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Three-dimensional topological acoustic crystals
with pseudospin-valley coupled saddle surface
states
Cheng He 1,2, Si-Yuan Yu1,2, Hao Ge1, Huaiqiang Wang3, Yuan Tian1, Haijun Zhang2,3, Xiao-Chen Sun1,

Y.B. Chen3, Jian Zhou 1, Ming-Hui Lu 1,2 & Yan-Feng Chen1,2

Topological valley states at the domain wall between two artificial crystals with opposite

valley Chern numbers offer a feasible way to realize robust wave transport since only broken

spatial symmetry is required. In addition to the valley, spin and crystal dimension are two

other important degrees of freedom, particularly in realizing spin-related topological phe-

nomena. Here we experimentally demonstrate that it is possible to construct two-

dimensional acoustic topological pseudospin-valley coupled saddle surface states, designed

from glide symmetry in a three-dimensional system. By taking advantage of such two-

dimensional surface states, a full set of acoustic pseudospins can be realized, exhibiting

pseudospin-valley dependent transport. Furthermore, due to the hyperbolic character of the

dispersion of saddle surface states, multi-directional anisotropic controllable robust sound

transport with little backscattering is observed. Our findings may open research frontiers

for acoustic pseudospins and provide a satisfactory platform for exploring unique acoustic

topological properties in three-dimensional structures.
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T
he discovery of topological phases of matter has renewed
our understanding of condensed matter physics over the
past few decades1,2 and has inspired studies of classical

bosonic systems such as photonics3–12 and phononics13–20.
Without considering the difference in spin between fermions
(half-integer spin) and bosons (integer spin), their wavefunctions
share a similar form associated with a similar topology. This
condition gives rise to the search for photonic/phononic analo-
gues of quantum Hall effect with broken time-reversal (TR)
symmetry3,4,14, topological valley states with a broken mirror or
inversion symmetry10–12,18–20, Floquet topological states due to
temporal (or spatial) modulation21–23 and Weyl semimetals with
chiral structures24,25. However, regarding spin-related topological
phenomena, degenerate polarizations or Bloch states must be
introduced to construct pseudospins (with pseudo-TR squares
to −1)26. Therefore, counterparts of the two-dimensional (2D)
quantum spin Hall effect8,15 and of three-dimensional (3D)
topological states27,28 for photons/phonons can be designed in
principle as electrons in electronic systems by using pseudo-TR
instead of natural TR.

For airborne sound such as a spinless wave, an additional
degree of freedom (DOF) such as crystal symmetry needs to be
considered to construct acoustic pseudospins29. Here, we resort to
3D artificial acoustic systems, which provide more flexible plat-
forms to search for this kind of pseudospin among all 230 types of
space groups and provide a pre-designable artificial unit

structure. Typically, the topological nature is manifested in its
character in lower dimension, e.g. 2D systems can possess topo-
logical protected one-dimensional (1D) edge or zero-dimensional
(0D) corner states30, therefore, the 3D models can provide rich
topologically protected 2D surface states beyond 1D and 0D
lowering from 2D systems. In addition, a typical artificial struc-
ture has no more than 104 artificial atoms as a whole, which
enable us to accurately manipulate every atom and to deliberately
introduce defects, take measurements without limitation of the
Fermi level31 and to create arbitrary interfaces32.

In particular, due to the lack of strong spin–orbit coupling and
efficiently TR-breaking method for airborne sound, the valley
DOF can provide a convenient way to realize acoustic topological
states since only broken mirror (or inversion) spatial symmetry is
required. The degenerate point of band structures, such as Dirac
degeneracy in 2D case, can be lifted to form the K (K′) valley in
the momentum space associated with non-trivial Berry curvature.
Although the summation of Berry curvatures over the whole
Brillouin zone (BZ) is trivial in TR symmetric cases, robust edge
transports still exist along some particular directions.

