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THREE-DIMENSIONAL TRIANGULATIONS FROM
LOCAL TRANSFORMATIONS*

BARRY JOEt

Abstract. A new algorithm is presented that uses a local transformation procedure to construct a

triangulation of a set of n three-dimensional points that is pseudo-locally optimal with respect to the sphere
criterion. It is conjectured that this algorithm always constructs a Delaunay triangulation, and this conjecture
is supported with experimental results. The empirical time complexity of this algorithm is O(n4/3) for sets
of random points, which compares well with existing algorithms for constructing a three-dimensional
Delaunay triangulation. Also presented is a modification of this algorithm for the case that local optimality
is based on the max-min solid angle criterion.

Key words, three-dimensional triangulation, Delaunay triangulation, max-min solid angle criterion,
computational geometry, mesh generation
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1. Introduction. The three-dimensional triangulation problem is as follows. Given
n three-dimensional points, connect them into nonoverlapping tetrahedrons that fill
the convex hull of the points. There are many ways to triangulate the n points. Special
triangulations include the Delaunay triangulation and the triangulation satisfying the
max-min solid angle criterion. Algorithms for constructing a Delaunay triangulation
in k-dimensional space for k->2 are given by Bowyer [2], Watson [14], and Avis and
Bhattacharya [1]. For the three-dimensional case, the estimated time complexity is
O(n4/3) for Bowyer’s algorithm and higher for the other two algorithms. Applications
of three-dimensional triangulations include finite-element mesh generation (Nguyen
[11], Cavendish, Field, and Frey [3]), where it is usually desired to avoid small angles
in triangulations, and interpolation and contouring (Petersen, Piper, and Worsey 12]).

In this paper, we investigate a local transformation procedure for three-
dimensional triangulations that is analogous to the procedure of Lawson [8] for
two-dimensional triangulations, and use this local transformation procedure in a new
algorithm for constructing three-dimensional pseudo-locally optimal triangulations,
where local optimality is based on either the sphere criterion (satisfied by Delaunay
triangulations) or the max-min solid angle criterion. We conjecture that our algorithm
always constructs a Delaunay triangulation in the case of the sphere criterion.

In 2, preliminary definitions and results are given. In 3, the main theoretical
results are presented for the sphere criterion. In 4, an algorithm and data structure
are given for constructing a pseudo-locally optimal triangulation with respect to the
sphere criterion, assuming that no four vertices are co-planar. In 5, this assumption
is removed and the algorithm is. extended. In 6, optimal triangulations with respect
to the max-min solid angle criterion and their computation are discussed. In 7,
experimental results are presented for a Fortran implementation of the algorithms. In

8, concluding remarks and open problems are given.

2. Preliminaries. Let S be a set of n >=4 three-dimensional points (or vertices)
that are not all co-planar. A triangulation of S is valid if and only if (a) the four
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3-D TRIANGULATIONS FROM LOCAL TRANSFORMATIONS 719

vertices of any tetrahedron are not co-planar; (b) any tetrahedron abcd contains no
points of S-{a, b, c, d}; (c) the intersection of the interior of any two tetrahedrons is
empty; and (d) a triangular face is either on the boundary of the convex hull of S
(and occurs in exactly one tetrahedron), or it is common to exactly two tetrahedrons.
For any valid triangulation of S, let Vb and V be the number of boundary and interior
vertices, respectively; let Eb and Ei be the number of boundary and interior edges,
respectively; let Fb and Fi be the number of boundary and interior faces (triangles),
respectively; and let T be the number of tetrahedrons. For any triangulation of S, Vb,
Vi, Eb, and Fb are the same. Vb is the number of vertices on the boundary of the
convex hull of S and V n- Vb. Eb and Fb are constant because all two-dimensional
triangulations of the same vertices have the same number of edges and triangles.

However, different triangulations of S may have different values for E, F, and
T. The above quantities satisfy the following relations (Fuhring [5]):

(1) (a) T= (Fb + 2Fi)/4,
(b) Fb=2Vb--4,
(C) Fi Vb + 2(E,- V)-4,
(d) Eb 3Fb/2.

Substituting (b) and (c) into (a) results in

(2) T-- Vb + Ei- Vi- 3.

Clearly, E may be at most n(n-1)/2= O(n2). From (1 (c)) and (2), it can be seen
that F and T may be at most O(n 2) as well. Note that if E is increased by one, then
Fi is increased by two and T is increased by one. It is not too difficult to construct a
family of triangulations for which E, F, and T are all proportional to n 2 (see 7).

For two-dimensional triangulations, the local transformation procedure is as
follows. If two adjacent triangles of the triangulation form a strictly convex quadri-
lateral, then swap the common edge for the other diagonal edge of the quadrilateral
to form two new triangles. Lawson [8] proves that given any two triangulations T1
and T2 of a set of two-dimensional points, there exists a finite sequence of local
transformations (edge swaps) by which T1 can be transformed to T2. Lawson [9] uses
this local transformation procedure in an algorithm for constructing a two-dimensional
Delaunay triangulation of n points in an estimated average time of 0(/’/4/3).

For three-dimensional triangulations, the analogous local transformation pro-
cedure is based on the observation that a strictly convex hexahedron formed from five
vertices can be triangulated in two ways, the first containing two tetrahedrons and the
second containing three tetrahedrons. This is illustrated in Fig. 1, where the five vertices
are a, b, c, d, and e; (i) contains the two tetrahedrons abcd and abce, and (ii) contains
the three tetrahedrons abde, acde, and bcde. Note that (i) contains interior face abc
and no interior edges while (ii) contains three interior faces ade, bde, cde, and interior
edge de. The local transformation procedure is that if two (three) adjacent tetrahedrons
of the triangulation form a strictly convex hexahedron as in Fig. 1, then replace the
tetrahedrons by the other possible triangulation of the hexahedron containing three
(two) tetrahedrons. This local transformation procedure can be considered to be a face
"swap," where one interior face is "swapped" for three interior faces or vice versa.
In the next two sections, we describe how this local transformation procedure can be
used to construct a (nearly) Delaunay triangulation.

Two special three-dimensional triangulations of n vertices are the Delaunay
triangulation and the triangulation satisfying the max-min solid angle criterion. A
Delaunay triangulation satisfies the sphere criterion: the circumsphere of the four
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720 BARRY JOE

C ,C

(i) (ii)
FIG. 1. Two possible triangulations of strictly convex hexahedron. (i) Two tetrahedrons abcd and abce.

(ii) Three tetrahedrons abde, acde, and bcde.

vertices of any tetrahedron of the triangulation contains no vertices in its interior. A
Delaunay triangulation is unique if no five vertices are co-spherical. The Delaunay
triangulation is also the dual of the oronoi tessellation (Bowyer [2], Watson [14]).
The Voronoi tessellation of n vertices is a collection of n convex regions such that
each region contains the points closer to one vertex than all the other vertices.

A tetrahedron contains twelve planar angles (three in each of the four triangular
faces), six dihedral angles (one at each of the six edges), and four solid or trihedral
angles at the vertices. The planar and dihedral angles are straightforward to compute.
The definition and computation of a solid angle, e.g., at vertex d of tetrahedron abcd,
are as follows. The solid angle at d is the surface area on the unit sphere formed by
projecting each point on face abc to the surface of the unit sphere with d at its centre.
In general, a solid angle can be defined as a double integral. In the special case of a
tetrahedron, the solid angle (or spherical excess) at d can be computed as c / fl + y- 7r

(Gasson [6]), where a, /3, and 5’ are the dihedral angles at edges ad, bd, and cd,
respectively (a, fl, and 5’ are also the spherical angles at the projection of a, b, and c,
respectively, on the unit sphere).

