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ABSTRACT 

A coordinate-space method is developed to solve the three-dimensional 

time-dependent Hartree-Fock equations. It is applied to the study of 

160 160 11· . t E = + co 1s1ons a lab 105 MeV for incident angular momenta from 

0 to 40n. We find fusion for L = 13fl through 27fl and highly inelastic 

seat tering for L ~ lln. 
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I. INTRODUCTION 

1 
Time-dependent Hartree-Fock theory (TDHF} has emerged in recent. 

years as a promising candidate for a tractable microscopic theory of 

large-amplitude collective motion. Although investigations of TDHF's 

' 
theoretical content date from the last decade, 2• 3 current interest in the 

method is due largely to the realization that it might adequately desqribe 

heavy-ion reactions and fission.
4

-
8 

The first application of TDHF to 

9 
reaction phenomena was made by Bonche, Koonin and Negele, who numerically 

studied the one-dimensional collisions of slabs of nuclear matter. This 

. 12 12 10 
work was followed by the studles of Cusson and Maruhn for · C + C, and 

by those of Koonin
11 

and Koonin et a1.
12 

for 
16o + 

16o and 
40

ca + 
40

ca. 

These calculations were two-dimensional in the sense of treating axially-

symmetric three-dimensional systems. In the latter paper some effects of 

finite impact parameters were accounted for by a phenomenological rotating 

frame approximation. The axially-symmetric work has been extended to 

the mass-asymmetric system 
14

N +
12

c by Maruhn-Rezwani, et a1.
13 

Some truly two-dimensional calculations of the collisions of rods of nuclear 

14 
matter which allow for axial asymmetries have been performed by Bonche et al. 

Fully three-dimensional calculations were first reported by Maruhn and 

15 16 16 . 
Cusson, who studied some collisions of 0 + 0 uslng a zero-range 

effective interaction, and then included the Coulomb force in a more 

extensive series of calculations which treated the 
14

N + 
12

c system as well. 
16 

17 
Detailed reviews of much of this activity have been given by Kerman and 

Bonche. 
18 

In this work we present a technique for solving the TDHF equations 

in three dimensions (3-D) and demonstrate its applicatipn by an extensive 
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study of the 
16

0 + 
16

o system at Elab = 105 t1eV. Our study is complementary 

to that of Bonche et a1!
9 

who have explored many energies at a limited 

number of impact parameters in order to determine the fusion excitation 

function. We feel it is important to do these calculations in 3-D so as 

to eliminate the necessity ·of assumptions other than ithe TDHF app~oximation. 

Our calculations have been motivated by several considerations. At 

the most practical level, the non-linear nature of the TDHF equations makes 

analytic study impossible and numerical calculations essential. Our under-

standing is still at the stage of asking questions about what the TDHF 

equations "do." The calculations pr~sented here impose a minimum of 

constraints on the' symmetry of the TDHF determinant and so begin to give 

answers· to these questions which are. free from the uncertainties due to 

simplified geometries. They are also stringent tests of the validity of 

the simpler two-dimensional calculations. At.the phenom~nological level, 

TDHF has the appeal of naturally extending the shell model to dynamical 

problems. As a result, phenomenological models of heavy-ion reactions 

such as the liquid drop m6de1
20 

and the one-body viscosity 
21 

can be related 

to the independent particle picture realized. in the Hartree-Fock (HF) and 

TDHF approaches. There are also natural analogies between TDHF and a 

fl . d d . 1 . 2 2 , 2 3 u1 ynam1ca p1cture. Our results he1p to understand these connections. 

Finally, at a ftmdamental level, many aspects of TDHF remain unclear. Some 

results have been obtained in connection with the translational invariance,
2 

. 1 . . 3 d . . . 8 , 24 f h h d rotat1ona 1nvar1ance, · an cont1nu1 ty equat1ons o .· t e t eory an 

both the small amplitude (RPA) and adiabatic 
4

-
7 

limits have been related 

to ordinary quantum mechanics. However, the interpretation of the results 

of the general theory remains vague and has been limited almost exclusively 

to the most naive classical picture. In particular, a precise understanding .. 
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of the relationship between the TDHF initial conditions and the Schroedinger 

wave-packet used in ordinary time~dependent collision theories
25 

is still 

missing. Quanta! and classical aspects are intertwined in a way such that 

it is difficult to determine the predictive powers of the theory. However, 

our incomplete comprehension does not mean that contact with experiment 

is not possible, but only that we do not know how to fully extract the 

information contained in our results. 

The remainder of the paper is organized as follows: In Section II 

we review the basic TDHF equations and present the effective interaction 

we have used. The symmetries imposed on the TDHF determinant for computa­

tional are treated in Chapter III. Section IV presents the starting 

conditions and Section V contains our results. Section VI is a discussion 

of the results, and Section VII is our conclusion.· The technical details 

of our calculations are contained in the Appendices. Appendix A is concerned 

with the numerical discretization of the TDHF energy functional and its 

effect on the translational invariance properties of the finite difference 

equations. in Appendix B, we discuss several methods for evolving the 

three-dimensional TDHF equations with a finite time-step. Finally, 

Appendix C contains a discussion of a method for solving the discrete 

Poisson and Helmholtz equations which is necessary for obtaining the one­

body Coulomb and Yukawa potentials. 
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II . TilE TDH F EQUATIONS 

A detailed discussion of the TDHF theory can be found in many papers. 

For completeness, we will only outline the derivation of the equations here. 

In the TDHF approximation, the many-body wavefunction of an A-nucleon 

system is constrained at all time to be a single Slater determinant, '!'. 

The equations covering the evolution of the associated or the normal 

single-particle (s.p.) wavefunctions, {"l/J., j=l, ... ,A} can be derived from a 
J 

variational principle which makes the "action" 

= "' HI 'l'(t)) (1) 

stationary with respect to the variation of these wave functions. 
6 

• 
7 

Here, 

H is the many-body Hamiltonian operator, which in practice is taken to be 

the kinetic energy and a two-body effective interaction. The variation of 

Eq. (1) then leads to the coupled TDHF equations 

a"l/J. 
H'l J = h ( t) ''' . at "'J 

j = l, ... ,A (2) 

where h is the time-dependent hermitian one-body HF Hamil toni an. A non-

linear coupling among the equations (2) arises from the functional dependence 

of h upon the {"l/J.} • 
J 

As a consequence, the superposition principle does 

not hold for the TDHF equations. Two important properties of the TDHF 

equations are the conservation of the total energy 

E = ( 'l'(t) I H I 'l'(t) ) ( 3) 

which follows. directly from the variational formulation of the theory, and 

the time-independence of the inner products of the {"l/J.} among themselves. 
J 
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A 

The most general expressions for E and h in terms of H can be 

found in references 3- 6. We shall henceforth consider only the effective 

interaction used in our work and follow ref .. 12 in writing the total 

energy as a functional of the nuclear density 

+ 
p(r) 

A -+ 2 
= L II/I. Cr) I 

j=l J . 
( 4) 

and the kinetic energy density 

-+ 
T(r) = (5) 

[ 2 E 
-+ n. 3 2 

1 3] = Jdr - T +- t p + 16 t3p 2m 8 o 

f d-; f d-;' 
. -+ -1"~-;, l/a 

-+ 
~v 

e 
+ p(r) p(r ') 

0 
1;~-;'l/a 

2/ -+!-+ -+ 1 -+ 
+ ~ e dr . dr' p (r) p (r') 

p I;-;. I p 
(6) 

The first term in the brackets is the kinetic energy, while the following 

two terms are the expectation value of the zero-range density-dependent 

two-body effective interaction 
-+ -+ 

-+ -+ t3 p(r1 +2r2) 
t 8 ( ) · ~ (-+r - -+r ) 

o r 1 - r2 + 6 u 1 2 ( 7) 

The last two terms in Eq. (7) are the expectation values of a Yukawa inter-

action and the direct Coulomb interaction (p is the proton density defined 
p 

similarly to Eq. (4)). 

