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As compared with the existing techniques for calibra-

tion of bolometer mounts, the methods proposed herein

may appear unduly complex, at least in terms of operator

effort. On the other hand, it must be recognized that the

coupler–mount assembly is a two-port device, and to the

author, at least, this increase in complexity appears un-

avoidable.
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Three-Dimensional Transmission-Line Matrix Computer
Analysis of Microstrip Resonators

SINA AKHTARZAD AND PETER B. JOHNS

4fntrac~—A wide range of microwave resonators are analyzed
using the same three-dimensional transmission-line-matrix (TLM)
computer program. The paper demonstrates the ease of application,
versatility, and accuracy of @e TLM method. The results presented

include the dispersion characteristics of microstrip on dielectric and

magnetic stibstrates and an example of a microstrip discontinuity.

The surface-mode phenomenon of microstrip is also investigated.

I. INTRODUCTION

THE SOLUTION of large microwave integrated circuit

(MIC) subassemblies presents a major problem to any

numerical method. However, it would seem that the first
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step should involve a numerical routine of a very general

nature for simple discontinuities in three-dimensional

structures. There are many articles giving design data for

single microstrip ([1 ]–[5], for example), pairs of coupled

strips ([6}[9], for example), and coplanar waveguides

(C1O] and [11]). Discontinuities which can occur in simple

configurations such as abruptly ended strip conductor

[12]-[14] and strip-width variation [12] have also been

reported. Some of these publications use methods based

on static approximations and all of them tend to use fairly

specialized techniques and programs. Thus the design

engineer does not have a universal and general program
for solving a wide range of problems. The transmission-

line matrix (TLM) [15], [16] method of numerical analy-

sis in the form of a very general and short program fulfills

this requirement.

The purpose of this paper is twofold: firstly, to review

the general state of the art of the TLM method as far as

the modeling of three-dimensional cavities is concerned;

Secondly, to demonstrate the accuracy and the versatility
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of this method in the form of a computer program by

means of a few typical microstrip cavity examples. It

should be noted that all the examples presented in this

paper have been analyzed strictly in three dimensions

using various lengths of cavity to obtain the dispersion

curves.

II. A BRIEF OUTLINE OF THE TLM METHOD

The TLM numerical method in two dimensions [17]

has been extensively explored in various papers where it

has been used to solve general two-dimensional loss-free

[18] and lossy inhomogeneous [15] field problems, In

two dimensions the method is based on a network of shunt

nodes connected together to represent a propagating space.

However, the method has now been extended to use shunt

nodes [Fig. 1 (a)] in conjunction with series nodes [15]

[Fig. 1 (b)] to represent a true three-dimensional [15]

space so that each three-dimensional node consists of

three shunt and three series nodes. The three shunt nodes

represent the E-field, and the three series nodes represent

the H-field in the three coordinate directions as shown in

Fig. 1 (c) (note that in Fig. 1 (c) single lines are used to

represent a pair of lines). To accommodate discontinuities

such as metallic boundaries and slabs of dielectric or

magnetic material, open-circuited and short-circuited

lengths of lines (stubs) of variable, normalized charac-

teristic admittance YO and ZO are added to shunt and

series nodes, respectively. By varying the values of YO

and ZO, the values of permittivity (e,) and permeability

(~~), respectively, at the node, can be fixed to any desired

value. The three-dimensional node is further equipped

with stubs of infinite length and normalized characteristic

admittance GO at the shunt nodes to facilitate any di-

electric losses which may be required. The three-dimen-

sional geometry of a problem is set up by connecting many

such three-dimensional nodes together.

Let us now examine the three-dimensional node of Fig.

1 (c) more closely. In [15] it is shown that if the voltage

(v) between the lines represents the E-field, and the current

(1) in the lines represents the H-field, then the field

equations satisfied by a three-dimensional node corre-

spond to the set of Maxwell’s equations as follows:
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Fig. 1. (a) Shunt-connected node with permittivity und loss stubs.
(b) Series-connected node with permeability stub. (c) Schematic
diagram of a three-dimensional node including the permittivity,
permeability, and loss stubs (two-dimensional node separation
snd stub length = A1/2). Note that the dotted lines making up
the corners of the cube are guide linw and do not represent trans-
mission lines or istmbs.