A triangulation satisfies the max-min solid angle criterion if over all possible
triangulations of the vertices, the minimum of the solid angles at all vertices of all
tetrahedrons is maximized. For two-dimensional triangulations, the circle and max-min
angle criteria are identical, i.e., a Delaunay triangulation satisfies the max-min angle
criterion and vice versa (Lawson [9]). Field [4] recently conjectured that the sphere
criterion and max-min solid angle criterion are identical for three-dimensional triangu-
lations. However, the following simple example shows that this conjecture is false. Let
vertices a, b, c, d, and e have the (x,y, z) coordinates (0, 0, 0), (2, 0, 0), (2,2, 0),
(1.5, 0.5, 2), and (1.5, 0.5,-0.5), respectively. There are two ways to triangulate these
five vertices as illustrated in Fig. 1. It is straightforward to verify by calculation that
triangulation (i), containing two tetrahedrons, satisfies the max-min solid angle criterion
but is not Delaunay, and triangulation (ii), containing three tetrahedrons, is Delaunay
but does not satisfy the max-min solid angle criterion. In 6, we discuss the max-min
solid angle criterion further.

3. Theoretical results. In this section, we present some theoretical results for
three-dimensional triangulations and the sphere criterion. Some of these results are
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3-D TRIANGULATIONS FROM LOCAL TRANSFORMATIONS 721

three-dimensional versions of those in Lawson [9]. We start with definitions and results
concerning the local optimality of interior faces in three-dimensional triangulations.
In particular, we show that if every interior face of a triangulation is locally optimal,
then it is a Delaunay triangulation. Then we discuss how the local transformation
procedure given in the previous section can be used to improve an arbitrary three-
dimensional triangulation to a nearly Delaunay triangulation, called a pseudo-locally
optimal triangulation. We give results on when this improvement process does not
terminate in a Delaunay triangulation, due to the nontransformability of some nonlo-
cally optimal faces (unlike the two-dimensional case). Finally, we give an example of
a pseudo-locally optimal triangulation that is not a Delaunay triangulation.

For simplicity, we assume for now that no four vertices are co-planar among the
n vertices to be triangulated. (This assumption will be removed in 5.) This means
that the triangulation of five vertices can be three different configurations. The first
two configurations are illustrated in Fig. 1 (the boundary of the convex hull contains
five vertices). The third configuration occurs when the boundary of the convex hull
contains four vertices; in this case, the triangulation of the five vertices consists of four
tetrahedrons. For example, if vertex e is not on the boundary of the convex hull of
vertices a, b, c, d, and e, the four tetrahedrons are abce, abde, acde, and bcde; there
are four interior edges and six interior faces.

DEFINITION 1. Let abcd and abce be two tetrahedrons sharing common face abc
with d and e on opposite sides of abc. Then interior face abc is said to be locally
optimal (with respect to the sphere criterion) if the circumsphere of tetrahedron abcd
does not contain e in its interior. (Note that the circumsphere of abcd contains e in
its interior if and only if the circumsphere of abce contains d in its interior. This
follows from the fact that the intersection of the circumspheres of abcd and abce is
the circumcircle of triangle abc.)

LEMMA 1. (a) Let a, b, c, d, e be five vertices of a convex hexahedron as in Fig. 1.
Then either the interiorface abc is locally optimal or the three interiorfaces ade, bde, cde
are all locally optimal. Only one of these two cases holds if the five vertices are not
co-spherical.

(b) Let abde, acde, bcde be three tetrahedrons in the configuration of Fig. l(ii).
Then the three interior faces ade, bde, cde are either all locally optimal or all not locally
optimal.

(c) Let abce, abde, acde, bcde be four tetrahedrons in the third configuration. Then
the six interior faces, abe, ace, ade, bce, bde, cde are all locally optimal.

Proof. In part (a), either Fig. 1(i) or Fig. l(ii) must be a Delaunay triangulation
since these are the only two possible triangulations. A Delaunay triangulation satisfies
the sphere criterion so all its interior faces are locally optimal. In the case that the five
vertices are not co-spherical, only one of the triangulations can be Delaunay; the
non-Delaunay triangulation does not satisfy the sphere criterion, and hence the circum-
sphere of at least one of its tetrahedrons contains a vertex in its interior, implying that
at least one of its interior faces is not locally optimal since there are only five vertices.
Therefore part (a) holds.

Suppose the non-Delaunay triangulation is Fig. 1 (ii). Without loss of generality,
let the circumsphere of tetrahedron abde contain c in its interior. Then ade and bde
are not locally optimal. Hence the circumsphere of tetrahedron acde contains b in its
interior, and cde is not locally optimal. Therefore part (b) holds.

Part (c) follows from the fact that there is only one possible triangulation in the
third configuration, so it must be a Delaunay triangulation and satisfy the sphere
criterion.
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722 BARRY JOE

THEOREM 1. A three-dimensional triangulation T is a Delaunay triangulation (i.e.,
satisfies the sphere criterion) if and only if every interior face of T is locally optimal.

Proof. The "only if" part is clearly true by definition.
Suppose every interior face of T is locally optimal. We will show by contradiction

that the sphere criterion is satisfied. Suppose abcd is a tetrahedron in T such that the
circumsphere of abcd contains vertex p in its interior. Without loss of generality,
suppose p is on the opposite side of face abc from d. Then abc must be an interior
face. Let abce be the other tetrahedron with face abc. Then abce does not contain p
and abc is locally optimal, i.e., e is not in the interior of the circumspherc S of abcd.
Let S’ be the circumsphcre of abce. If e is on S, then S’ clearly contains p in its interior.
Suppose e is exterior to S. Let R- (interior of S)c H, where H is the half-space
containing p that is determined by the plane containing a, b, and c. Since the intersection
of S and S’ is the circumcircle of triangle abc, S’ must contain R in its interior, and
thus S’ must contain p in its interior.

The above argument can be repeated with tetrahedron abce replacing abcd, etc.
The result is a sequence of connected nonoverlapping tetrahedrons such that the
circumsphere of each tetrahedron contains p in its interior. Let this sequence of
tetrahcdrons be aobocodo, alblCldl,’", where aibicidi and ai+lbi+lci+di+l share com-
mon face aibii, i.e., tli+lbi+li+ldi+ aibiiei, where e is either ai+, bi+l, or i+1. From
the argument in the previous paragraph, ei and p are on the same side of aibici for all
i. Since there is a finite number of tetrahedrons, the sequence must contain a cycle,
i.e., ajbjcjdj =- akbkCkdk for some j < k. But this results in a contradiction, since it is not
possible to have a cycle of connected tetrahcdrons such that ei and p are on the same
side of tlibici for =j, , k- 1. [3

DEFINITION 2. Let abcd and abce be two tetrahedrons sharing interior face abc
in a triangulation T. Then face abc is said to be transformable if either (i) the two
tetrahedrons are in the configuration of Fig. 1(i), i.e., line segment de intersects the
interior of triangle abc, or (ii) the boundary of the convex hull of a, b, c, d, e contains
all five vertices, de does not intersect triangle abc (i.e., abcd U abce is not convex),
and the third tetrahedron needed to fill the convex hull of the five vertices is present
in T. If the third tetrahedron in case (ii) is not present in T, then abc is not transformable,
i.e., the local transformation procedure cannot be applied.

The third tetrahedron in case (ii) is either abde, acde, or bcde. It is abde if ab
intersects the interior of triangle cde; it is acde if ac intersects the interior of triangle
bde; it is bcde if bc intersects the interior of triangle ade (see Fig. 2). If abcd, abce are
in the third configuration, i.e., either a, b, or c is not on the boundary of the convex

e e
c

e
b a

FIG. 2. Three possible labelings of vertices in Definition 2(ii).
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3-D TRIANGULATIONS FROM LOCAL TRANSFORMATIONS 723

hull of the five vertices, then ab does not intersect triangle cde, ac does not intersect
triangle bde, and bc does not intersect triangle ade (see Fig. 3). Therefore the configur-
ation of abcd, abce can be determined by line segment and triangle intersection tests.