The functional variation of the energy E, as depicted in Eq. (6), 

with respect to the {1/J~} leads directly to the TDHF one-body Hamiltonian 
. J 

·.· 

.. 
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h = 
2 . 

L "2 + l t P + _l_ t P2 + wY·. + w.c 
2m · 4 o 16 3 . 

Here, the Yukawa potential is 

= 

-I~-~· I /a e . -+ 
--+---,-+-., .. -- p ( r') 

jr-r'j/a 

' ' 

and the Coulomb potential (which is effective only for pro,tons) is 

Equations (2) and (8) are the TDHF equat:lons we solve by means of the 

. (8a) 

(8b) 

(Be) 

coordinate-space methods outlined in the appendices. The parameters t , 
0 

t
3

, V
0 

and a used in the present paper are those of Ref. 12 and are given 

below in Table 1. 

TABLE 1. Values of the coefficients of the 
Skyrme and the Yukawa interaction. 

3 
t

0 
MeV fm t

3 
MeV fm

6 
V. MeV 

0 
a fm 

-497.66 17288 -363.044 0.4598 



-8-

III. SYMMETRIES 

The history of numerical TDHF calculations has been one of the 

gradual relaxation of symmetry constraints imposed on the determinantal 

wave function. Such symmetries have been useful in reducing the magnitude 

of the numerical effort involved and have therefore allowed basic investi-

gations of the TDHF equations. However, it now seems probable that a full 

test of the possibilities of the TDHF theory in realistic situations will 

require the breaking of as many symmetries as is possible. Unfortunately, 

while we would like to relax as many "built-in" constraints as we can, 

practical reasons have forced us to retain the four symmetries we discuss 

below. 

In solving the TDHF equations we have assumed a perfect spin-

isospin degeneracy, so that each spatial orbital is occupied by four 

nucleons. In this case, the proton density in Eqs .. (6) and (8) is replaced 

by one-half of the nucleon density and the Coulomb potential (Eq. (8c)) 

acts on all spatial orbitals. This imposed degeneracy makes our calculations 

applicable only to 4-N systems. Since each spatial orbital is then 

effectively occupied by an a particle, one or two nucleon transfer 

are not accurately described in our model and nucleon emission 

(which does occur in TDHF!
7

) is incorrectly accounted for. The isospin 

degeneracy, which is very accurately conserved in TDHF calculations of 

13 16 
light systems which allow for the neutron-proton degrees of freedom, ' 

can be easily removed with an increase of a factor of two in computing 

time and storage. Hemoval of the spin degeneracy would be more complicated. 

A spin-orbit interaction demands that each wavefunction be partially spin-up 

and spin-down. Therefore, including the spin degree of freedom would 

increase storage and computation by at least a factor 4. 
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We have also .imposed two spatial symmetries on the TDHF determinant. 

These are reflection syliunetry with respect to the reaction plane (taken to 

be the Z = 0 plane), and point reflection symmetry through the center-of-mass 

(c.m.) of the total system (taken to be the origin). These symmetries, 

together reduce our numerical effort by a factor of four. In Appendix A 

we show how practically they have been implemented in our calcuJation 

Of the two spatial symmetries, the second is probably the more 

restrictive, since it limits the calculations to systems of two identical 

ions. However, it seems unlikely that mass-asymmetric degrees of freedom 

would be significant in an unconstrained calculation of the light syliunetric 

systems we cons~der here. Despite the four symmetries we have imposed, 

our calculations represent a significant advance over the previous two-

d1'mens1'onal work. 10-
13 

A h 11 · S t' V d VI t.h · 1 · ·· s we s a . see 1n ec 1ons an , , . e 1nc us1on 

of triaxial degrees of freedom leads to substantial qualitative effects on 

* the TDHF results, although axial symmetry appears to be an adequate approx-

imation for nearly head-on collisions. Of course, the effects of the 

centrifugal force due to finite impact parameters are naturally taken 

into account in our 3-D calculations and we do not have to make any 

assumptions about the moment of inertia, as is done in Ref. 12. 

*In terms of the usual S, y parameterization of triaxial shapes, 
26 

the 
dynamics of the two-dimensional calculations are restricted to the lines 
y = 0 andy = rr/ 3, while our three-dimensional cal.culations cover the 
entire range 0 ~ y ~ rr/3. 
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IV. INITIAL .CONDITIONS 

The TDHF equations (2) are first-order in time, so that the values 

of all of the single-particle wavefunctions at some time t = 0 are required 

as initial conditions. Since we solve the equations in the overall c.m. 

frame, these should be chosen to represent identical nuclei approaching 

one another at a finite impact parameter with equal and opposite velocities 

-* -* 
v = ±flk/m. We have therefo.re constructed the initial state by multiplying 

each of the single-particle wavefunctions of the static HF solution of 
-*-* 

* ik•r 
each nucleus by the phase e In the absence of numerical inaccuracies, 

(cf. Appendix A), this determinant represents two 
16

0 nuclei which translate 

uniformly with the required velocities prior to collision. In practice, 

we start the nuclei along the classical Coulomb trajectory they would 

have followed from infinity to the relatively large separation we choose 

at t = 0 (-16 fm). Our initial conditions therefore neglect the presumably 

small effects of Coulomb-induced deformations prior to t = 0. 

Such an initial condition is usually interpreted as a wave-packet 

despite the fact that we have only multiplied the static 
A 

Slater determinant 

-* \ -* 
R = 1.. r .. 

j=l J 

~ 

by the plane wave exp(ikR), where In fact the . wave packet 

is already contained in the static HF solution which is not an eigenstate 

of the total momentum. If we assume that we can factor out the center-of-

* To find the static HF solutions used in our calculation, we evolve 
equations similar to (2) and (8), beginning with an arbitrary trial 
determinant constructed from single-particle orbitals with the required 
symmetries. The evolution is done on the discrete spatial mesh described 
in Appendix A, using an evolution method similar to those described in 
Appendix B with the replacement b.t -* ib.t. When the single particle wave­
functions are orthonormalized after every "time" step there is rapid 
convergence to the ground state solution., provided the magnitude of b.t 
is sufficiently smalL 

.. 
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. * . mass mot1on we may wr1te 

,. + 

ljJHF(static) = G(R)X (9) 

+ 
where G(R) stands for the wave function of the c. m. and X .·for the internal 

+ 
wavefunction. The Fourier transform of G(R) would be the wave-packet in 

++ 

momentum space. Th 1 1 h . d b h. 1 . 1 . . b ikR . e on y resu t ac 1eve y t e mu t1p 1cat1on y e 1s 

+ 
a shift of the center of momentum of this wave-packet by the vector k 

without any change in its shape. The translating TDHF wave function 

would then be 

-i tCt (·j ~. li~~')) .~ ~ 
ljJTDHF(translating) "" e G(R-vt)X (10) 

In Eq. (10), the e. are the static HF single-particle energies, 
' 16 
For a 0 

J . 

nucleus of oscillator wave functions, the kinetic energy associated with 

the c. m. motion is 1/24 of the total kinetic energy. Using this ratio 

for the static HF wavefunction we find a spread in energy of about 10 MeV. 

A direct correspondence of the TDHF wave packet to a Schroedinger wave-

packet would lead us to conclude that 10 MeV gives a measure of the energy 

resolution of the incident beams associated with each 
16o nucleus. 

There are, however, several crucial differences between translating a TDHF 

solution and a Schroedinger wave-packet. These. come mainly from the non-

linearity of the TDHF equations, which is itself a consequence of the restricted 

variational space (one Slater determinant) used in the theory. We are not 

free to change arbitrarily the shape of the c. m .. wave-packet. The static HF 

*Th. . . 1 d ' . . f 16o 1 . 1s 1s certa1n y a goo approx1mat1on or an nuc e1. 
HF single-particle orbitals of light nuclei are very close 

wave functions, for which the factorization is exact. 