In this article, we focus on 3D valley acoustic crystals with
pseudospin-related topological phenomena. By elaborately
designing the symmetries of 3D lattices, the four-fold degenerate
point of bulk band structures is lifted to two-fold degenerate
valleys, hosting a pair of acoustic pseudospins. The 2D acoustic
topological pseudospin-valley coupled saddle surface states and
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Fig. 1 Band structure evolution. a Schematic of the crystal structure formed by stacked double-layer honeycomb lattices. Red and green colours represent

two types of atoms. b The acoustic atom is constructed using a triangular prism cavity with tubes. Different atoms have different side lengths. c The

schematic for one-half of the first Brillouin zone. d The band structures with identical acoustic atoms lg= lr= 0.7a (one-layer primary unit cell). e The case

of a double-sized unit cell. f The band structures with two different acoustic atoms (lg= 0.6a and lr= 0.8a) possessing glide symmetry. Insets show

schematics for the primary unit cells. The lower panels show the bulk bands projected onto kxy and kyz planes near the degenerate point (black dots)
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the corresponding anisotropic robust sound transport with little
backscattering can be observed in our experiments.

Results
Crystal structure and the bulk band structure. Our 3D peri-
odical crystal structure is composed of stacked double-layer
honeycomb lattices along the z axis, containing two kinds of
acoustic atoms in each layer (Fig. 1a). Two adjacent layers

show glide symmetry that is the combination of reflection sym-
metry (xz plane) and a translation by half a lattice constant
h (along the z axis). This crystal structure belongs to the non-
symmorphic space group No. 194 (P63/mmc). The acoustic
atom is a triangular prism cavity with five tubes connecting
the nearest neighbours (Fig. 1b). For simplicity, different side-
lengths (lg and lr) of the triangular prisms represent different
kinds of acoustic atoms with the other parameters fixed
(lattice constant a= 8.7 mm, height h= 0.54a, height of the
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prism hp= a/3, radius of the tube r= 0.13a). One-half of the first
BZ is shown in Fig. 1c.

To show the evolution of the band structure, we start from
what is likely the simplest 3D structure: a stacked monolayer
graphene structure (graphite). The primary unit cell (inset) with
all its identical atoms and band structures is shown in Fig. 1d. The
side length of the prism is lg= lr= 0.7a. The bulk band projected
onto the kxy and kyz momentum planes at the frequency near the
centre of the K–H direction is shown in the lower panel. Due to
the D6h symmetry, the kxy projected bulk band is a Dirac cone,
where the Dirac point is a two-fold nodal line along the K–H
direction. However, just two-fold degenerate states are not
enough to construct acoustic pseudospins. The key point is to
increase the DOF to form four-fold degeneracy26. An efficient
method is the BZ folding approach. As shown in Fig. 1e, we
choose a double-sized unit cell (associated with one-half of the
BZ). Then, the first two bands are folded into four bands with
four-fold degenerate states at the H point. The kxy projected bulk
bands become doubly Dirac cones. Due to the unbroken TR
symmetry, the states at the H′ point are also four-fold degenerate.
Then, we introduce a sublattice structure by choosing two
different acoustic atoms (lg= 0.6a and lr= 0.8a) with glide
symmetry (Fig. 1f). In this case, a complete band gap is created.
More importantly, the four-fold degeneracy is split into two two-
fold degeneracies, which can be used to form acoustic pseudospins.
The glide symmetry here can be described as G:(x, y, z)→ (x, −y, z
+h). Then, G2:(x, y, z)→ (x, y, z+2h). Due to the Bloch theorem,
the Bloch phase function under lattice translation can be described
as e�ik�r . At the H point (kz= π/2 h), G= e�iπ=2 (G2= e�iπ). The
pseudo-TR written as GK, squares to −1 (the complex conjugation
K represents the TR of sound)26,27, ensuring that the completely

two-fold degenerate Bloch states on the kz= π/2h plane form
acoustic pseudospins (lower panel of Fig. 1f).