DEFINITION 3. A triangulation T is said to be pseudo-locally optimal (with respect
to the sphere criterion) if every nonlocally optimal interior face in T is not transform-
able. Note that a Delaunay triangulation is pseudo-locally optimal.

LEMMA 2. Let a, b, c, d, e be the vertices of a strictly convex hexahedron that can
be triangulated by tetrahedrons T1 {abcd, abce} or T2 {abde, acde, bcde} as in Fig. 1.
Let rl (r2) be the minimum of the radii of the circumspheres of the tetrahedrons in T
(T2). Then rk <= r3-k ifand only if Tk is a Delaunay triangulation ofthefive vertices, where
k=l or2.

Proof Consider spheres expanding at the same rate from centres a, b, c, d, and
e. Let v be the first point (Voronoi vertex) where four or more expanding spheres
intersect. If v is the intersection of all five spheres, then the five vertices are co-spherical,
r r2, and both T1 and T2 are Delaunay triangulations. Suppose only four expanding
spheres intersect at v. Then the tetrahedron formed from ,the centre of these four
spheres has the circumsphere with the smallest radius among the five possible tetrahe-
drons, and it belongs to the (unique) Delaunay triangulation. [3

LEMMA 3. Let T be a triangulation with m tetrahedrons, and let R r r2 , rm
be the nondecreasing sequence of circumradii of tetrahedrons in T. Suppose two or three
adjacent tetrahedrons in Tform a strictly convex hexahedron (as in Fig. 1) such that the
one or three interiorfaces are not locally optimal, and the local transformation procedure
is applied to these tetrahedrons. Let R’= r, r., , rm+/-l) be the nondecreasing sequence
ofcircumradii oftetrahedrons in the resulting triangulation T’. Then R’ is lexicographically
less than R (the shorter sequence can have an arbitrary number added at the end).

Proof. This lemma follows from Lemma 2. [3

LEMMA 4. Let T be a triangulation containing tetrahedrons abcd and abce such that
interiorface abc is not locally optimal and is not transformable. Without loss ofgenerality,
assume that the "missing" third tetrahedron is abde, i.e., ab intersects the interior of
triangle cde. Then there exists another interiorface abf, f c, that is not locally optimal.

Proof. Let Oabcd denote the open ball, which is the interior of the circumsphere
of tetrahedron abcd. Let the tetrahedrons containing edge ab be abcd, abdfl, abflf=,., abfe, abec, k_-> 1 in circular order about ab. (See the left configuration of Fig. 2
and imagine that there are more vertices between d and e.) The fact that abc is not
locally optimal implies that (C)abcd contains e. If face abd is not locally optimal, then
the lemma holds. Hence, suppose abd is locally optimal, i.e., (C)abcd does not contain
f. Then the part of Oabcd on the opposite side of abd from c is in C)abdfl, thus
C)abdf contains e. This argument can be repeated with face abf, abf,.., in place
of abd. If faces abd, abf,. ., abf_ are all locally optimal, then (C)abcd, C)abdfl,...,

d
e

d
e

d
e

c c b
FIG. 3. Three possible labelings of vertices in third configuration.
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724 BARRY JOE

C)abfk-lfk all contain e. But that Oabfk_lfk contains e implies that face abfk is not
locally optimal.

DEFINITION 4. Let abclde denote a pair of adjacent tetrahedrons abcd, abce
sharing interior face abc such that abc is nonlocally optimal and nontransformable
and ab intersects the interior of face cde. We call abc]de a NLONT-configuration. Let
C=[aobocoldoeo, alblClldlel,’",ambmcmldme,] denote a sequence of NLONT-
configurations. Then C is said to be a connected NLONT-sequence if aibici and
ai+lb+lCi+l are distinct and share edge ab (which means that abi and a+lbi+l share
at least one vertex) for 0, 1, , m 1; and C is said to be a connected NLONT-cycle
if, in addition, aobocoldoeo a,b,c,ld,e,,. Note that the smallest cycle length is m 2,
which can occur only if aobo albl.

An example of a connected NLONT-cycle is given below in Fig. 4: C -[452167,
475128, 247115 452167], where a vertex is indicated by an integer from 1 to 8. Note
that edge 45 intersects the interior of face 267, edge 47 intersects the interior of face
528, and edge 24 intersects the interior of face 715.

LEMMA 5. Let T be a non-Delaunay triangulation. If T is pseudo-locally optimal,
then T contains a connected NLONT-cycle.

Proof. Since T is not Delaunay, it contains at least one nonlocally optimal interior
face by Theorem 1. Since T is pseudo-locally optimal, all nonlocally optimal faces are
not transformable. So T contains a NLONT-configuration aobocoldoeo. By Lemma 4,
there exists another interior face aobofo that is not locally optimal, so T must contain
another NLONT-configuration alblClldlel, where ablc aobofo. This argument can
be repeated for alblClldlel in place of aobocoldoeo, then for a_b2c21d2e2, etc. The result
is a connected NLONT-sequence [aobocoldoeo, alblClldle,...]. Since there is a finite
number of faces in T, there must exist j and k such that 0_-<j < k and ajbjcj akbkCk,
i.e., T contains a connected NLONT-cycle.

THEOREM 2. Every non-Delaunay triangulation can be transformed to a pseudo-
locally optimal triangulation by afinite sequence oflocal transformation procedures applied
to nonlocally optimal transformable interior faces.

Proof. Let To be a non-Delaunay triangulation, and let To, T1, T2,... be a
sequence of triangulations where T/+I is obtained from T by applying the local
transformation procedure to a nonlocally optimal transformable interior face of T if
such a face exists; otherwise, the sequence terminates at T. Let R be the nondecreasing
sequence of circumradii of tetrahedrons in T. From Lemma 3, R+ is lexicographically
less than R for all i. Since the R are lexicographically decreasing as increases, it is
not possible for the sequence of triangulations to contain a cycle, so the sequence must
terminate in a pseudo-locally optimal triangulation T,.

COROLLARY 1. Let To be a non-Delaunay triangulation, and let To, T1, T, be
a sequence of triangulations where for < m, T is not pseudo-locally optimal and T+I is
obtained from T by applying the local transformation procedure to a nonlocally optimal
transformable interiorface of T, and T is pseudo-locally optimal. If T, does not contain
a connected NLONT-cycle, then Tr is a Delaunay triangulation.

Proof. This corollary follows from Lemma 5 and Theorem 2.
If every non-Delaunay triangulation is not pseudo-locally optimal, then it would

be straightforward to derive an algorithm to construct a Delaunay triangulation using
the local transformation procedure. Unfortunately, we have found an example of a
triangulation of eight vertices that is pseudo-locally optimal but not Delaunay. By
Lemma 5, this triangulation must contain at least one connected NLONT-cycle. The
eight vertices are given in Table 1, the tetrahedrons in the pseudo-locally optimal
non-Delaunay and Delaunay triangulations are given in Table 2, and the NLONT-
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3-D TRIANGULATIONS FROM LOCAL TRANSFORMATIONS 725

TABLE
Vertex coordinates.

Index x y z

0.054 0.099 0.993
0.066 0.756 0.910
0.076 0.578 0.408
0.081 0.036 0.954
0.082 0.600 0.726
0.085 0.327 0.731
0.123 0.666 0.842
0.161 0.303 0.975

TABLE 2
Pseudo-locally optimal non-Delaunay triangulation (left) and

Delaunay triangulation (right). A tetrahedron is described by its four
vertex indices.