Indeed, the 
to· oscillator 
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equations give at the same time the wavefunctions for the internal degrees 

of freedom and for the center of mass. In contrast to the Schroedinger 

picture, all the degrees of freedom are coupled by the minimization 

process in the space of the Slater determinants.* The same coupling is 

responsible for the fact that the TDHF wave-packet does not spread as a 

function of time,t as does the Schroedinger wave-packet. In fact, formula 

( 10) is identical to the formula ( 15) of Ref. 25 describing a Schroedinger 

wave-packet in the limit where spreading is neglected. In the same reference 

one finds an expression (formula 19) for a quantity e which should stay 

small for the spreading of the wave-packet to be negligible . 

e = .! (lltn) 
w 2wM 

( 11) 

Here lit is the total time, during which the wave-packet is followed, w the 

-+ 
spatial width of the function G(R), and M the total mass of the system .. 

If we use lit = 10-
21 

s, which corresponds in our calculations to a typical 

full collision time, then e = 0.5 (we take w = 2 Fm). This number is certainly 

not negligible, but may be sufficiently small to allow correspondence 

between the TDHF solution and a Schroedinger wave-packet. If we were to 

adopt this viewpoint, then quantitative comparison between our results and 

a normal Schroedinger equation would require an understanding of the 

evolution of a Schroedinger wave-packet with 10 MeV spread during a collision 

over times of the order of 10-
21 

s. 

*One could imagine changing the shape of the HF wave-pa~ket by so)ving 

the static equations with an external constraint like p2 where P is the 
total momentum. However, this would induce a change in the internal 

wave-function X. 

t 
Except for the trivial case A= 1, where the HF and Schroedinger wave-
packet are identical. 
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An alternative position one may take is that we are really only 

interested in following the wave-packet for 2 x 10-
22 

sec, the time for our 

nuclei to move from their initial position to contact. Then e = 0. 1 and 

one does not have to worry about spreading. 

In the following we shall mainly interpret our TDHF results from a 

classical point of view. This is consistent with the fact that a non-

spreading wave-packet is the characteristic of a classical particle as can 

be seen from the linear dependence of the spreading parameter e on f1 

(formula 11). 
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V. RESULTS 

Our numerical methods provide, at each time step, the set of s.p. 

. -+ 
wave-functions w.(r,t), or equivalent!~ the one-body density matrix. 

J 

Because this represents far more information than can be comprehended 

easily, we have elected to display some of the physically relevant quantities 

derivable from these wave-functions. 

In Figs. 1-3 we show the nucleon density p at various times for 

collisions with impact parameters corresponding to L = 40n, L = 13n, and 

L = Sh. The figures show contour plots of the density integrated along the 

direction perpendicular to the reaction plane. 

For the· largest value of the angular momentum (L = 40i'l) the nuclei 

appear to pass each other without excitation. A comparison with the classical 

Coulomb trajectory shows that indeed no nuclear interaction takes place and 

that Coulomb excitation is negligible. Within the precision of our calcu-

lation, L = 40i'l corresponds to the minimum angular momentum for pure Coulomb 

scattering. 

For a smaller value of the angular momentum (L = 13fl), the collision 

leads to fusion. The two nuclei remain in contact for a time longer than 

3 x lo-
21 

sec; the time at which we stopped this calculation. Some shapes 

exhibit strong non-axial deformations. In fact, the analysis of the 

quadrupole moment tensor shows that the y asymmetry angle sometimes reaches 

values higher than 20° (for L =15ft, y has temporarily exceeded 30°). 

At an even smaller impact parameter (L = Sn), fusion no longer occurs 

and two fragments emerge directly after the collision.* One must remember 

*The density at the origin does not go back to exactly zero after the 
separation of the main fragments. It stays within to-3 to to-2 of the 
density in the center of the outgoing fragments (to be compared to the 
value Io- 7 before the collision). We cannot determine whether this is 
due to some small probability fusion process or to numerical inaccuracies. 
In the same analagous way, when a fusion takes place (as wi tJ:l L = 13fl~, 
the density at the edges of the box gradually rises to a 10-~·to 10- ratio 
to the density at the origin, as if some matter was being radiated out of 
the fused system. 
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16 . 
that these fragments do not correspond to only 0 nuclei since some 

d d 
. h . 12 

transfer has occurre ur1ng t e react1on. In addition, a large amount 

of the initial kinetic energy c~so%) has been transferred to internal 

degrees of freedom, as can be seen in the large octupole oscillations 

of the fragments after the collision. 

A more physical description of the collision process can be obtained by 

plotting the trajectories of the c.m. of each fragment for different L. 

However, the reduction of such a complex dynamical system to a single 

coordinate can lead to some unusual effects; as we discuss below. 

In addition, there is no unique way to define a fragment and this notion 

even loses meaning for complete fusion configurations. In this paper we 

have adopted the following definition. After having determined the 

principal axes of the inertia tensor of the mass density, we define a 

fragment as the matter located on one side of the inertial axis associated 

with the largest eigenvalue and then take its center of mass.* 

-+ 
In Fig. 4 we have plotted the trajectories of the vector R joining 

the c.m. 's of the fragments for several values of the angular 

momentum. 

The trajectories can be divided into three groups. Large values of 

L (L > 27ft) do not lead to fusion. As mentioned before, L;;;;. 40ft yields 

pure Coulomb scattering. The rainbow angular momentum is found around 

35fl, and between L = 30fl and L =27ft the deflection angle becomes negative 

*Another possible prescription consists in diagonalizing the mass quadru­
pole tensor m1d choose the orientation of the c.m. 's axis as those 
associated with the largest moment Q (Q > 0). The distrnce R between 
the c.m. 's of the two 16o is then defined as R = (Q/A)-'2, where A= 16 

in our case. For the results presented here, this definition and the 
one used above lead essentially to the same trajectories. The difference 
in the angle never exceeds 2° and the difference in distances R is never 
larger than 0.3 fm. A significant difference would only occur for very 
compact mass distributions. 
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as the nuclear attraction overcomes the Coulomb repulsion. 

The second group of trajectories leads to fusion (13h ~ L ~ 27n). 

Different examples of these are shown separately in Fig. 5. They are 

qualitatively very <;iifferent. For the large value~ of L (L = 27h and 25ti) 

the dominant factors are the nuclear attraction combined with dissipation. 

These lead to a smo.oth orbiting trajectory. For lower impact parameters 

(L = 13ft and 20h) the trajectory is more complex. After an initial 

attraction the two nuclei reach a configuration where the collective 

potential leads to a repul_sion .. As the nuclei begin to move apart under 

the influence of this repulsion, they are unable to separate because of 

the large amount of energy that has been dissipated. 

The third group of trajectories (L < 13n) does not lead to fusion. 

We the.refore do not find the expected result that fusion, if it occurs, does 

so at zero impact parameter. The existence of a low L window for which 

fusion does not oc·cur. is energy-dependent. Indeed, we show in Fig. 6 an 

example of a trajectory at much lower energy (Elab = 32 MeV) for which a 

head-on collision does lead to fusion. This had already been noted in 

Ref. 12· for the 
40

ca + 
40

ca system. 

In Fig. 7 we display a collision at Elab· = 192 .MeV and a large 

impact parameter, 6 fm (I; = 42n). This .figure complements Fig. 2 which 

showed a fusion process for a small value of the impact parameter. Non-axial 

effects are very important. 
-22 

A comparison of the shapes at t = 7xlO s and 

lSxl0-
22 

s shows two extreme stage~ of a wiggling mode. Note how the shape 

becomes more compact (i.e. more fused) during the collision. A more 

detailed study ·of the fusion· r'egime may be found in Ref. 19. 

In Fig. 8 we give~ the aeflection angl~ and the total kinetic energy 

loss (in the c. m. frame) as a function of the angular momentum. For small 

\. 
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impact parameters (L < 13ft) the kinetic energy loss is constant at about 35 

MeV to be compared to the 52.5 MeV available initially in the center-of-mass 

frame. Because of the total c.m. motion these trajectories would result in 

the fragQents moving forward in the laboratory frame. According to our 

calculations, one would expect heavy fragments moving with kinetic energy 

ranging between 5 and 65 MeV in a forward cone of about 35 o. (Recall 

that the beam energy is 105 MeV.) Since the fragments are strongly 

excited the mass distribution would certainly not be centered around 

A= 16 due to de-excitation via nucleon or alpha particle emission. 