In these equations, the following equivalences apply:

Ez = the common voltage at shunt node E,,,

E. : the common voltage at shunt node E,

Ez = the common voltage at shunt node E,
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Hz = the common current at series node H.

Hv = the common current at series node Hv

H, = the common current at series node H.

e. = C (the capacitance per unit length of lines)

e,= 2(1 + Ye/4)

p~ = L (the inductance per unit length of lines)

p, = 2(1 + 20/4)

u = Go/( (L/C) 112.At) (7)

where A1/2 is the spacing between the individual two-

dimensional elementary nodes.

Therefore, it can be seen that the six components of

the electromagnetic (EM) field ‘at a three-dimensional

node are readily available at the corners of the three-

dimensional node cube and are analogous to common

voltages or common currents at the shunt, or series nodes.

Furthermore, it is noticed that permeability (p,), or per-

mittivit y (e,) and conductivity (o-) of part of the space

represented by the three-dimensional node may be made

variable simply by adjusting the normalized characteristic

values of stubs 20, YO, and GO, respectively. The three-

dimensional node represents a cube volume of space of

A1/2 long in each direction. Interconnection of many such

three-dimensional nodes makes it possible to describe any

complicated inhomogeneous media. The TLM method is

then concerned with obtaining the impulse response of

such network representing the media. The numerical

routine is therefore based upon the voltage impulse scat-

tering matrix of the individual two-dimensional nodes

forming the three-dimensional node. The voltage scattering

matrix for the shunt node [153 is

1111 Yo’

llll%

llll%

llll%

llll%

where

Y=4+YO+G0.

Similarly, the voltage

node [15] is given by

–1 1

1 –1

1 –1

–1 1

,–20 20

9 (8)

(9)

scattering matrix for the series

1 –1 –1 -

–1 1 1

–1 1 1

1 –1 –1

20 – 20 – zo_

+9 (lo)

where

Z=4+ZI). (11)

In these equations g is the unit matrix.

Conducting boundaries and strips of a problem are

simulated in the model by means of short-circuiting the

individual shunt nodes in the plane of the boundary or

strip. The boundaries may be made lossy by using im-

perfect reflection coefficients [19]. Open-circuit planes of

symmetry may be utilized to make use of the onefold,

twofold, or threefold symmetry of a particular structure.

This would, of course, lower both memory stores and

run-time requirements of a program considerably. An

open-circuit plane may be simulated by means of open-

circuiting the individual series nodes lying on the plane.

For the purpose of the analysis, any of the six EM

field components is excited by introducing impulses at

various points in the network model. The initial sign and

amplitude of a field component can be fixed using appro-

priate initial impulse values. These impulses travel along

the ideal TEM lines and are scattered at the individual

two-dimensional nodes according to (8)–(11). In this way,

the time-domain propagation of all six EM field components

is obtained simultaneously. A solution for any (or all) of

the field components is available anywhere within the

geometry of the problem. The output consists of a stream

of impulse amplitudes corresponding to the output impulse

function for the particular field component under con-

sideration. Finally, the Fourier transform of this function

is taken to yield the response to an excitation varying

sinusoidally with time.

A general-purpose computer program based on the pre-

ceding analysis has been written. This program is highly

versatile and all the information relating to a three-

dimensional resonator, such as conducting boundaries,

strip patterns, permeability y, and permittivit y at different

points and also losses, is simply fed into the computer as

data. The three-dimensional program is an extension of

the two-dimensional TLM program [20] and has been

written in only 110 lines of Fortran including three short

subroutine programs. This program is used to obtain re-

sults for all the following examples in this paper. These

specific examples have been chosen for the sole purpose

of comparison with other results available.