2 3 5
2 4 6
2 4 7
2 5 6
2 7 8
3 4 6
3 5 6
4 7 8

2 3 5 7
2 4 5 6
2 4 5 7
3 4 6 8
3 5 6 7
3 6 7 8
4 5 6 8
4 5 7 8
5 6 7 8

2 3 5
2 5 6
2 6 8
3 4 6
3 5 6
4 6 8

2 3 5 7
2 5 6 8
2 5 7 8
3 4 6 8
3 5 6 7
3 6 7 8
5 6 7 8

configurations of the former triangulation are given in Table 3. The four tetrahedrons
in the connected NLONT-cycle formed from the first three entries of Table 3 are
illustrated in Fig. 4.

However, we conjecture that a non-Delaunay triangulation can be transformed
to a Delaunay triangulation by a finite sequence of local transformation procedures.
From the above example, some of the local transformation procedures may have to
be applied to locally optimal transformable interior faces. This is a special case of the
following conjecture that holds for two-dimensional triangulations. Unfortunately, the
approach of Lawson [8] for proving the two-dimensional version of this conjecture
does not extend to the three-dimensional case.

CONJECTURE 1. Given two different triangulations T1 and T2 of the same n
three-dimensional vertices, T2 can be obtained from T1 by a finite sequence of local
transformation procedures.

4. Algorithm and data structure. Based on the results of the previous section, we
present an algorithm and data structure for constructing a pseudo-locally optimal
triangulation of n three-dimensional vertices vl, v2," , vn (we are still assuming that
no four vertices are co-planar). In our algorithm, the n vertices are first sorted in
lexicographical order of their coordinates. In the general step, a pseudo-locally optimal
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726 BARRY JOE

TABLE 3
NLONT-configurations. Thefirst three

form a connected NLONT-cycle. There are
also three connected NLONT-cycles of
length 2.

a b c

4 5 2
4 7 5
2 4 7
4 5 6
4 7 8
2 4

d e

6 7
2 8

5
2 8

5
6 7

triangulation T_ of the first i-1 vertices has been constructed, and the ith vertex is
added to form a preliminary triangulation of the first vertices. Note that the ith vertex
is outside the convex hull of the first i-1 vertices. Then the local transformation
procedure is applied to nonlocally optimal transformable faces until a pseudo-locally
optimal triangulation T of the vertices is obtained. We now present the pseudocode
for our algorithm, called TRSPH1.

In the "for" loop labelled (A) in the pseudocode, a preliminary triangulation is
constructed by adding tetrahedrons with vertex vi to T/_I to fill the convex hull of the
first vertices. The new tetrahedrons are of the form V,VbVcVi, where l)al)bl) is a boundary
face of T-I but is not on the boundary of the convex hull of the first vertices. This
condition holds if and only if v and w are on opposite sides of VVbV, where w is any
point in the interior of the convex hull of the first i- 1 vertices, e.g., w is the centroid
of the first tetrahedron.

Stack S is used to store the interior faces that are not known to be locally optimal
or nontransformable. If VVbVcV is a new tetrahedron, then VaVbV may be nonlocally
optimal so it is put on S. If V,,VbVV and V,VbVaV are adjacent new tetrahedrons, then
V,VbVi may be a nonlocally optimal interior face, but it is not put on S because the
union of VaVbVcV and V,VbVdV is not convex, so either VVbV is not transformable or
tetrahedron VaVbVcVd is present in the triangulation, in which case V,VbVcV, V,,VbVdVi,

V,,VbVcVd are replaced by the two tetrahedrons )aDc)d)i, DbDcDdl) if either interior face
V,,VbVc or V,,VbVd is determined to be nonlocally optimal.

It is possible that the face VaVbVc referred to in the statement labelled (B) is no
longer in the triangulation since three interior faces are replaced by one interior face

1

4
/ ........."" " :"

2

x 6 5

FIG. 4. Connected NLONT-cycle formed from the first three entries of Table 3. Four tetrahedrons are:
2457, 2456, 4578, 1247.
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3-D TRIANGULATIONS FROM LOCAL TRANSFORMATIONS 727

ALGORITHM TRSPH1
Sort Vl, v2,"" ", v. into lexicographical order
Form first tetrahedron vl v2v3 v4
Compute centroid w (vl + v2+ v3+ v4)/4
Initialize S to empty stack
fori:=5to n do

Let T_ current triangulation of first
i-1 vertices (T_I is pseudo-locally optimal)

(A) for each boundary face V,,VbVc of T_I do
if vi is on the opposite side of VaVbVc from w then

Add tetrahedron VaVbVcVi to triangulation
Push interior face VVbVc on stack S

endif
endfor
while stack S is not empty do

Pop interior face VaDbV from stack S
(B) if VVbVc is still in triangulation then

Find the two tetrahedrons VVbVcVd, VVbVcVe sharing face VaVbVc
(C) if the circumsphere of VVbVcVd contains ve in its interior then

transform := true
if V.VbVcVd [2 VVbVcV is a convex hexahedron then

Replace VVbVcVd, VaVbVcV by the three tetrahedrons
Va)bl)dDe, l)al)cl)dDe l)bDcDdDe

(D)

else
if the third tetrahedron needed to fill the convex

hull of v,. , v is present in the triangulation then
Relabel vertices so that three tetrahedrons are

Dal)cl)dDe DbDc)dl)e

Replace 1)al)bl)d)e, )al)cl)dl)e, ObOcDdl)e by Da)bl)cOd, Dal.)bl)c)
else

transform := false
endif

endif
if transform then

for each of faces VVbVd, l)al)bl)e, Dal.)cl)d,

)a)cl)e l)bDcDd DbOcl) do
Push face on stack S if it is an interior face and it is

not yet in S
endfor

endif
endif

endif
endwhile

endfor

in the case of two tetrahedrons replacing three tetrahedrons in the local transformation
procedure. In the statement labelled (C), a test is made to see whether or not vvbvc
is locally optimal. If not, then the local transformation procedure is applied if VaVbVc
is transformable (the configuration of the two tetrahedrons VaVbVcVa, VaVbVcVe can be
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728 BARRY JOE

determined as described in Definition 2 and the paragraph after it). If the local
transformation procedure is applied to VaVbVc, then a boundary face of the convex
hexahedron formed by the two or three tetrahedrons may no longer be locally optimal,
so it is placed on stack S if it is an interior face of the triangulation and it is not yet
in S (see statement (D)).

From the above discussion and the pseudocode, it is clear that on completion of
the ith step with S empty, the triangulation of the first vertices, T, is pseudo-locally
optimal. If T_I is a Delaunay triangulation of the first i-1 vertices, then it seems
likely that T does not contain a connected NLONT-cycle and is also Delaunay, hence
we have the following conjecture.

CONJECTURE 2. Algorithm TRSPH1 constructs a Delaunay triangulation for all
sets of three-dimensional vertices.

We now describe the data structure for our three-dimensional triangulation
algorithm. The vertex coordinates are stored in an array VC where VC[i].x, VC[ i].y,
and VC[i].z are the coordinates of the ith vertex, vi. The faces and tetrahedrons are
changing throughout the algorithm, and there are searching operations on the faces
(e.g., find the two tetrahedrons sharing interior face VaVbVc). Hence the faces are stored
in a hash table HT with direct chaining, where HT[i] is the head pointer of the linked
list of faces with hashing function value i. A new face is added at the front of a linked
list, since it is more likely to be referenced again. Let a < b < c be the three indices in
VC ofthe three vertices va, tb, V of a face. A satisfactory hashing function is h(a, b, c)
(an 2+ bn + c) mod M, where the hash table size, M, is a prime number. (For descriptions
of hashing and linked lists, see any data structure book, e.g., Standish [13].)