When the fragments emerge, they have nearly the same angular momentum 

with which they enter. This is in spite of the fact that at times during 

the collision the total angular momentum is almost entirely absorbed by 

the internal angular momentum of the fragments. 

There is a difference between our results and those of Ref. 16, 

since we do get fusion. Because the energy used for the 
16

o + 
16

o 

collisions in Ref. 16 is slightly higher than the one we use (8 instead 

of 6.6 MeV per nucleon in the lab) we have made one calculation with the 

energy of Ref. 16 and with an angular momentum L= 30ft. Consistent with 

our previous results we find fusion. The trajectory was followed up to 

a deflection of -3rr/2 without any indication of separation, in contrast 

to the finite deflection angle, -ir/ 3 found in Ref. 16 (Fig. 7). The 

difference could come from our inclusion of a Yukawa interaction not 

present in their calculation .. our interaction provides a better repro-

duction of the surface of the nucfei, a feature which is certainly needed 

to describe correctly the heavy-ion collisions. However, the apparent 

sensitivity to the interaction indicated by their results lead us to 

hope that TDHF calculations combined with appropriate experiments will 
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lead to increasing our knowledge of the effective interaction. 
19 

VI. DISCUSSION 

The most striking feature of our results is the absence of fusion 

for small values of the incident angular momentum. We find that for any 

\ 
angular momentum from 13 to 27l1 the nuclei '"fuse" in the sense that they 

-21 
remain either in close contact for times larger than 3xlO sec or that 

the deflection angle exceeds -180°. If we interpret this range of 

impact parameters classically we obtain a fusion cross section of about 

0.8 barns. 

All trajectories with L ~ 20n exhibit a loop at the point of closest 

approach, as can be seen in Figs. 4 and 5. At this point, the relative 

orbital angular momentum of the fragments has become negative, changing 

sign from its value at t = 0. This phenomena has its origin in the single-

particle degrees of freedom treated explicitly in a TDHF calculation. 

Similar behavior, which is due to the motion of the single-particle 

wavefunctions in the time-dependent mean field, has been observed in 

b h 
9 d d. . 112 1 . h 11 k h h ot one- an two- 1mens1ona . calcu at1ons; we s a s etc t e same 

reasoning here to explain our three-dimensional results. When the two 

nuclei begin to interact, the barrier between their separate mean field 

potentials disappears and all wavefunctions begin to move in one large 

common well. The velocities of the orbitals from one nucleus as they 

traverse the other nucleus differ according to their internal kinetic 

16 16 
energy. Thus, i,9 the 0 + 0 system, some lp orbitals move faster and 

.. 
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reflect first from the opposite wall of the potential. Their resulting 

backward motion cancels the still forward motion of the remainder of the 

orbitals. As a result, the net orbital angular velocity of the fragment 

c.m. 's can become negative. This example of the exchange of angular 

momentum between single-particle and collective degrees of freedom is 

the essence of the one-body dissipation process. However, in this 

relatively small system, the non-statistical dynamics o~ a few orbitals 

soon restores much of the angular momentum to the c.m. motion. In fact, 

there is hardly any angular momentum loss in the low impact-parameter 

events. In heavier systems, the greater diversity of single-particle 

motions will affect the .collective variables in a much smoother manner, 

so that the notion of a macroscopic dissipation coefficient will become 

applicable.
19 

One can also.note that the significant differences between 

the different fusion trajecto~ies 13h ~ L ·~ 27fl (Fig. 5) would be difficult 

to reproduce by a model taking only into account the motion of the c:m.'s. 

We have shown that it is unlikely that one could explain all our 

results by a potential and a viscosity coefficient. However, this is 

possible within a limited rang~ of angular momenta. We demonstrate 

this for the low values of the angular momentum which lead to inelastic 

scattering. 

For values of L between 0 and 20fl, the point of closest approach 

corresponds to an almost constant value of the distance between the c .m. 's: 

4.1 fm (see Fig. 4). This gives us the location, R
8

, of the internal 

* repulsive part of :the heavy-ipn nuclear poteriti~l (Fig. 9). This internal 

*Effective mass effects are neglected, as it can generally be done in a 
one-dimensional problem by a proper re-definition of the potential. 
The mass is therefore the reduced mass ~ = 8m. · 
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barrier is of dynamical origin, and probably comes from the inability 

of the fragments to significantly change their shell structure during 

the collision. Static constrained HF calculations performed for the 

27 
same system, which can be thought of as describing the potential for an 

infinitely slow collision, do not give a potential with an internal barrier. 

There, the system of 32 nucleons adjusts itself to the best possible 

shell structure for a given separation of the c .m. 's. For small 

separations, the 
32s configuration is energetically the most stable. 

Figure 10 shows the beh(lvior of the s .p. energies as a function of time for 

aa nearly head-on collision (L = 0.5fJ., Elab = 105 MeV). Initially, this 

16 . t 
s .p. spectrum exhibits the degeneracy characteristic of two 0 nucle1. 

The degeneracy is lifted during the collision, although the shell structure 

is remarkably well preserved and the spectrum never comes close to that of 

32s. Since the distance of closest approach, R
8

, is almost independent of 

the angular momentum, the potential at that point must be very steep. 

Indeed, although the classical centrifugal energy n
2
L
2
/2~R~ changes by 

about 60 MeV for L varying between 0 and 20fi, its effect on R
8 

is very 

small. This stiffness of the potential is confirmed by the fact that R
8 

is 

independent of the incident energy, as can be seen in Fig. 6 (Elab = 32 MeV). 

To pursue the analysis, the velocities of the c.m. 's must be considered. 

We do this in Fig. 11, which again corresponds to the L = 0.5n, Elab = 

105 MeV c.ollision. The energy EC in the upper part of the figure is 

*we defined the s.p. energies as the diagonal elements of the matrix 

e .. (t) = J d; \j.l. (t)X \j.l.. It is not an unambiguous definition since the 
lJ 1 J 

the lj.l. 's are defined up to a unitary transformation. Another possibility 

would
1

be to choose as s .p. energies the eigenvalues of the { eii} matrix. 
This choice would probably not change the qualitative aspect or our 

argument. 

tRecall that our calculation does not include a spin-orbit force. 
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2 2 ·. 
is the point Coulomb energy Z e /R. We have also plotted the quantity EM 

which is larger than EC by the total kinetic energy of the relative motion 

of the c.m. 's. The evolution of EM can be understood in terms of a motion 

with dissipation in a collecd. ve potential well such as that shown in 

Fig. 9. Between the initial time and point A, * EM is constant. The 

point A corresponds to the beginning of the nuclear interaction; neglecting 

internal degrees of freedom makes EM the total energy before the nuclear 

interaction begins. We have, therefore, an estimate of the distance at 

which nuclear effects become important: R
1 

= 8.S fm. Between A and B, 

EM increases, corresponding to motion in the descending part of the 

potential. However, the increase of EM is less than the depth of the 

potential VM because of dissipation effects. For the same reason the 

distance between the c.m.'s at point B is larger than RM (Fig. 9). 