III. MICROSTRIP CAVITIES

The general TLM program has been used to find the

resonant frequencies of three-dimensional cavities contain-

ing microstrip. The first microstrip cavity checked on the

computer corresponded to the structure of Fig. 2. In the
TLM method the resonant frequencies of cavities with

various lengths (L) are used to plot frequency in gigahertz

versus phase constant (~) curve. The TLM result is com-

pared with Mittra and Itoh [3] and Hornsby and Gopinath

[4] in Fig. 2. The quasi-TEM solution for open micro-

strip line based on Wheeler’s curves [1] is also shown for

comparison. The frequency versus phase constant curve

for the quasi-TEM analysis shows no dispersion. This is

due to the fact that the dispersion effect is neglected in
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Fig. 2. Dispersion diagram of enclosed microstrip line (a/Al = 4).
— TLM method; –––, Mittra and Itoh; -----, Hornsby and
Gop~nath; ---, quasi-TEM (open microstrip).
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Fig. 3. Effective dielectric constant versus frequency (2a/Al =

15, 21).

such an analysis. The curves of Fig. 2 demonstrate the

high accuracy of the results obtained by this method, even

though a very small number of nodes (see the figure) have

been used to describe the geometry of the problem.

Longitudinal field components effect a phase velocity

decrease with increasing frequency. @ = ~/~0 = e,f~11~de-

scribes the frequency-dependent behavior of effective per-

mittivit y. Fig. 3 shows the frequency dependence of e,f~

for a microstrip cavity shown in the same figure. In Fig.

3, the effective permittivity versus frequency curve ob-

tained by the TLM method for various lengths of cavity

(L) is compared with that given by Itoh and Mittra [21].

A full description of the method used in [21] is given in

[13]. Note that the method used in [13] by the author,

Itoh, differs from that given in [3] by Mittra and Itoh.

IV. MICROSTRIP LINE ON MAGNETIC

SUBSTRATE

The method is used to calculate the dispersion relation-

ship for a microstrip line on an isotropic magnetic sub-

strate. The example is given for a relative permeability y

of p. = 0.8 which is within a practical range of permeabili-

ties for substrates biased along the direction of propaga-

tion [22]. The results are shown in Fig. 4 and are compared

with the result obtained by Pucel and Mass6 [22] assum-

ing TEM propagation. As expected, the results agree for

low frequencies, and the discrepancy between the TEM

assumption and the true dispersive result obtained by
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— QUASI -TEM ( open micro#rlp)
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2!.26
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Fig. 4. Dispersion diagram of enclosed microst,rip l;ne ofi an iso-
tropic magnetic substrate (2a/Al = 13).

the TLM method becomes important only at high fre-

quencies.

Pucel and Mass6 have derived a duality relationship

between magnetic and dielectric substrates, again assum-

ing TEM propagation. This relationship allow:! calculation

of the effective permeability y yeff in terms of effective

permittivity c.ff by the formula [22]

1
Peff (~/~JJ) =

‘%ff ( w/~,F1) “

In [23], using the TLM method, it is shown how the

product p.f f. c.ff varies with frequency for substrates with

w = 0.8 (~~ = 1) and e, = 1.25 (p, = 1). ‘The results
show that at low frequencies the TEM apmoxin-mtion I

applies since the product is near unity. At high frequen-

cies p.ff tends to unity and the product then asymptotes

to ~.ff. The near-linear variation of e.ff with frequency

suggests that the approximate method for calculating pw

used by Pucel and Mass6 [24] yields good results.

In Fig. 4 the dispersion curve obtained by this method

for the first waveguide mode of the same structure is also

shown. It must be noted that since the TLM method

operates in the time domain, the output impulse function

also contains the information about the higher order

modes. Therefore in Fig. 4, each pair of resonant frequen-

cies corresponding to the same B (or L) have been ob-

tained in one run of the program.

V. MICROSTRIP DISCONTINUITIES

The versatility of both the TLM method and the TLM

program is further illustrated hereby calculating the reso-

nant frequencies of cavities containing microstrip with

an abrupt change in width.
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Fig. 5 shows the geometry of a dielectric-loaded cavity

with a microstrip line. The width of the center line is

nonuniform with an abrupt change. Some representative

numerical results of this geometry are shown in Fig. 6.

The TLM results are compared with a curve calculated

by TEM analysis with a capacitive discontinuity giyen

by Farrar and Adams [12]. Farrar and Adams obtain

their results using a matrix method which is based on the

quasi-static approximation. From Fig. 6 it is apparent

that the relative values of frequency for short lengths

(2L) of the cavity-are considerably lower than those

computed by the quasi-static approximations. This is

partly due to the lack of dispersion in the continuous

sections when employing TEM analysis. The discrepancy

is due to the fact that there is a fringing field effect be-

tween the discontinuity edges and the front conducting

plane of the cavity (Fig. 5) in the TLM results. For a

short length of L in Fig. 5, the fringing capacitance will

have an effect comparable with. that of the discontinuity

and hence the larger differences at this region.