We store the elements of the hash table linked lists in an array FC of face records
with origin index 1, so that some fields of the face record can be used for two purposes
depending on whether the face is an interior or boundary face. The fields of FC[i]
are a, b, c, d, elflink stlinklblink htlink, where 0 a b c are the three vertex indices
of a face; Vd and possibly ve are the fourth vertices of the one or two tetrahedrons
with (boundary or interior, respectively) face VaVbV; stlink indicates whether or not
interior face VVbV is in stack S and in the former case, it is also a pointer to the next
face in S; flink and blink are forward and backward pointers for a doubly linked list
of boundary faces (since the boundary faces must be traversed and updated in step
(A) of the pseudocode); and htlink is the pointer to the next element in the hash table
linked list.

All four link fields represent positive indices in the FC array or zero for end of
list, but due to the double use of some fields, the actual values stored in the flink, blink,
and stlink fields are slightly modified. If ptr >-_ 0 is the real pointer value, then -ptr is
stored in the flink or blink field and ptr+ 2 is stored in the stlink field. For interior
faces (with a positive integer in the elflink field), stlink 1 is used to indicate that the
face is not in stack S and stlink > 1 is used to indicate that the face is in S as well as
the pointer to the next element of S. If a face is in stack S but no longer in the
triangulation, then b is set to zero to indicate this and the face record is deleted when
it reaches the top of S. We also use the a field to maintain an avail linked list of
deleted face records (with nonpositive values to indicate pointers as for flink), so that
a new face record can be obtained from the avail list if it is nonempty or the end of
array otherwise.

With this data structure, searching, insertion, and deletion of faces are straightfor-
ward, and each operation should take constant time with a sufficiently large hash table
size. At the end of the algorithm, the list of tetrahedrons in the triangulation can be
obtained by sequentially traversing the array FC. Since each tetrahedron appears four
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3-D TRIANGULATIONS FROM LOCAL TRANSFORMATIONS 729

times in the data structure, duplicates can be avoided as follows. For each new
tetrahedron, search for the other three representations and use the stlinklblink field to
indicate whether the tetrahedron determined by the d or e field has been listed already.

An example of the VC array is given in Table 1. An example of the FC and HT
arrays is given in Fig. 5 for the four tetrahedrons in Fig. 4, where any face appearing
in only one tetrahedron is taken to be a boundary face. The number of vertices is
n=8, the hash table size is M=5, and the hashing function is h(a,b,c)=
(an2+ bn + c)mod M. TOP, HEAD, and TAlL are scalar variables that are pointers
to the top of sta6k S and the head and tail of the doubly linked list of boundary faces.

An obvious variation of algorithm TRSPH 1 is to first construct an initial triangula-
tion T1 as in step (A), then to put all interior faces of T1 in stack S, and finally to
apply local transformation procedures to nonlocally optimal transformable faces of S
as in the main "while" loop of TRSPH1. If the interior faces are added to stack S by
sequentially traversing the array FC in the forward (backward) direction, then we call
this algorithm TRSPH2 (TRSPH3, respectively). Note that algorithm TRSPH1 can be
interpreted as constructing T first (although T never actually exists during the
algorithm) and then processing the interior faces in a different order from algorithms
TRSPH2 and TRSPH3. The order of processing the interior faces in TRSPH1 is closer
to that in TRSPH3 than TRSPH2, since in TRSPH3 faces created closer to the beginning
of the construction of T are closer to the top of stack S initially. Since T is in general
not close to a Delaunay triangulation, it seems likely that TRSPH2 and TRSPH3 have
a greater chance than TRSPH1 of ending up with a connected NLONT-cycle and a
pseudo-locally optimal triangulation that is not Delaunay. In 7, we report on experi-
ments that compare these algorithms.

5. Degeneracy. In this section, we describe the extensions to the results of 3 and
algorithm TRSPH1 of 4 when we remove the assumption that no four vertices are
co-planar. Definition 1 and Theorem 1 of 3 (about locally optimal faces) still hold
when subsets of four co-planar vertices are allowed.

The degenerate configurations fortwo tetrahedrons abcd and abce sharing common
face abc with d and e on opposite sides of abc are illustrated in. Fig. 6, where the
vertices of abc are labelled so that a, b, d, and e are co-planar and c lies on a different
plane. In Fig. 6(i), quadrilateral adbe is strictly convex and the other triangulation of
the five vertices contains tetrahedrons acde and bcde. In Fig. 6(ii), quadrilateral adbe
degenerates to a triangle. In Fig. 6(iii), quadrilateral adbe is nonconvex and tetrahedron
acde must be added to fill the convex hull of the five vertices. In the latter two cases,
there are no other possible triangulations of the five vertices.

Hence, an additional case to the local transformation procedure described in 2
is as follows. If tetrahedrons abcd and abce are in the configuration of Fig. 6(i), then
replace them by tetrahedrons acde and bcde, i.e., swap interior face abc for face cde.

In the three configurations of Fig. 6, the circumcircles of faces abd and abe (which
are on the circumspheres of tetrahedrons abcd and abce, respectively) are in the same
plane. This implies that interior face abc is locally optimal if and only if the circumcircle
of abd does not contain e in its interior (i.e., edge ab is locally optimal in the
two-dimensional triangulation of a, b, d, e). Therefore, in Figs. 6(ii) and 6(iii), abc is
locally optimal, and in Fig. 6(i), either abc or cde is locally optimal.

DEFINITION 5 (extension of Definition 2). Let abcd and abce be two tetrahedrons
in triangulation T that are in the configuration of Fig. 6(i). Then face abc is said to
be transformable if either (i) abd and abe are boundary faces of T, or (ii) abd and abe
are interior faces of T and there is a vertex f (on the opposite side of abd from c)
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C

|1

|1

d,

(i) (ii) (iii)

FIG. 6. Three possible cases of two tetrahedrons with a, b, d, e co-planar.

such that abdf and abef are tetrahedrons of T. Face abc is not transformable, if in
case (ii), the other two tetrahedrons of T containing faces abd and abe are abdf and
abeg where f# g.

Note that the configuration of Fig. 6(i) can be detected and distinguished from
the other configurations of 3 by the fact that de intersects the boundary of triangle
abc. The main extension to algorithm TRSPH1 is to detect the configuration of Fig.
6(i) when face abc from stack S is not locally optimal and to apply the local transforma-
tion procedure to abc if it is transformable. In the case that abd and abe are interior
faces, the local transformation procedure must be applied to both abc and abf where
f is defined in Definition 5(ii), i.e., tetrahedrons abcd and abce are replaced by acde
and bcde, and tetrahedrons abdf and abef are replaced by adef and bdef In this case,
both cde and def are locally optimal faces in the new triangulation, and the faces that
may have to be put on stack S are ade, bde, acd, ace, bcd, bce, adf, aef, bdf, and bef
In the case that abd and abe are boundary faces, the faces that may have to be put
on stack S are acd, ace, bcd, and bce.

The only other modification to the algorithm is a possible slight reordering of the
sorted vertices to get a valid first tetrahedron (i.e., vl, v2, v3, and v4 are not co-planar).
Let Vl,’’’, v, be the sorted vertices. Let Vk, k_->3, be the vertex of smallest index
such that Vl, v2, and ok are not collinear. Let v,,, m > k be the vertex of smallest index
such that vl, v2, Vk, and v,, are not co-planar. Then shift the vertices to get the new
ordering: Vl, V2, Vk, /)m, /)3, "’’, /)k-l, /)k+l, "’’, /)m-l, /)m+l, "’’, Vn. Note that with
this new ordering, the vertices still satisfy the property that the ith vertex is outside
the convex hull of the first i- 1 vertices. The modifications to algorithms TRSPH2 and
TRSPH3 are clearly similar.

All the remaining results in 3 also extend to the case when subsets of four
co-planar vertices are allowed. Lemmas 2 and 3 extend to the two possible triangulations
in the configuration of Fig. 6(i). The extensions of Lemma 4 and Definition 4 are as
follows.

