula (B 13)
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It wili make the discussion shorter to restrict ourselves'to ‘the

case where only two body.lnteractlons are ‘included in the Hamlltonlan

fi. The reader may convince himself that “the results presented hereafter
remain true when the zero-range den51ty-dependent 1nteract10n is also
present. For a Hamiltonian with only two-body interactions the operator

h(%) may be written as
% 1 0 . .(1y ., -
.h( ) . E-(h( ) + h(:))_ . N (BfIS)

. For our purposes, it is convenlent to empha51ze the functional dependence

of the HF Hamlltonlan h(o) and h( ) on the wave functions w and their

.’.
:'conjugate wj by writing

RORS h'-({q,(jo),w_(jo)*}) M

m

(1) (1%

h({w(j),w,(j) }). (8. 16)
1< j <A

In order to determlne the prec151on of the exponent1a1 scheme, we shall

study the der1vat1ves

anw('l)
T (B.17) ~
- 9(At) .
R AM=0
and,compare then with_the derivatives‘of the exact solution wj(t)_
X o | | -
(J . . : : (B.18)

Ll PAre

+ ’ '
In this paper the functional: dependence cories only through ‘the density
p (fo gnula (4)) but with other interactions, such as the full Skyrme
force® the kinetic energy and the current would also appear in the

‘expression of h.



of tﬁé TDHF equations  '
Efi. i; - i{hw.
ot h ) v -
. - (B.19)

The expression for the first three derivatives of the exact- solution at

't=0 are
7 o » L |
il . i (0,0 o . T
.'é?lt=o R AR e S
il . (_ig0)?,(0) i 3h (0) .
e o ( A ) ViTow T Yy -(‘?)‘. ‘(‘B.ZQ)_
93y, . . 3 - L 2'__'¢ (b).‘ | "(Oj. S
j _ i (0) 0 (i (0) 3h ~_ 3h (0)> (0)
5t? le=0 - ('hh ) l"j‘ *.(‘,ﬁ) <h- 5t + 2 —r—h wj
1 éfbfglthOJ ' :L . |  .‘.v] (c)
4 3t2 j v S : o

in the equations Ulzo;a-c),the'expression ah(O)/Qt should be undefstood

as the one-body operator

A _ S .

n? (e a M) g

ot - op. ot - - ¥ ot __(' o
=1 L M0 |

From the definition (B.14)band using (B.15), we have
. (1). o B |
oY, . . .
Wy ‘ _ 1 p@y000 E"’_J, (B.22)
Mol TR T B,
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énd
2. (1) ' o ' . -
3%y . ,
2 - (@)@ ok D0 gy
38 | 1eoo 0 j "R bt |y, Vi :

From relation (B.15) one has

3 oy (1) oy (D
oh (%) 1 Bh(l)I ) 1E<3h Wy ) |
L = L = = L% :
B lae=o 2 B laemo 0 ZST\M5 aae W) aae / lae=o
' oK
i 12‘(311 5 an 3‘1’3'.) 1w
T2 = awj, ot 3w; I B T _
' - (B.24)
In order to obtain the last equalities in the.abbve formula we have
used the ieSult (B;22). Finaliy, combining (B.23)‘and (B.24),'we.get
2%y o SR
a(At)’ ot ' '

TAt=0 t=0

A similar derivation gives for the third drder derivative.
1
w( )
B(At)

C ) s b o0

>xp§°) R (B.26)
At= 0 - : o

: 1
T h
o U51ng the formulae (B 24) and (B. 26) and a relatlon 51mllar to (B. 24)

At=0

B(At) 2

for the second derivative of h(Z),‘one obtains

3,(1) "3 | . : : o
oyt ] s (a@ i(ah(m 0 @ ;® >>w(0)
a(At)3 reco vats ce0 - 2h Btz h ot - | at / j .

(B.27)
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From the results of (B.ZZ)? (B.ZS), andf(B,Z?); oﬁe-sees thét_the
exponential method withvthe operator definéd'by (B;lsj ensures that the
numerical solution obtained at time At is eqﬁal to'the.exact soiution‘up.
to order Ats. |

,A similar analysis ﬁade for the CN scheme leads to the same conclusion .
but_with another value for the difference befween the exact and numerical
thifd order derivatives. The reason fbr our choice of the exponential
operator was therefore not the better theoret1ca1 precision achleved
but the analytical properties of the exponentlal. Indeed, 1t is dlfflcult
CN‘* Instead we use an expansion in

powers of At for which the exponential always convergent expansion is

to apply the exact operators UE and U,

more appropriaté than the expansion of 1/ (1+x) associated with the CN
method.+ Two other methods: the alternate direction and the. local
one—dimensional method have been shown to be equivalent to the CN

30

method up to the order Ats. They therefore achieve the same precision

as the method used in this paper. However,'sihce the AD and LOD methods

)

do not handle the exact operator h( s they do not conserve “the energy
exactly. In addltlon the alternate d1rect10n method does not use a
unitary time propagation operator and does not conserve the norm.