Between B and C the potential rises, therefore EM decreases until it 

equals the Coulomb energy EC. The distance between the c.m. 's at point 

C gives the radius of the internal core RB. The points D and E are the 

analogs of B and A on the outgoing part of the trajectory. This time, 

because of the dissipation effects, the distance between the c.m. 's at 

point D gives a lower limit for the value of ~· The distance CJ,t the 

last point of interaction E is larger than the distance at point A 

reflecting both fragment elongation and an overall increase in the size 

of the fragments after the collision. For example, the root mean square 

radius of the fragments increases by about 0. 3 fm as a consequence of 

*The small decrease of -1 MeV is dtie to the numericai inaccuracies 
discussed in Appendix A. It is a measure of the precision of our 
calculations. 
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of the transfer of energy to the internal degrees of freedom of the 

fragments. If there we:r:e no diss'ipation, all the curves shown in Fig. 11 

would be symmetric with respect to the vertical line going through 

point C. Analyzing the extrema of the energy curve EM(t) and the 

distance curve R(t) with the above interpretation gives a minimum of 

the nuclear potential between -14 and -24 MeV at a distance between 5.5 

and 6. 5 fm. The upper boundary for· the depth of potential (24 MeV) is 

obtained with the assump.tion that the dissipation of EM, occurs only when 

the two nuclei move toward each other (faster velocities). If one were 

' . . 
to assume that the same amount of 'energy is lost during the ingoing and 

outgoing phases of motion, the lower value (14 MeV) would be obtained. 

The energy loss for L = 0. Sfl, · E 1 ~b = 105 MeV is about 35 MeV. Within 

the precision ~f our calculation (1 MeV) thi~ number is constant· for L 

varying between 0 and 11fl (Fig. 8). This indicates that for these ~alues 

of the angular momentum it is not necessary to introduce a tangential 

friction. Using a simple model, neglecting potential effects in first 

approximation and assUming a viscosity proportional to the relative radial 

velocity of the c:m.'s to.take place for a distance equal to 2 (RI-R
8
), 

we find. that a radial vistosi ty coefficient of 2x10 -
22 

MeV. fm.-
2 

sec . 

explains our 35 MeV energy loss. Within the same crude model this 

viscosity leads to a value of 0.9 MeV per nucleon·in the c.m. (Elab =58 

MeV), for the threshold of no fusion at t =Oil, in good agreement with 

the results of Ref. 19. Although we are not in a position to discuss 

the energy dependence of the collective potential, we note that this 

... 
dependence will arise n(;lturally in similar analysis of TDHF calculations 

at other energies. 
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VII. CONCLUSION 

The most interesting phenomenon we have observed :Ln our calculation 

is a region of fusion which yields a fusion cross-section consistent 

with experiment.
28 

This is in contrast to previous calculations in two 

d. . 11- 13 h" h h d f . . f h" h 11" . 1mens1ons w 1c s owe no us1on or. 1g -energy co 1s1ons. 

Therefore, triaxiality is important in the dissipative process that 

leads to fusion. 

It is also important to note the lack of fusion for small angular 

momentum at high bombarding energy. For these small values of the angular 

momentum we calculate the scattering angle and energy loss of the outgoing 

fragments. These predictions are amenable to experimental verification. 

We also find that the absence of fusion for head-on collisions disappears 

at sufficiently low bombarding energies. However, our calculations 

contain several technical restrictions (e.g. spin, isospin, and two 

spatial symmetries) which may affect the specific numerical values 

presented in this paper. 

A comparison with other 3-D calculations
16 

indicates a dependence 

of the results on the effective interaction. This dependence is confirmed 

' 
by the detailed study of the fusion excitation function contained in _; 

Ref. 19. For this reason the TDHF method appears as a promising tool 

for extracting from the experimental data on heavy-ion scattering, 

additional knowledge of the nucleon-nucleon effective interaction. 
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APPENDIX A: DISCRETE REPRESENTATION OF THE TDHF EQUATIONS 

We solve the TDHF equations in coordinate space using methods similar 

to those of Refs. 9 and 12. In our three-dimensional calculations, the 

single-particle wavefunctions are described by their values. on a tmiformly 

spaced cartesian mesh contained within a rectangular box. Vanishing 

boundary conditions are imposed outside of this box. The choices of box 

dimensions and mesh spacing .are influenced by two competing considerations. 

On the one hand, computing speed and storage consideration favor a small 

box and large mesh spacing to· reduce the number of variables describing 

the system. On the other hand, the box must be large enough to contain 

the TDHF solution without the system "hitting the wallsi' and t]le mesh 

spacing must be small enough to give an accurate representation of the 

TDHF energy functional. Our method therefore employs a relatively large 

mesh spacing (1 fm in all three directions) yet uses high-order discret-

izations of the kinetic energy and Yukawa potentials. The box size has 

been varied according to the collision being calculated. We choose the 

center of the box to the time-independent c.m. of the whole system and 

orient the reaction plane normal to one edge (z axis). Typical box 

dimensions are 30 fm x 28 fm x 16 fm in the .x, y, and z directions, 

respectively. The spatial symmetries we impose on the determinant 

(of Section III) restrict the actual numerical work to one-quarter of 

the box volume. How these symmetries are implemented in our code is 

described in Fig. 13. As discussed in Appendix C, the non-conservation 

of energy associated with the boundary conditions of the Yukawa potential 

provides a stringent check against spurious effects of the mesh boundaries. 
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A discrete representation of. the TDHF Hamiltonian can be obtained 

by the variation of a discrete approximation to the energy functional 

with respect to the values of the single-particle wavefunctions at the 

mesh points. This procedure preserves the variational aspects of the 

discrete TDHF equations. It has been discussed in detail for cylindrical 

coordinate systems in refs. 11 and 12 and can.be directly extended to 

three cartesian dimensions. We therefore discuss only those new 

problems presented by the three-dimensional calculations. 

Experience has shown that the zero-range (t
0 

and t
3
) terms of the 

energy functional (Eq. (6)) are accurately discretized on our large mesh 

spacing by a trapezoidal approximation to the integrals (cf. Table III). 

Similarly, an adequate accuracy is easily achieved for the Coulomb energy 

(cf. Appendix C). However, the accuracy of the discrete approximations 

to the kinetic energy and short-range Yukawa potential is very sensitive 

to the mesh spacing and techniques used. We treat the kinetic energy 

below and discuss the Yukawa potential in Appendix C. 

' . 
The total kinetic energy is the sum of the kinetic energies for 

each of the single-particle wavefunctions in each of the three spatial 

directions. It is therefore sufficient to consider a single wavefunction 

in one dimension. The fundamental quantity we are interested in approxi-

mating is then 

T. 
l. 

x.+l'::.:x. 

~ f 1 

x. -l'::.x 
l. 

(A.l) 

where xi is the coordinate at the i th mesh poiN:, l'::.x is the mesh spacing, 

arid wCx) is the wavefunction. A Taylor expansion of T. in l'::.x leads to 
l. 
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Re(1jJ~l)* 1/J~S) + 21jJ~2)* 1/J~4) + 3I1/J~3) 12) + a(Cllx) 7) 
1 1 1 1 . 1 

The notation 1/J~n) is used here for the nth derivative of 1jJ at x .. 
1 1 

(A. 2) 

The lowest order difference approximation to I1/J~l)l 2 
results in 

1 

the three-point approximation to the kinetic energy
29 

(A. 3) 

The variation of the quantity T~ 3 ) with respect to 1/J~ leads directly to 
1 1 

the three-point approximation for 1jJ~ 2 ) used in Ref. 12. A simple analysis 
1 

of T~ 3 ) gives 
1 

rf3) = 6xi1/Jf1) 12 + (6~)3 Re (1/Jf1)* 1/Jf3) +! I1/Ji2) 12) + a(C6x)s) 

(A.4) 

so that the error term in rf
3
) is a(Cllx)

3
). 