LEMMA 6. Let T be a triangulation containing tetrahedrons abcd and abce in the
configuration of Fig. 6(i) such that interior face abc is not locally optimal and is not
transformable, i.e., abdf and abeg are tetrahedrons of T where f g. Then there exists
another interior face abh, h c, that is not locally optimal

Proof The proof is similar to proof of Lemma 4. [3

DEFINITION 6. In addition to the NLONT-configuration given in Definition 4,
abe[de is also a NLONT-configuration if abed and abce are adjacent tetrahedrons
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732 BARRY JOE

sharing interior face abc as in Fig. 6(i) such that abc is nonlocally optimal and
nontransformable.

Lemma 5 still holds with the extended definition of NLONT-configuration.
Theorem 2, Corollary 1, and Conjecture 1 still hold, provided +1 is obtained from
T by two simultaneous applications of the local transformation procedure in Definition
5(ii) as discussed above.

6. Max-min solid angle criterion. In this section, we describe how our algorithms
for constructing a pseudo-locally optimal triangulation with respect to the sphere
criterion can be modified to construct a locally optimal triangulation with respect to
the max-min solid angle criterion. The main modifications are due to the definition of
"locally optimal" with respect to the max-min solid angle criterion.

DEFINITION 7. Let abcd and abce be two tetrahedrons sharing interior face abc
in a triangulation T, where abc is a transformable face (see Definitions 2 and 5). Let
T1 contain the tetrahedrons of T that fill the convex hull of a, b, c, d, e. Let T2 contain
the tetrahedrons in the alternative triangulation of a, b, c, d, e. If abc satisfies Definition
5(ii), then let T1 additionally contain tetrahedrons abdf and abef, and let T2 additionally
contain tetrahedrons adef and bdef Then face abc is said to be locally optimal with
respect to the max-rain solid angle criterion if s(T1) => s(T2) where s(Ti) min {solid
angles at vertices of tetrahedrons of T}.

DEFINIJ:ION 8. A triangulation T is said to be SA-locally optimal if every trans-
formable interior face in T is locally optimal with respect to the max-min solid angle
criterion. (To avoid confusion with Definition 3, we use SA-locally optimal instead of
pseudo-locally optimal.)

DEFINITION 9. A triangulation T of a set S of three-dimensional vertices is said
to be SA-globally optimal if over all possible triangulations of S, the minimum of the
solid angles at all vertices of all tetrahedrons is maximized in triangulation T.

Note that, unlike the case ofthe sphere criterion, a SA-locally optimal triangulation
may not be SA-globally optimal. We have no theoretical results such as those of
Theorem 1 that characterize a SA-globally optimal triangulation. It is possible that the
problem of constructing a SA-globally optimal triangulation is NP-hard. The following
results, which are similar to Lemma 3 and Theorem 2, indicate how an SA-locally
optimal triangulation can be constructed.

LEMMA 7. Let T be a triangulation with m tetrahedrons, let ai be the minimum
ofthe four solid angles ofa tetrahedron, and let A (al, a, , a,) be the nondecreas-
ing sequence of a values of tetrahedrons in T. Suppose the local transformation
procedure is applied to a nonlocally optimal interior face (or two faces if they satisfy
Definition 5(ii)) in T. Let A’ =(a, a,..., a’r) be the nondecreasing sequence of a
values oftetrahedrons in the resulting triangulation. Then A’ is lexicographically greater
than A.

Proof This lemma follows from Definition 7.
TtEOREM 3. Every triangulation that is not SA-locally optimal can be transformed

to a SA-locally optimal triangulation by afinite sequence oflocal transformation procedures
applied to nonlocally optimal interior faces.

Proof This theorem follows from Lemma 7 using the same approach as in the
proof of Theorem 2.

To construct an SA-locally optimal triangulation, the algorithms given in 4 and
5 must be modified, when processing a face V,VbV from stack S, to first check whether
V,VbV is transformable before determining whether it is nonlocally optimal. The only
other modification is inside the "for" loop labelled (A) in which face V,VbV, V,VcV, or
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3-D TRIANGULATIONS FROM LOCAL TRANSFORMATIONS 733

VbVcVi must be added to stack S if it is an interior face. The reason for this is that a
face abe in the configuration of Fig. 6(i) may be locally optimal if abd and abe are
boundary faces, but abe may become nonlocally optimal if abd and abe become
interior faces. We call the modified algorithms TRMMSA1, TRMMSA2, TRMMSA3,
with the obvious correspondence to the earlier algorithms.

7. Experimental results. We implemented algorithms TRSPH1, TRSPH2,
TRSPH3, TRMMSA1, TRMMSA2, and TRMMSA3 in Fortran, and ran many test
problems to compare these algorithms and to determine the empirical time complexity.
It is not possible to obtain an average or worst-case time complexity analytically since
the complexity depends on the number of faces tested for local optimality and the
number of applications of the local transformation procedure for which we have no
general bounds. The implementations used double precision floating point arithmetic
and were compiled using the f77 compiler without the optimization option (due to
compiler bugs). The tests were done on a Sun 3/50 workstation with a MC68881
floating point processor running the Sun Unix 4.2 operating system.

We used 60 test problems in our experiment, consisting of 11 problems each for
the five different n values 100, 200, 300, 400, 500, and a 12th problem for the n values
50, 100, 150, 200, 250. For fixed n, the description of the 12 problems is as follows.
The first seven problems have vertex coordinates that are pseudorandom numbers from
the uniform distribution in [0, ax] [0, ay] [0, az]. Problem Pln, P2n, P3, P4 have
ax ay az 1; problem P5n has a =0.5, ay az 1; problem P6n has a 1, ay =0.5,
az 1; and problem P7, has a ay 1, az 0.5. The next three problems are used to
test the degenerate configurations in which four vertices are co-planar. They consist
of approximately x/ parallel planes, each with an average of vertices. The planes
are orthogonal to one of the three axes and are determined by pseudorandom uniform
numbers in [0, 1]. The vertices on each plane have vertex coordinates that are
pseudorandom uniform numbers in [0, 1] [0, 1]. In problems P8,, P9,, and P10,, the
parallel planes have the form x c, y c, and z c, respectively.

The last two problems are not random; one does not have a unique Delaunay
triangulation and the other has a Delaunay triangulation containing O( n 2) tetrahedrons.
In problem Pll,, the vertex coordinates are on a uniform grid and have the form
(i,j, k), where i, j, and k are integers in the ranges 0 to n-1, 0 to ny 1, and 0 to
n 1, respectively, and n nxnyn. For n 100, n 4, ny nz 5; for n 200, nx ny
5, nz 8; for n 300, nx 5, ny 6, n 10; for n =400, n 5, ny 8, n 10; and for
n 500, n 5, ny nz--10. The number of tetrahedrons in a Delaunay triangulation
of this problem can range from 5(n- 1)(ny- 1)(nz- 1) to 6(nx- 1)(ny- 1)(nz- 1),
since a unit cube can be triangulated by five or six tetrahedrons.

Problem P12, has k [n/2J vertices that are equally spaced points on the unit
circle centred about the origin in the x-y plane, and m n- k points that are equally
spaced in interval [0, 1] of the z-axis, i.e., vi (cos (ia), sin (ia), 0) for 1, , k
and Vi+k=(O,O,(i--1)S) for i=l,’’’,m where a=2zr/k and s=l/(m-1). All
tetrahedrons in the Delaunay triangulation of this problem must consist of two vertices
with index _-<k and two with index > k, therefore the number of tetrahedrons, faces,
and boundary faces in the Delaunay triangulation are n(n-2)/4, n(n-1)/2, and n,
respectively, for even n.