The dispersive curve for a uniform line with W = WO =

.

Fig. 5. Microstrip cavity with an abrupt change in linewidth.
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Fig. 6. Dispersion diagram for structure of Fig. 5 (2a/A1 = 13).

1.75 mm is also shown in Fig. 6. This shows that the dis-

persion due to the line itself is far more important than

the dkpersion due to the discontinuity. Hence a solution

based on the quasi-TEM analysis of the complete struc-

ture would be misleading.

VI. INVESTIGATION OF THE LOW-LOSS

MICROSTRIP MODE

It is well known that the dominant mode of propaga-

tion, in the inhomogeneous structures is basically the

quasi-TEM mode with a dc cutoff frequency. However,

in [5], using the finite-element method of numerical analy-

sis [25], Daly has predicted the existence of a second

type of mode also with a dc cutoff frequency. The particu-

lar mode has been referred to as surface wave due to the

heavy concentration of all field components near the air–

dielectric interface. The longitudinal fields for this mode

decay rapidly away from the interface as in surface wave-

guides [26], [273. Daly argues that due to the smallness
of the electric field at the conductor, for a given surface

resistivit y, the losses in the surface wave would be very

much smaller than for the quasi-TEM waves. The same

general argument would also hold if the dielectric were

lossy. The dispersion in the proposed surface mode was

also predicted to be negligible compared to that tor the

TEM mode.

These desirable properties highlight the importance of

investigating the existence and properties of this mode

and an attempt has been made to do this using the TLM

method. Thus the structure of the example used by Daly

was reproduced in the computer in order to compare his

results with the TLM results. The geometry of the struc-

ture is shown in Fig. 7. For the purpose of representation,

in Fig. 7 results are compared for frequency versus phase

1
AIR ~lLLEo wave ulde mode

70 ~/ ~D@L,,’SMS~~ACE

Fig. 7.

0 0.5 1.0 1-5 2-o 2.5
P( mm-l)

Dispersion diagram of enclosed microstrip line (a/Al = 8).
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constant rather than frequency versus effective permittiv-

ity [5]. Considerable care was taken to try to excite the

surface mode as suggested by Daly, and the cavity was

even excited with Daly’s field values as given in [5].

However, there was no resonant frequency corresponding

to this mode, even though higher order waveguide modes

are readily detected. (Note that in [15], the same micro-

strip structure, but without the strip, was used to obtain

accurate surface-waveguide-mode results. )

Figs. 8 and 9 show a typical E.-field amplitude versus

normalized frequency Al/k for the cavity of Fig. 7, with

L = 3.75 mm. (Note that the effect of truncating the

iteration process is to cause the field values, expressed as

a function of frequency, to be convolved with a sin ~/.f-

type curve as shown in these figures. This causes smooth-

ing of high narrow peaks of the output function. ) Fig. 8

clearly shows the resonant peaks corresponding to the

quasi-TEM, the first, and the second higher order wave-

guide modes. Any resonant frequency corresponding to

the surface mode would have appeared between the quasi-

TEM and the first waveguide mode resonant frequencies

(see Fig. 7). Fig. 9 shows a version of this region for 2000

iterations, but there is still no sign of a resonance corre-

sponding to the surface or low-loss mode. Therefore we

conclude that such a mode most probably does not exist.
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Fig. 8. A typical E-field spectrum for the resonator of Fig. 7
(L = 3.75 mm) clearly showing the resonant peaks corresponding
to the quasi-TEM, the first, and the second waveguide modes.
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Fig. 9. A closer inspection of Fig. 8 for the range between rasonant
peaks of the quasi-TEM and the first waveguide mode in search
of the possible existence of Daly’s surface-mode resonance.