The next order approximation to the kinetic energy is obtained by 

using an approximation of the form 

1 
= 

2 (Llx) 
(lb_l/Ji-1 + bo1/Ji + b+1/Ji+i1

2 
+ lb+l/Ji-1 + bo1/Ji + b~1/Ji+11 2 ) 

(A:S) 

* where the coefficients bO,± are chosen so that T~S) approximates T. 
1 1 

*our choice (A. 6) is one member of a one 7 garameter family of complex 
solutions bo = 2/V"3, b± = -1/-J3±~e 1 , o,.;;a.,.;;7T. Equation (A.7) 
holds for any value of a.. 
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V3 

± 1 
2 

(A.6) 

The variation of leads to a five-point approximation to t/!~ 2 ). 29 

1 

The error term is 

T. 
1 

= 
(Llx) 

5 

90 
·(A. 7) 

The use of the five-point approximation for the kinetic energy · 

operator complicates the time-evolution of the TDHF equations. For 

example, in one dimension the HF Hamiltonian is then represented by a 

penta-diagonal matrix, rather than a tri-diagonal one. However, in view 

of the 1 fm mesh spacing we. are forced to use, the extra effort is justified, 

as can be seen by a simple example. We have calculated the kinetic energy 

of the lowest state in a one-dimensional oscillator potential with 

-2 
oscillator parameter mw/n = 0. 275. fm , a typical number for the nucleon 

problems. The results of the three- and five-point formulae with various 

mesh sizes are shown in Table II. The superiority of the five-point 

method is evident. In fact, with a mesh spacing of 1 fm, this method is 

more accurate than the three-point method with Llx = 0.5 fm. 

The translational invariance of the TDHF equations is also affected 

by our discretization procedure. We apply the gauge transformation 
-+-+ 

ik•r 
e to the orbitals of the static HF solution in order to generate the 

-+ -+ 
initial state of a nucleus moving with velocity v = nk/m. Because we use 

a Gallilean-invariant two-body interaction, the HF potential is unaffected 
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by this boost and the single-particle kinetic energy of each orbital 

increases by the translational kinetic energy ET 
2 

= ~mv Although these 

properties are true for the TDHF equations, they need not hold for their 

discrete approximations. In order to test. this aspect of o~r discreti-

zation, we have applied various boosts to the ground-state oscillator 

wavefunction used to construct Table II. Our results are shown in Fig. 

13 where we display the fractional'difference between the calculated 

kinetic energies of the boosted and stationary states. For the calculations 

presented in this paper (ET ~ 2 MeV), the general level of accuracy should 

be 1 to 2% and for ET < 25 MeV, the five-point formula with f:..x = 1 fm is 

more accurate than the three-point formula with f:..x = 0.5 fm. However, 

some caution is necessary in applyipg these results to our actual 

calculations. Figure 13 refers to the lowest state of an oscillator well. 

However, our nuclei also contain p-shell orbitals. The difference 

formulae are less accurate for these higher lying states, so that for 
16

0, 

the translational kinetic energy of the boosted nucleus is in error by as 

much as 5%. The different errors in the different wavefunctions also 

lead in a different way to the breaking of translational invariance for 

the discrete equation. Because of differencing errors, the transformation 
++ 

ik•r 
e sets each orbital in motion with a slightly different velocity. 

Since the HF mean field binds all orbi tars together, some energy is 

gradually transferred from translation into internal excitation. 

In 
16o + 

16
0, this phenomenon leads to at most a 7% loss in translational 

kinetic energy in our calculation over a time of 1.5 x lo-
21 

sec. 

We close this appendix with an overall assessment of the accuracy 

of our discretization of the energy functional. We consider two 
1 ~0 
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nuclei built from oscillator wavefunctions (mw/n = 0.275 fm-
2

) and 

positioned 16 fm apart. They are boosted toward each other with a 

translational kinetic energy per nucleon of ET = 1.74 MeV. In Table II 

we show the calculated (~x = ~y = ~z = 1 fm, five-point formula) and 

analytic contributions to the energy functional. The Coulomb and Yukawa 

energies have been calculated as described in Appendix C; the overall 

accuracy is quite acceptable, with the most serious discrepancy beihg 

some 3 MeV out of 460 MeV in the kinetic energy. 

TABLE III. Contributions to the total energy of two 
16o 

nuclei, as described in the text (values in MeV). 

Discrete 
energy 
functional 

Analytic 
value 

Kinetic 
energy 

457.560 

460.504 

Contribution 
of t

0 
o (f

1 
- t 

2
) 

-423.785 

-423.784 

Contribution of Yukawa 
t 3/6 po(t

1
-t2

) energy 

230.088 -458.594 

230.100 -458.393 

Coulomb 
energy 

36.752 

36.489 
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TABLE II. 

Kinetic 
energy 

(MeV) 

Analytic value 

0.5 

0. 75 

1.0 

1.25 

~a·· l 6 
~ 
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I 4 

The kinetic energy of the groun~r-state of a 
one-dimensional oscillator potential (mw/fl = 
0.275 fm-2) calculated with the three- and 
five-point formulae. l::.x is the mesh spacing. 

3-point 
formula 

2.8269 

. 2. 7968 

2. 7554 

2. 7034 

2.8512 

5-point 
formula 

. 2.8507 

2. 8485 

2. 8430 

2.8320 
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APPENDIX B: SOLUTION OF THE TDHF EQUATIONS WITH A FINITE TIME STEP 

I. Conservation of the Total Erie:tgy 

Although the discussion contained in this paragraph is valid for 

any two-body interaction, we discuss here only the case of a zero-range 

interaction which depends linearly on the density. We therefore deal 

only with the density and the kinetic energy density (formulae 4, 5). 

However, it is straightforward to show that our arguments can be extended 

to the full one-body density operator, i.e., to any two-body interaction. 

We shall also neglect the spin and isospin degrees of freedom which are 

irrelevant to the argument. 

If {~~n)} (1 ~ j ~A) is a set of single-particle wavefunctions at 
J 

time step n, the HF energy at that time step for a two-body interaction v
2 

is 

E (n) = I dT ( ~~ T (n) (TJ + f to P (n) (TJ2 + /6 t3 P(n) (TJ3) 

where p (n) (;) and T (n) (;) are, respectively, the density and kinetic eriergy 

density at time-step n. 

If {•"(J?+
1

)} is the set of s1·ngle-part1·cle f · · o/ wave- unct1ons at t1me-step 

(n+l), we define the quantity op as 

op p (n+1) _ p (n) 
(B .2) 

j=l 
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In the same way we have 

(B. 3) 

Some algebraic manipulations then show that 

2 
(n+l) 

p 

3 
pCn+l) 

= 

= 

en) 2 ( 1) 
p + 6p(p n+ + p (n)) (B.4) 

3 ~ (. (n+1)
2 

(n) (n+1) (n)
2

) 
p(n) +up p + p ·· p + p (B.S) 

· These equations are exact and do not represent a truncated expansion of 
2 3 

p(n+
1

) and p(n+
1

) With Eqs. (B.4 and B.S) the energy at time n+1, 

E(n+
1

) can therefore be written as 

E(n+1) = 
h (n+~) 1jJ c.n+1) 

J 

_ 1jJ (n)* h (n+~) l}JC.n)) 
J J 

(3.6} 

where the Hamiltonian h(n+
1

) is defined as 

h (n+ 1) 
= 

r/ A 3 t ( (n) (n+1)) . 1 t. ·. ( (n) 
2

. (n) (n+1) _Cn+1) 
2

) -u+- p +p +- p +p p +p 
2m 8 · o 16 3 

In order to conserve the energy 
(n+l) · . · 

exactly, the 1jJ. · 's must be constructed-· 
- J . . 

so as to cancel the second term of the right-hand side of (B.6). Theri 

choosing 

(B. 7) 

where U is any unitary operator which commutes which h (n+~) will lead to 

an exact cancellation of (E(n+
1

) ·- E(n)). Since we want, in addition to use, 

a numerical scheme approximating the continuous TDHF equations 

dljJ. 

I 
in al:- = 

h = tl2 
2m 1:1 + 

hl}J. 
J 

(B. 8) 
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we can use the unitary operator 

= ( 
.. 6t h (n'*-~)) exp -1-

n 

or any unitary approximation to the exponential, such as the Crank-

Nicholson (CN) operator: 

1 
i6t h (n+~) 

- 2fl 
0

cN 
= 

i6t h (n+~) 
1 + 

2fl 

(B .10) 

(B .11) 

For the calculations presented in this paper we have expanded the exponential 

operator UE in a power series through 8(6t
5
). Indeed, as the discretized 

(n+k) 
operator h 

2 
amounts to a 3000 x 3000 dense matrix for a typical. mesh 

size, it would be difficult to use the exact exponential operator. In 

-24 
fact with a time step of 4 x 10 s, five terms in the exponential suffice 

to conserve the wavefunction norm to one part in 10
6 

and the total energy 

of the system to better than 0.5% (-1 MeV) over periods longer than 

-21 
l.SxlO s, a typical collision time. 