The pseudospin-valley Chern numbers. Our model is based on a
four-band model, which can be treated as a kind of acoustic
topological pseudospin-valley states. As shown in Fig. 1e, the
four-fold degenerate states at the H (H′) point are doubly Dirac
cones projecting onto the kxy plane. After introducing the sub-
lattice structure (glide), the mirror symmetry respective to the xz-
plane is broken, with the four-fold degeneracy splitting into two
two-fold degenerate acoustic pseudospin± associated with non-
zero Berry curvatures. The valley Chern numbers at the H point
for the lower two bands (acoustic pseudospin±) (Fig. 1f) are half-
integer with opposite signs C±

H ¼ ± 1=2, while C±
H′ ¼ �1=2 at the

H′ point. Thus, the acoustic pseudospin-valley Chern numbers33

can be described as Cs
v ¼ ðCþ

H � Cþ
H′ � C�

H þ C�
H′Þ=2=+1 (see

Supplementary Note 1). It should be noticed that unlike recently
realized topological spin-valley-locked states in 2D photonic
systems10 [where the spins are two intrinsic electromagnetic
polarizations with the same signs for the valley Chern numbers at
the H(H′) point (associated with Cs

v ¼ 0)], our acoustic pseu-
dospins are artificially constructed via crystal symmetry with
nontrivial Cs

v .

Acoustic pseudospins for topological saddle surface states. To
study the 2D topological pseudospin-valley surface states, we
introduce a domain wall (zigzag) between two opposite domains on
the xz-plane. Figure 2a, b shows one-half of the surface BZ pro-
jected onto the kxz plane and a schematic for the interface. Notably,
there are two pairs of topological surface states with surface nodal
lines, constructed by two opposite saddle surfaces accidentally
touching at their saddle points (Fig. 2c, d). Here, we choose
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four points (marked in Fig. 2c) near the centre of the BZ to
investigate the acoustic pseudospins. The acoustic fields are con-
structed by a symmetric (S) real part and anti-symmetric (A)
imaginary part of the acoustic fields, forming S ± iA states (Fig. 2e).
Then, acoustic pseudospin± can be defined as ∇ ´ (S ± iA).
More importantly, the A state has two independent components:
anti-symmetric respective to the yz-plane (noted as Ax) and anti-
symmetric respective to the xz-plane (noted as Az). This result
can be attributed to the existence of two mirror symmetric
planes perpendicular to the domain wall. Consequently, a full set
of acoustic pseudospins on the Bloch sphere (linear, circular or
elliptical) can be constructed as shown in Fig. 2f, while in 2D
systems, the pseudospins are limited in a 1D space7,15. It should be
noticed that such a zigzag domain wall has a pseudospin-valley
Chern number difference: ΔCs

v ¼ 2 corresponding to two pairs
of topological surface states (Supplementary Figure 3). We can also
design a ΔCs

v ¼ 1 domain wall with only a pair of acoustic
pseudospins (see Supplementary Figure 6). It is also worth
noting that these acoustic surface states are gapped at the kxz
(armchair) or kxy interfaces, because the H and H′ points are
projected onto the same point of the surface BZ; thus, the valley
Chern numbers with opposite signs will be cancelled out (see
Supplementary Figure 4).

Anisotropic robust sound transport. In our experiment, we
choose two orthogonal directions to show multi-directional robust
acoustic pseudospin-valley transport (Supplementary Figure 1).
Figure 3a shows the measured transmission spectra (10 periods) for

surface states along the ~Γ–~X direction with both straight (red line)

and z-shape (blue line) waveguides. In contrast, the measured
transmission spectra for bulk states are shown by the black line,
with a relative band gap width of over 15%. Following the incidence
of the pseudospin+ acoustic wave, the transmissions maintain a
very high transmission value in the bulk band gap frequency region
for both straight and z-shape waveguides, indicating a strongly
suppressed backscattering property (Supplementary Figure 2). The
overall transmission of the saddle surface states is 20 dB larger than
that of the bulk within the bulk band gap, representing the surface’s
gapless behaviour, except for a transmission dip near 19.678 kHz
according to the quadratic saddle point. Near the saddle point, the
extremely flat dispersion results in the rapidly enhanced state
intensity of sound; thus, the transmission is intensely attenuated
even at a very low loss. The simulation results for the pressure field
at frequencies of 19 kHz (in bulk band gap) and 19.678 kHz (near
the saddle point) are shown in Fig. 3b. In simulations, the loss is
introduced by adding an imaginary part (10−3) for the sound speed.
On the other hand, even without the nonlinear effect of loss, the
transmission near the saddle point is still sharply decreased because
of the diminishing group velocity down to zero. A similar robust

transmission along the ~Γ–~Z direction is experimentally observed
(Fig. 3c), matching well with the simulation results (Fig. 3d). The
lossless condition at the saddle point is also provided for compar-
ison (right panel).