It should be noted that the analysis made in this appendix ‘is

~ restricted to one time step (local error'anainis). As far as we know

*In fact we tested the CN method with the exact inversion performed by
means of the conjugate gradient method presented -in Appendix C. However,
this proved to be more time consuming for a given accuracy than using
the expansion of the exponential.

From the above analysis one could be led to believe that an expansion of
the ‘exponential up to the order At3 is sufficient. However, one has to
use more terms in order to conserve both norm and energy (four terms for
At = 4x1072% s).
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there doeé not exist any rigorous way to éstimafe the error after a given
'number of time steps, or better, a given evoldfibh time tgioballerror
analysis). In order to estimate fhe quality df the methdd used in this
paper we have made a célculation of a nuclear collision With two_tiﬁé

24 s) and checked that

steps differing by a factor 2 (At=2 and 4x10°
the results remained identical up to the fifth figure during and at the

end of the collision.



~ APPENDIX C: DETERMINATION OF THE COULOMB AND YUKAWA POTENTIALS

The one—body Y;kawa'ana Coulomb potenfials are.giVen by Eqs.'(éb,c)_
as convolﬁtions‘overbthe nucleon dénsityv(recéll pp = p/2 becaﬁse of :
the isospin symmetry we impqse).  Since these ?otentials aré evaluated
many times during'eacﬁ collisién (twicé'per time step); a di?ecf_
integration of'these équations is ndt poséible. We the?efore_follow
the Sfrategy of.ref. 12 and calculate the potentiéls as the solutions

of the discrete Poisson and Helmholtz problems
L, 7 . - : :
VW, = -2me’p _ ,, : - (C.1)

2 1 _ _. :
(v -7>WY = -47rvqa_p

o

Here, WC’ WY’ and p are column veétofs whpse‘componenfs'a?e_tﬂe valueé
'bf these functidns on the mesh poiﬁts and Vzvis alsparse matrix appfoxi—
mafipp to the three-dimensional Laplacian operator. WC is a smooth |
potentiai due to the long réﬁge of the Coulémb force, so that a
”three—point” approximétion to V2WC is adequa£e.' HoWever,‘WY varies
relatively rapidly in space and a ”fivefpoint” approximation tovVZWY

is necessary (cf. Apﬁendix A).

Given the valueé of W on the mesh boundafies (see'beloW); the
solution of Eqs.tC.l) amountsvto the inversion:of.a sparse matrix.-of
dimensionality equal fo the number of mesh pointsf It is ﬁot possible
to inﬁert directly and exactly such a large métrix. We thefefore.use an
- iterative method for sqlving Eqs. (C.1) Which construct suqcéssive

'-appro*imations to.the éolutions and coﬁtihue the iteration process

until sufficient precision is achieved. These methods have the added
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advantage that the potentials étithe previdus time step are'excellént
starting points for the iteration procedures. .Récently an oldxand.
rediscovered method, the conjugate gradient method (CGM)Sl_ﬁéé proven
to be more rapid than thevconventional successive overrelaxétion methods
and the alternate direction methods.32‘ We shall pfesent the CGM for the
Poissbn equation and discuss briefly the'preciéion achieved. The |
transposition to the Helmholtz problem is trivial.

Our iteratiﬁe scheme is a slight modification.of tﬁat proposed in

Ref. 33. At the beginning of the time evolution we start with a first

(0)
C

time steps we use as a starting point of CGM the last computed. value of

approximation of the potential W (;) identical to zero.” At the following

WC(;)' The calculation of the boundary conditions is discussed at the-
end of this Appendix. In order to begin the iterative scheme we need

two additional vectors, Z(O) and P(Q).

Z(O) = _(Znezp(;)+ AWéO)(;)>
| (C.2)

p(0)  _ Z(O)

The iterative scheme which, in order to save computational time,

introduces an additional vector T and two numbers A and C, is then
D k) @
Al (300 L 00) (I L gley ) (3
wékfl) ) wc(k) o aGrD) (K @

*In this Appendix the upper indices (k) label the numberbofbiterations
performed with the CGM method.
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LSk (), (k1) o (k+1) / = @
)= (0D [ (2091219) @ ©
plkel) g lkel) | oled) 0 | (o