The relation between h (n+~), and the Hamiltonians h (n) and h (n+ 1) 

defined by 

= 
2 . . . 2 
~ 6 + ~ t p(n) + ~ t p(n) 
2m 4 o 16 3 · 

(B. 12) 

is 

h(n+~) = } (h(n) + h(n+1)) _ :~ (p(n+l) _ p(n)) 2 (B. 13) 

Thus the construction of h (n+~) requires the knowledge of the {1/J~n+ 1 )} 
J 

which are not known ahead of time. In practice we use the following 

procedure. From the Hamiltonians h(n), h(n- 1), and h(n- 2), we construct 

with Lagrange extrapolation a first guess of h(n+~). We then compute a 
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a first estimate of {1/Jfi+l)} with UE. ·We can then obtain h (n+l) and a 

better approximation of h (n+~) using the formulae (B .12} and (B .13). 

Finally we compute the 1/Jjn+
1
) 1 s with UE: It can be shown that further 

iterations of this procedure combined with an exact handling of-the 

operators UE or UCN would lead to a convergence toward the exact solution 

h (n+~), and therefore an exact conservation of the energy. The method · 

used in this paper has therefore the advantage of being easily controlled 

for any value of the time step by increasing either the number of terms 

in the expansion of UE or the number of iterations in the calculation of 

h (n+~). In practice we found that to reach a precision of 1 MeV in the 

· (n+k) 
conservation of the energy, one iteration in the calculation of h 2 

-24 
sufficed (~t = 4Xl0 s). In addition, the precision required (i.e., 

the number of terms in the expansion ofUE) to obtain the first estimate 

(n+ 1) · (n+ 1) 
of {IJI. } is less than the precision needed for the final set of 1/J. 1 s. 

J J ' 

In practice, the first two terms in the exponential operator are sufficient. 

II. Comparison with the Exact Solution 

We will restrict our discussion to the case of the exponential 

operator UE (formula (B .10)) and mention at the end of this appendix the 

results obtained with the CN method and two approximations of the CN method: 

30 
the alternate direction (AD) and the local one-dimensional method (LOD). 

With the exponential operator the wavefunctions at time ~t {IJI~l)} 
J 

are obtained from the wavefunctions at time zero {1/J~O)} as 
J 

w ~ 1) 
J 

= 

where the operator h (~) is constructed according to formula (B. 13). 

(B. 14) 



B-5 

It will make the discussion shorter to restrict ourselves to the 

case where only two-body interactions are included in the Hamiltonian 

" H. The reader may convince himself that the results presented hereafter 

remain true when the zero-range density-dependent interaction is also 

present. For a Hami Itonian with only two-:body interactions the operator 
:, . ' 

h(~) may be written as 

h (~) 
= i ( h (0) + h(i}) . (B. 15) 

For our purposes, it is convenient to emphasize the functional dependence 

of the HF Hamiltonian h (O) and h (1) on the wave-funCtions 1/Jj and their 

*t conjugate 1/J. by writing 
J 

he o) = h(t 1/J c_o) , 1/J c_o) *}) 
J J 

(B. 16) 

In order to determine the precision of the exponential scheme, we shall 

study the derivatives 

6.t = 0 

and compare them with the derivatives of the exact solution 1/J.(t) 
J 

t=O 

(B. 17) 

(B. 18) 

+ . . 
·In this paper the functional• dependence conies only through the density 
p (forfula (4)) but with other interactions, such as the full Skyrme 
force the kinetic energy and the current would also appear in the 
expression of h. 
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. of the TDHF. equations 

aljJ. . 
_J . 1 h1/J 
at - il j 

.(B.l9) 

1/J. (t=O) - \jJ~O) 
J J 

The expression for the first three derivatives of the exact solution at 

t=O are 

aljJ. I J . 

¥ t=O 
(a) 

(}21/J. ,. 
J . 

·at
2 

t=O 
= (b) (B. 20} 

a31/J. 

at; I t=o = 
( 

i co) )
3 

co) . ( i )
2 

(· .(6) 3h .Co) a h CO) co)) CO) 
- K h 1/J j + - K h at + 2 at h 1/J j 

(c) 

In the equations (B.20 ,a-c), the expression 3h(0)/3t should be understood 

as the one-body operator 

From 

ahCo) 

at 

the definition (B.14) 

31/J C.l) 

IL1t=O 

J 
3L1t 

and 

= 

a1/J .. 
_J + 
at 

ah . 3'"'1/Jtj) . 
a1/J~ a 

. J 
t=O 

using (B.lS), we have 

i h co)1/J c_o) 3tlJ. / 
= 

a{ t=o -11 J 

(B. 21) 

(B.22) 
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and 

= (
- ~ h (0))2 lj!J~O) - 2 i. ah (~) I 1/J~O) 

-11 ~ a~t ~t=O J 
(B. 23) 

From relation (B.lS) one has 

ah (~) I 
a~t ~t=o 

= 1 ah (1) I 
I ~ ~t=O 

1 A ( ah alj!P) 

= 2 E aw. J 
. j=l. J CJ~t 

ah 
+ -.-

* CJ1jJ • 
J 

= ! E (~ aljij + ~ a~JJj) = ! ah co) 
2 . 1 alji . at alji ~ at ·t=o 2 at 

J= J J 
(B. 24) 

In order to obtain the last equalities in the above formula we have 

used the result (8.22). Finally, combining (8.23) and (8.24),we. get 

= (8. 25) 

t=O 

A similar derivation gives for the third order derivative. 

= (- i. h co))3 IJJ~o) + 3 (- !)2 _a (he~) 2)1 - ~~o) 
, h J -n a~t - · - ~t=o J 

(8. 26) 

Using the formulae (8.24) and (8.26) and a relation similar to (8.24) 

. (k) 
for the second derivative of h 2 

, one obtains 

= 
_ j_ (a

2
h (O) + i ( ah (O) h (0} _ h (0) ah (O) ))· (O) 

2n at 2 n. at at 1JJ j 

(B. 27) 
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From the results of (B. 22), (B. 25}, and {B .27), one sees that the 

exponential method with the operator defined by (B.lS) ensures that the 

numerical solution obtained at time ~t is equal to the exact solution up 

to order ~t 3 . 

A similar analysis made for the CN scheme leads to the same conclusion 

but with another value for the difference between the exact and numerical 

third order derivatives. The reason for our choice of the exponential 

operator was therefore not the better theoretic~! precision achieved, 

but the analytical properties of the exponential. Indeed, it is difficult 

* to apply the exact operators UE and UcN· Instead we use an expansion in 

powers of ~t for which the exponential always convergent expansion is 

more appropriate than the expansion of 1/(l+x) associated with the CN 

method.t Two other methods: the alternate direction and the local 

one-dimensional method have been shown to be equivalent to the CN 

3 30 
method up to the order lit They therefore achieve the same precision 

as the method used in this paper. However, since the AD and LOD methods 

do not handle the exact operator h(~), they do not conserve the energy 

exactly. In addition, the alternate direction method does not use a 

unitary time propagation operator and does not conserve the norm. 