For our experiment, we used the hashing function given in 4 and a hash table
size M 1.5n, where M is a prime number and n is the number of vertices, so the
storage complexity of the algorithms is proportional to the number of faces in the
triangulation. For all algorithms and problems P1, to Plln, the average number of
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734 BARRY JOE

face records compared when a face is searched in the hash table is a small constant:
2.0 for TRSPH1 and TRMMSA1, 4.7 for TRSPH2 and TRMMSA2, and 6.1 for
TRSPH3 and TRMMSA3. For problem P12n, the average mumber of face records
compared during searches is up to 8.2 for TRSPH1, TRSPH2, TRSPH3, TRMMSA1,
and 19.7 for TRMMSA2, TRMMSA3 when n- 250; the higher numbers are due to a
quadratic number of faces (the hash table size should be proportional to the number
of faces in order to get a constant number of comparisons, on average).

The following quantities are used to measure the performance of the algorithms
(i refers to the algorithm number in TRSPHi or TRMMSAi)"

NTETi-- number of tetrahedrons in triangulation;
NFACi-- number of faces in triangulation;
NBFCi-- number of boundary faces in triangulation;
TIMim CPU time in seconds for constructing triangulation;
TInit-- CPU time in seconds for sorting vertices and producing initial triangula-

tion TI (or producing preliminary tetrahedrons in step (A) ofTRSPH1),
so TIMimTInit is the CPU time spent in checking faces for local
optimality and transformability, applying the local transformation pro-
cedure, and updating stack S;

LOP/-- number of faces that are locally optimal when tested for local opti-
mality;

LTPi-- number of applications of the local transformation procedure (the
degenerate case in which four tetrahedrons are replaced by four other
tetrahedrons is counted as one application);

NTFim number of faces that are nonlocally optimal and nontransformable
when tested for local optimality in TRSPHi or that are nontransform-
able when tested for transformability in TRMMSAi;

MSAi minimum solid angle in radians at vertices of tetrahedrons of triangu-
lation.

Note that LOP// LTPi / NTFi is the number of faces on stack S that are tested for
local optimality (transformability) in algorithm TRSPHi (TRMMSAi).

We first describe the experimental results from running the 60 test problems for
algorithms TRSPH1, TRSPH2, and TRSPH3. TRSPH1 constructed a Delaunay triangu-
lation for all the problems (this is verified by checking that all interior faces are locally
optimal). TRSPH3 failed to construct a Delaunay triangulation for only problem P13oo;
for this pseudo-locally optimal triangulation, there are 34 nonlocally optimal nontrans-
formable interior faces. TRSPH2 constructed pseudo-locally optimal non-Delaunay
triangulations for 18 of the 60 problems" P52oo, P72oo, P102oo, P13oo, P53oo, P63oo, P83oo,
P14oo, P24oo, P44oo, P54oo, P94oo, P15oo, P35oo, P45oo, P55oo, P65oo, P95oo. The number
of nonlocally optimal faces in these triangulations are 21, 13, 20, 27, 27, 46, 12, 74,
35, 48, 68, 13, 23, 7, 57, 27, 52, and 33, respectively. It appears that algorithm TRSPH2
is more likely to construct a non-Delaunay triangulation as n increases.

We split the measurements into three categories, the average of Pln to P10,, Plln,
and P12,, since the performance of the algorithms on the last two problems is
significantly different from the random problems. The measurements for the 10 random
problems are approximately the same, with problems P5, and P8, always having the
highest CPU times and number of faces tested for local optimality (this is probably
because the lexicographical ordering of the vertices causes these two problems to have
more long tetrahedrons with small solid angles in the initial triangulation TI). Tables
4, 5, and 6 contain measurements for the average of Pln to P10. Tables 7, 8, and 9
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3-D TRIANGULATIONS FROM LOCAL TRANSFORMATIONS 735

TABLE 4
Average of problems Pln to P10n, algorithm TRSPHi: number of tetrahedrons and faces in Delaunay

triangulation and CPU times.

100
200
300
400
5OO

NTET1 NFAC1 NBFC1 Tlnit TIM1 TIM2 TIM3

504.0 1039.2 62.4 2.62 22.71 22.19 22.15
1129.2 2298.7 80.6 6.59 64.20 62.56 63.07
1761.8 3572.7 98.2 11.91 113.97 108.88 111.08
2386.9 4834.4 121.2 19.38 167.74 160.96 166.12
3042.9 6143.3 115.0 24.11 226.73 219.80 223.91

TABLE 5
Average ofproblems P1, to P10n, algorithm TRSPHi: number offaces tested for local optimality.

100
200
300
400
5OO

LOP1 LTP1 NTF1

3,568 1,072 474
10,278 3,119 1,435
18,160 5,557 2,654
26,508 8,167 3,957
36,098 11,139 5,444

LOP2 LTP2 NTF2

3,363 1,012 652
9,415 2,917 1,944
16,385 5,105 3,416
23,800 7,491 5,102
32,867 10,383 6,974

LOP3 LTP3 NTF3

3,440 1,066 494
9,854 3,091 1,511
17,346 5,484 2,727
25,513 8,104 4,081
34,749 11,028 5,603

TABLE 6
Average ofproblems PI to P10, algorithm TRSPHi: complexity of number offaces, times, and number

of tests for local optimality.

100
200
300
400
5OO

NFAC1 NBFC1 Tlnit TIM1 LOP1 LTP1 NTF1

n n 1/3 n4/3 n4/3 n4/3 n4/3 n4/3

10.4 13.4 .00565 .0489 7.69 2.31 1.02
11.5 13.8 .00564 .0549 8.79 2.67 1.23
11.9 14.7 .00593 .0567 9.04 2.77 1.32
12.1 16.4 .00657 .0569 8.99 2.77 1.34
12.3 14.5 .00608 .0571 9.10 2.81 1.37

TABLE 7
Problem Pl1,,, algorithm TRSPHi: number of tetrahedrons andfaces in Delaunay triangulation and CPU

times.

100
200
300
400
5O0

NTET1 NFAC1 NBFC1 Tlnit TIM1 TIM2 TIM3

288 656 160 4.08 12.87 14.18 13.57
672 1,488 288 14.90 44.53 50.87 48.23

1,080 2,362 404 31.70 97.22 111.03 105.08
1,512 3,278 508 53.58 171.73 192.62 182.32
1,944 4,194 612 81.52 270.32 296.53 277.92

TABLE 8
Problem Plln, algorithm TRSPHi: number offaces tested for local optimality.

100
200
300
400
5OO

LOP1 LTP1 NTF1

1,834 474 188
6,051 1,680 643

13,311 3,684 1,500
23,870 6,312 3,032
38,005 9,796 5,210

LOP2 LTP2 NTF2

2,149 472 255
7,305 1,676 1,064
15,845 3,672 2,633
27,417 6,260 4,986
42,044 9,620 8,049

LOP3 LTP3 NTF3

1,956 468 211
6,852 1,689 806
14,880 3,680 1,863
25,653 6,194 3,539
39,013 9,370 5,859
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736 BARRY JOE

TABLE 9
Problem Pl1,,, algorithm TRSPHi" complexity of number offaces, times, and number of tests for local

optimality.

100
200
300
400
5OO

NFAC NBFC Tlnit TIM LOP1 LTP1 NTF1

n n 0"8 n 1"8 /12 n n n

6.56 4.02 .00103 .00129 .183 .0474 .0188
7.44 4.16 .00108 .00111 .151 .0420 .0161
7.87 4.21 .00110 .00108 .148 .0409 .0167
8.20 4.21 .00111 .00107 .149 .0395 .0190
8.39 4.24 .00113 .00108 .152 .0392 .0208

contain measurements for Plln. Tables 10, 11, and 12 contain measurements for P12n.
The CPU times in these tables are subject to a variation of up to about 5 percent
when the program is run at different times.