To further verify such saddle surface states, we increase the
height (h) between two layers from 0.54a to 0.67a (Fig. 4a).
The interaction between the two layers is weaker. Thus,
the whole band structures show a slight redshift. Interestingly,
two opposite saddles are separated to form an eye-shape
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(Fig. 4b, c). The experimental transmission spectra along the ~Γ–~X
and ~Γ–~Z directions are shown in Fig. 4d, e. There is no obviously
decreased transmission along the ~Γ–~X direction. However, due to
the eye opening, a wider transmission dip along the ~Γ–~Z direction
can be found than that in Fig. 3c. The dashed box represents the
frequency region of the eye. Based on such strong hyperbolic
behaviour for the topological saddle surface states, multi-
directional anisotropic controllable robust sound transport with
little backscattering can be obtained (see Supplementary Fig-
ures 7–10).

Discussion
In summary, we experimentally demonstrate 2D acoustic
pseudospin-valley coupled saddle surface states in 3D topological
acoustic crystals generated due to glide-symmetry design29.
Compared to the electronic topological crystalline insulator with
saddle dispersion in condensed matter physics34,35, this acoustic
model exhibits surface nodal lines for the surface states, which
can hardly shrink to a Dirac cone because of the lack of intrinsic
acoustic spins (Supplementary Figure 5). Our acoustic pseudos-
pins (satisfying pseudo-TR) are constructed by crystal symmetry
which cannot be kept intact on the domain wall. Unlike the
intrinsic spins of electrons, these acoustic pseudospins are gra-
dually changed along the surface, e.g. becoming linear pseudos-
pins at the saddle point. However, this 3D acoustic topological
model still shows strongly suppressed backscattering behaviour
on the whole 2D surface, which resembles the 2D topological
cases with a tiny gap in the middle of the 1D edge states7,15,36 due
to spatial symmetry breaking on the boundary. The results we
revealed here may pave the way towards acoustic pseudospins
and valleytronics in 3D structures37. The saddle surface states
could be applied to realize hyperbolic pseudospin filters37. The
robust pseudospin-valley propagation within a large topological
band gap and the extremely flat dispersion near the saddle point
may give rise to an ultraslow sound, ultrahigh-Q acoustic
resonator.

Methods
Experiments. Our samples are fabricated by 3D printing with commercial low-
viscosity liquid photopolymer materials (Somos Imagine 8000). The tolerance of
the fabrication is ±0.1 mm, which is less than 5% compared to the smallest feature
size of 2.2 mm in our model. Due to the fabrication tolerance of different samples,
the measured transmission spectra for the saddle points in Fig. 3a, c show a slight
blue or redshift. A B&K-4939-2670 microphone acts as a detector, which is placed
1 cm from the boundary with its response acquired and analysed in B&K-3560-C.
The frequencies are swept from 14 to 24 kHz with an increment of 0.02 kHz. The
experimental transmission spectra plotted in this article are normalized to the
acoustic wave transmission through the same distance in air. The slight deviation
recorded in experiments is due primarily to the frequency dependent coupling into
and out efficiency.

Simulations. Numerical investigations used to calculate band structures
(Figs. 1d–f, 2c, d and 4b) and field distributions (Figs. 2e and 3b, d) are conducted
by using an acoustic model in commercial FEM software (COMSOL MULTI-
PHYSICS). Due to the large acoustic impedance mismatch between air and pho-
topolymer material (modulus 2765MPa, density 1.3 g cm−3), the models in the
numerical calculation are constructed using only acoustic cavities with hard
boundaries, without considering the polymer background. The density and velocity
of sound are chosen to be 1.25 kg m−3 and 343 m s−1, respectively. The numerical
results agree well with experimental results.

Data availability
The data that support the plots within this paper and other findings of this study
are available from the corresponding author upon request.
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