It should be noted that the analysis made in this appendix is 

restricted to one time step (local error analysis). As far as we know 

*In fact we tested the CN method with the exact inversion performed by 
means of the conjugate gradient method presented in Appendix C. However, 
this proved to be more time consuming for a given accuracy than using 
the expansion of the exponential. 

tFrom the above analysis one could be led to believe that an expansion of 
the exponential up to the order llt3 is sufficient. However, one has to 
use more terms in order to conserve both norm and energy (four terms for 
lit= 4xlo- 24 s). . 
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there does not exist any rigorous way to est1mate the error after a given 

number of time steps, or better, a given evolution time (global error 

analysis). In order to estimate the quality of the method used in this 

paper we have made a calculation of a nuclear collision with two time 

-24 
steps differing by a factor 2 (~t = 2 and 4x10 s) and checked that 

the results remained identical up to the fifth figure during and at the 

end of the collision. 
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APPENDIX C: DETERMINATION OF THE COULOMB AND YUKAWA POTENTIALS 

The one-body Yukawa and Coulomb potentials are given by Eqs. (8b,c) 

as convolutions over the nucleon density (recall p = p/2 because of 
p 

the isospin symmetry we impose). Since these potentials are evaluated 

m:any times during each collision (twice per time step), a direct 

integration of these equations is not possible. We therefore follow 

the strategy of ref. 12 and calculate the potentials as the solutions 

of the discrete Poisson and Helmholtz problems 

= 
2 

-2Tie p (C .1) 

Here, We, Wy, and p are column vectors whose components are the values 

of these functions on the mesh points and V
2 

is a sparse matrix approxi-

mation to the three-dimensional Laplacian operator. We is a smooth 

potential due to the long range of the Coulomb force, so that a 

2 
"three-point" approximation to V WC is adequate. However, Wy varies 

2 
relatively rapidly in space and a "five-point" approximation to V Wy 

is necessary (cf. Appendix A). 

Given the values of Won the mesh boundaries (see below), the 

solution of Eqs. (C .1) amounts to the inversion of a sparse matrix of 

dimensionality equal to the number of mesh points. It is not possible 

to invert directly and exactly such a large matrix. We therefore use an 

iterative method for solving Eqs. (C .1) which construct successive 

approximations to the solutions and continue the iteration process 

until sufficient precision is achieved. These methods have the added 
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advantage that the potentials at the previous time step are excellent 

starting points for the iteration procedures. Recently an old and 

rediscovered method, the conjugate gradient method (CGM) 
31 

has proven 

to be more rapid than the conventional successive overrelaxation methods 

d h 1 d . . h. d 32 an t e a ternate 1rect1on met o s. We shall present the CGM for the 

Poisson equation and discuss briefly the precision achieved. The 

transposition to the Helmholtz problem is trivial. 

Our iterative scheme is a slight modification of that proposed in 

Ref. 33. At the beginning of the time evolution we start with a first 

. (O) + * 
approximation of the potent1al We (r) identical to zero. At the following 

time steps we use as a starting point of CGM the last computed value of 

+ 
WC(r). The calculation of the boundary conditions is discussed at the 

end of this Appendix. In order to begin the iterative scheme we need 

two additional vectors, zCO) and pCO). 

(C. 2) 

= 

The iterative scheme which, in order to save computational time, 

introduces an additional vector T and two numbers A and C, is then 

T(k+l) = b.P(k) (a) 

A (k+l) 
= (zCk) • 2Ck)) I ( zCk) • T(k+l)) (b) 

wCk+l) 
= wCk) + A(k+l) p(k) (c) c c 

*In this Appendix the upper indices (k) label the number of iterations 
performed with the CGM method. 

(C. 3) 
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z (k+ 1) 
= (d) 

= (e) (C; 3) 

= (f) 

In formulae (C.3,a-f) 'the quantity (Z•T) stands for the scalar product 

of the two vectors Z and T. The method, in addition to its rapidity, 

provides a natural way to check the convergence. One can show that 

(C.4) 

so that the norm of the vector (k) is a measure of the remaining inaccuracy 

Of Wc(k) (-+r) • I 1 1 · · d h · b 1 h n our ca cu at1on we. requ1re t 1s norm to e ess t an 

10-lO. 

The solution of both Eqs. (C .1) requires a knowledge of the potential 

boundary conditions. We have assumed that the Yukawa potential is zero 

at the mesh boundaries. Because of the short Yukawa range' (a~ 0.5 fm), 

this assumption is valid if there is no appreciable density within about 

1 fm of the boundaries. When the system approaches the mesh edges, this 

boundary condition results in a repulsive image potential and destroys 

the conservation of the total energy. We have therefore used this phenomenon 

as a signal for spurious effects from the mesh edges and have stopped the 

calculation when the total energy was not conserved to within a precision 

of about 1 MeV. 

The long range of the Coulomb potential forces an explicit evaluation 

of WC at the mesh boundaries. Indeed, setting the boundary conditions to 

zero would result in some 20% error in the Coulomb energy for the box 
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dimensions used in our calculations. One possibility for evaluating the 

boundary conditions for WCis to evaluate Eq. (8c) at selected points 

on the box faces by means of Simpson's rule and then compute the remaining 

boundary conditions by polynomial interpolation. This procedure requires 

relatively many sweeps of the mesh, but need only be carried out every 

3 or 4 time steps. However, a far simpler procedure which is just as 

accurate is to perform a mul tipole expansion of the Coulomb potential. · 

If we assume that the system is always separated into two fragments in 

the way used to define the R coordinate in Section V, then the multi-

pole moments through order three are sufficient to give the required 

accuracy. This method is advantageous in that it makes use .of 

information which is interesting and would have been computed anyway, 

the lower mul tipole moments of the total system and. of the fragments. 
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FIGURE CAPTIONS 

Fig. 1. Contour lines of the density integrated over the coordinate 

1 h . 1 f . 16o 16o 11" . . norma to t e scatten.ng p ane or an + co 1s1on at 

Elab = 105 MeV and incident angular momentum L = 40h. The time 

. . -22 
interval between two pictures is 2x10 s. 

Fig. 2. Contour lines of the density integrated over the coordinate 

normal to the scattering plane for an 
16o + 

16o collision at 

Elab = 105 MeV and incident angular momentum L =13ft. The 

times t are given in units of 10-
22 

s. 

Fig. 3. Contour lines of the density integrated over the coordinate 

normal to the scattering plane for an 
16

0 + 
16

0 collision at 

Elab = 105 MeV and incident angular momentum L = sn. The 

-22 
times t are given in units of 10 s. 

-+ 
Fig. 4. Trajectories of the vector separation, R, between the ceriters-. 

of-mass of the two fragments for incident angular momentum values 

ranging from 0 to 40h. 

Fig. 5. Examples of different trajectories leading to fusion. 

Fig. 6. Trajectory for a nearly head-on (L = O.Sh) collision at low 

energy (Elab = 32 MeV) which leads to fusion. 

Fig. 7. Contour lines of the density integrated over the coordinate 

16 16 
normal to the scattering plane for an · 0 + 0 collision at 

Elab = 192 MeV and incident angular momentum L = 42n. The 

-22 
time interval between two pictures is 10 s. 

Fig. 8. Deflection angle and kinetic energy loss as a function of 

incident angular momentum at Elab = lOS MeV. The shaded area 

corresponds to the fusion window. 
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Fig. 9. Schematization of the nuclear part of a heavy-ion potential. 

E is the kinetic energy for infinitely separated fragments. 
00 

The dashed line is a trajectory in the absence of dissipation. 

It is shifted from E
00 

by the point Coulomb energy EC. The 

solid line is a trajectory with dissipation and W stands for 

the energy loss. 

Fig. 10. Time-dependent single-particle energy spectrum (see text) for 

a nearly head-on collision (L = 0. 5n, Elab = 105 MeV). 

Fig. 11. Upper part: the point Coulomb energy EC and the mechanical 

energy EM (see text) as a function of time for a nearly head-on 

collision (L = 0.5fl., Elab = 105 MeV). Lower part: the corre­

sponding time evolution of the fragment separation coordinate. 

Fig. 12. The thick lines indicate the box in which the calculations 

are actually performed and the thin lines the complete box 

deduced by means of the two imposed symmetries. The gray surface 

indicates a possible equidensity contour surface with the same 

convention. 

Fig. 13. Relative error in the kinetic energy of the lowest state of an 

oscillator. The results are shown for the five-point and three-

point formulae of the kinetic energy and different mesh sizes. 

-2 
The oscillator parameter is mw/n = 0.275 fm . 
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