VII. SIX-COMPONENT EM FIELD

DISTRIBUTIONS

With a slight modification to the general TLM pro-

gram, values of the six components of EM fields at any

frequency are readily available at all the nodes inside a

cavity. This is considered to be important not only for

the value of seeing the field distribution, but also for the

following reason. In [28], the authors have shown the

results for the power decay times of a number of partially

filled Iossy dielectric cavities. However, in all cases the

initial field excitation consisted of equal amplitudes of Eu

at each of the nodes and hence the decay time was not to

be associated with any one particular mode. But using

the field distribution information, it is propcsed that the

decay time for a particular mode may be found. This will

be the topic of a subsequent investigation.
Figs. 10–12 show the distribution of the six electric and

magnetic field components across various plat~es of micro-

strip cavity in Fig. 7. (Note that the numerical values

given in Figs. 10T12 apply at the three-dimensional node

cube corners as projected onto the z~ plane. ) The field

values are for a frequency of 35.59 GHz corresponding to

the dominant mode (quasi-TEM) frequency resonance of

this cavity with L = 2.25 mm. Cross sections in the z-

coordinate direction have been chosen at various dis-

tances z = 1 from the front s/c plane of the c~vity so that

the particular field components in that plane will exhibit

maximum values. The general characteristics of the fields

are much as would be expected, i.e., the fielcls are mostly
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Fig. 10. Transverse electric field distribution in th,> z-y plane and

z = 1, for the dominant microstrip mode of Fig. 7 structure at

35.59 GHz (~ = 2.25, z = 1.0 mm); horizontal number ~~, verti-

cal number ,?lti.
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andz = .fforthe dominant microstrip mode of Fig. 7 structure at
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horizontal number Hy.
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Fig. 12. Longitudinal electric and magnetic field distributions in
the x-y planes with z = 11 and z = k, respectively, for the domi-
nant microstrip mode of Fig. 7 structure at 35.59 GHz (L =
2.25 mm, ZI = 0.25 mm, ZZ = 1.0 mm); decimal number –E,,
integer number H,.

concentrated in the dielectric, and the normal electric

fields and tangential magnetic fields at or near the strip

and the surrounding conductors reach a maximum.

VIII. CONCLUSIONS

This paper has demonstrated the application of the

TLM method of numerical analysis to three-dimensional

microstrip cavities. The main advantages of the TLM

method are its ea,se of application, its versatility and ac-

curacy.

The ease of application arises ‘because of the close con-

nection between the numerical routine and the actual

physics of wave propagation [29]. For example, provided

the capacitance c~f the lines in the TLM method are in-

creased somehow (by using stubs in this paper) then,

because all six components of the field are properly ac-

counted for, the dielectric boundary will also be properly

accounted for. Thus there is no need to introduce special

numerical routines to take account of the boundary. The

same argument alpplies to lossy materials (from zero con-

ductivity to infinite conductivity) and hence for metallic

boundaries also.

The versatility arises for similar reasons. The proper-

ties of a medium are described at each node by the two

stubs, the permittivity and permeability y stubs at shunt

and series nodes, and the loss stub at shunt nodes. The

TLM program consists, therefore, of setting the properties

of the medium at each node in the first instance, and t“hen

performing the iteration process to find the way in which

the fields propagake. Thus the complication of the geome-

try in terms of t, P, and u is limited only to the mesh

coarseness, and does not affect the program listing.

The accuracy of the method is due to the sophistication

of the internodal field function which is (almost unwit-

tingly) used when the Fourier transform is taken. In

effect, the act of taking the Fourier transform puts a

section of a sinusoidal function between each node. For

example, in a homogeneous rectangular cavity the field

functions ‘are not solved approximately, but exactly [30].

It is for this rea,son that field description errors in the

TLM method tend to be less than for many other methods.

However, it would be impractical to have an easily ap-

plied, versatile and accurate method if the computer run-

ning time and storage were unreasonable. W bile it is not

possible to present formulas for the general case at this

stage, it is hopecl that the following figures demonstrate
that the running time and storage of the TLM method

are at least comparable with other methods. The first

case is for the geometry of Fig. 2 for L = 2.5 mm using

5 X 9 X 6 = 2701 nodes (no symmetry properties used)

and 200 iterations of the matrix. In this problem the

running time waw 2.16 min and the total storage was

201{ words. The second example is for Fig. 5 for 2L = 5.0

cm using 8 X 8 X 11 = 704 nodes (symmetry “property

used) and 400 iterations. Here the time was 11.26 min

using 46K words. The results are quoted for the ICL

1906A computer.
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