In formulae (C.3,a-f) ‘the quantity (Z:T) stands for the scalar product
of the two vectors Z and T. The method, in addition to its rapidity,

provides a natural way to check the convergence. One can show that

ALK -(2ne2p(¥) + AWék) (?)) - (c.4)

so that the norm.of the vector (k) is avmeasuré of the remaining inaccuraéyv
of Wék)(?). In our calculation we,reqﬁired this_norm to be less thén>
10'10.
Theisolution of bo;h Egs. (C;l) requires'é knowledge of the potential
“vbgundary ﬁonditions. We have assumed that the Yukawa potential is zero
at theAmesh boundaries.' Bécause of thé short Yﬁkawa range'(a ~ 0.5 fmj,
this>assumptioﬁ is valid.if there is no apbréciable‘density withiﬁ about -
1 fm Qf.fhe boundaries. When the_system approéches the'mesh edges.kthis
boundary conditioﬁ'results in a repuléive image_potentialrand destréys
the conservation of the tQtal energy. We have'therefore used this phenpmenon
as a signal for spﬁrious effects from the mesh eagéé.and héVe stopped_the‘
Qéléulatioﬁ when the tbtal_energy was not conserved to wifhin é précision
of about 1 MeV. |
The_long‘fange of the Coulomb potentia£ foices an expiicif'eValuatibn
of WC at the mesh boundaries. 1Indeed, setting the boundary conditions to

zero would result in some 20% error in the Coulomb energy for the box
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dimensions used in our calculations. One possibility for evaluating the

boundary conditions for W. is to evaluate Eq. (8c) at selected poihts

C
‘on the box faces by means of Simpson's rule and then compute the reméiningb
boundary conditions by polynomial interpolation. This procedure féquires'
relatively many Sweeps of the ﬁesh, but need only be carried out every

3 or 4'time.steps. However, a far simpler'prqcedure which is just as
accurate is to perform a multifole expansion Qf therCou10mb pqtential.‘

If we assume fhat tﬁe system is always separatéd into fwo fragments in

the way used to define the R coordinate in_SecfidﬁVV, then the-muiti—

'poie momeﬁts through bider three are sufficient_tb givé the required
accuracy. This method is advantageous in that ifvmakes usebe |
information which is iﬁteresting and would have been computédvanyWay;

the ldWer multipole moménts of the total system'aﬁd.of'the fragments.
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FIGURE CAPTIONS

Contour lines of the density integrated over the coordinate

16, , 16

normal to the scattering plane for an 0 O collision ‘at

Eyb = 105 MeV and incident angular momentum L = 40h. The time
22

interval between two pictures is 2x107°¢ s.

Contour lines of the density integrated over the coordinate

16
+

normal to the scattering plane for an 16O O collision at

E1ab = 105 MeV and incident angular momentum L= 13h. The
times t are given in units o:ElO-22 s.
Contour lines of the density integratéd over the coordinate
normal to the scattering plane for‘an-160-+160 collision at
Elab =105 MeV and incident angular momentum L =5h. The
A 59 . ,
s

times t are given in units of 10~

Trajectories of the vector separation, R, between the centers-

of-mass of the two fragments for incident angular momentum values
ranging from 0 to 40h.

Examples of different trajectdriés 1eading to fusion,

Trajectory for a nearly head-on (L = 0.5h) collision at low

_energy (ElaB = 32 MeV) which leads to fusion.

. Contour lines of the density integrated over the coordinate

normal to the scattering plane for an 1604-160 collision at
Elab = 192 MeV and incident aﬁgular momentum L = 42h. The
time interval between two pictures is 10'_22 S.

Deflection'angle and kinetic energy loss as a function of

= 105 MeV. The shaded area
lab '

incident angular momentum at E

corresponds to the fusion window.



Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Flg 13

Ve ld80 35629

-29-

.Schematiiétidn of the nuclear part of a heavy-ion potential.

E_ is the kinetic energy for infinitely separated-fragmehts.

The dashed'line.is é trajectory in the absence éf dissipation;
It is shifted fi‘om'Eoo by the point'Céulomb energy EC. The__
soiid line is a trajectofy with dissipation and W stands'for
the energy loss. |
Time-dependent Single-particle energy specfrum (see text).for
a nearly head-on collision (L ='O~5h, Elab = 165 MeV).
Upperbpart: ﬁhe point Coulomb energy EC and the mechanical
energy Ey (see text) as a function of. time for a’nearly head-on

collision (L = 0.5h, E = 105 MeV). Lower part: the corre-

1ab
sponding time evolution of the fragment separation coordinate.
The thick lines indicate the box in which the calculations

are actually performed and the thin lines the éomplete box

deduced by means of the two imposed symmetries. The gray surface

indicates a possible equidensity contour surface with the same

convention.
" Relative error in the kinetic energy of the 1owe$t state of anA‘
oscillator. The results are shown for the five-point and three-

point formulae of the kinetic energy and different mesh sizes.

The oscillator parameter is mw/h = 0.275 fm_z.
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