For the random problems, it can be seen from Table 6 that the number of faces
in the Delaunay triangulation is O(n), and the time complexity of algorithm TRSPH1
is approximately 0(n4/3). From equation (1)(a), the number of tetrahedrons in the

TABLE 10
Problem P12n, algorithm TRSPHi: number of tetrahedrons andfaces in Delaunay triangulation and CPU

times.

50
100
150
200
250

NTET1 NFAC1 NBFC1 TInit TIM1 TIM2 TIM3

600 1,225 50 1.25 7.77 8.02 8.38
2,450 4,950 100 5.18 31.37 34.62 35.32
5,550 11,175 150 11.55 73.30 79.13 73.38
9,900 19,900 200 19.12 116.47 129.95 131.68
15,500 31,125 250 30.57 184.45 207.70 208.45

TABLE 11
Problem P12n, algorithm TRSPHi: number offaces tested for local optimality.

50
100
150
200
250

LOP1 LTP1 NTF1

1,385 274 0
5,971 1,199 0

13,537 2,700 0
24,151 4,800 0
38,185 7,624 0

LOP2 LTP2 NTF2

1,608 274 0
6,959 1,199 0

16,067 2,700 0
28,810 4,800 0
45,521 7,624 0

LOP3 LTP3 NTF3

1,719 274 0
7,244 1,199 0

16,421 2,700 0
29,297 4,800 0
46,119 7,624 0

TABLE 12.
Problem P12, algorithm TRSPHi" complexity of number offaces, times, and

number of tests for local optimality.

50
100
150
200
250

NFAC TInit TIM LOP1 LTP1

n n n n n

.490 .000500 .00311 .554 .110
495 .000518 .00314 .597 120
.497 .000513 .00326 .602 120
.498 .000478 .00291 .604 .120
.498 .000489 .00295 .611 122
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3-D TRIANGULATIONS FROM LOCAL TRANSFORMATIONS 737

Delaunay triangulation has the same complexity as the number of faces. For problem
P11,, it can be seen from Table 9 that the number of faces in the Delaunay triangulation
is O(n), as expected, and the time complexity of TRSPH1 is approximately 0(n2).
We believe that the higher time complexity for this problem is due to the fact that the
initial triangulation TI has many long tetrahedrons with small solid angles and the
Delaunay triangulation does not have any of these tetrahedrons. Note that for Pl1,,
the theoretical asymptotic complexities for NBFC1 and TInit are O(n 2/3) and O(r/5/3),
respectively. For problem P12,, it can be seen from Table 12 that the number of faces
in the Delaunay triangulation is O(n2), as expected, and the time complexity of
TRSPH1 is approximately O(n2).

For the three types of problems, the time complexities of algorithms TRSPH2 and
TRSPH3 are the same as that for TRSPH1, as can be seen from calculations similar
to those in Tables 6, 9, and 12. Therefore our experiment has shown that there is no
advantage to using TRSPH2 or TRSPH3 over TRSPH1, since all three algorithms
require approximately the same amount of CPU time and TRSPH2 and TRSPH3 have
each failed to construct a Delaunay triangulation for at least one test problem.

Due to the amount of CPU time required, we chose to use a maximum value of
n- 500 in our experiment. This is large enough to determine the complexity trends
given in Tables 6, 9, and 12. We have run TRSPH1 for a few problems with up to
n 5,000 vertices, and have not found a counterexample to Conjecture 2. The com-
plexities for these larger problems are similar to those given in the above tables. The
CPU time required for P15,o0o is approximately 73 minutes.

We now describe the experimental results from running the 60 test problems for
algorithms TRMMSA1, TRMMSA2, and TRMMSA3. Table 13 contains the minimum
solid angles in the triangulations of 30 of the 60 problems (to reduce the table size,
we show the results for 20 of the more interesting random problems in which the
entries have greater variance). MSAi is the minimum solid angle in the triangulation
produced by TRMMSAi (MSA3 is not shown since MSA3 MSA1 for all the prob-
lems). MSADel is the minimum solid angle in the Delaunay triangulation produced
by TRSPH1, MSA3a is the minimum solid angle in the triangulation produced by a
modified version of TRMMSA3 in which the starting triangulation is the Delaunay
triangulation produced by TRSPH1 instead of the initial triangulation TI, so MSA3a_->

MSADel is always satisfied.
The comparison of the MSA values for the 50 random problems is summarized

as follows. MSAI> MSA2 for 27 problems, MSAI<MSA2 for 7 problems, and
MSA1 MSA2 for 16 problems. MSADel> MSA12 for 25 problems, MSADel <
MSA12 for 10 problems, and MSADel MSA12 for 15 problems, where MSA12-
max (MSA1, MSA2). MSA3a> MSADel for 9 of the 50 problems, and MSA12>
MSA3a for 8 of the 50 problems. Therefore none of the algorithms always produces
a SA-globally optimal triangulation (we do not know whether a triangulation with the
highest MSA value is SA-globally optimal, but we do know that the triangulations
with smaller MSA values are not SA-globally optimal), and from Table 13, it can be
seen that the MSA value for a SA-locally optimal triangulation can be much smaller
than that for a SA-g|obally optimal triangulation. Since MSA3a_>- MSA12 for 52 of
the 60 problems, it seems that the best approach to constructing an SA-locally optimal
triangulation with a "good" MSA value is to improve the Delaunay triangulation by
applying the local transformation procedure to nonlocally optimal faces (with respect
to the max-min solid angle criterion).

In Tables 14, 15, and 16 we present the counts and times for algorithm TRMMSA1
(the results for TRMMSA2 and TRMMSA3 are similar). From comparison with Tables
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738 BARRY JOE

TABLE 13
Minimum solid angles in triangulations.

Problem

Pl,oo
P41oo
P51oo
P81oo
P2uoo
P42oo
P52oo
P82oo
P43oo
P63oo
P73oo
P83oo
P34oo
P54oo
P7400
P104oo
P1
P4soo
P6soo
P95oo

Pl1oo
P112oo
Pl13oo
Pl14oo
P11soo

P125o
P12oo
P125o
P122oo
P122so

MSA1 MSA2 MSADel MSA3a

0001568 .0002963 .0012346 .0032361
0006088 .0001021 .0004123 .0004123
0001851 .0002813 .0000893 .0000893
0000115 .0000115 .0001843 .0003123
0002078 .0001334 .0001774 .0001774
0001728 .0001023 .0004117 .0004117
0001794 .0000120 .0000043 .0000043
0000136 .0000195 .0000414 .0000414
0000922 .0000071 .0000922 .0003906
0000913 .0000913 .0000515 .0001215
0000456 .0000036 .0000619 .0000824
0000048 .0000071 .0000338 .0000338
0000742 .0000029 .0001818 .0001818
0000193 .0000008 .0000205 .0000205
0000110 .0000096 .0000102 .0000153
0000008 .0000008 .0000507 .0001061
.0000413 .0000152 .0000762 .0001843
0000655 .0000213 .0000299 .0000299
0000097 .0000419 .0001641 .0001641
0000223 .0000538 .0000858 .0000858

.0050024 .0050024 .1837619 .2617994
0013148 .0013148 .1837619 .2617994
0005906 .0005906 .1837619 .2617994
0004443 .0004443 .1837619 .2617994
0003192 .0003192 .18376t9 .2617994

0031036 .0031036 .0193708 .0193708
0003834 .0003834 .0098490 .0098940
0001134 .0001134 .0066005 .0066005
0000478 .0000478 .0049631 .0049631
0000245 .0000245 .0039765 .0039765

TABLE 14
Average ofproblems P1, to P10,, algorithm TRMMSAI: number of tetrahedrons, faces, tests for

transformability, and CPU times.

100
200
300
400
5OO

NTET1 NFAC1 TIM1 LOP1 LTP1 NTF1

460.2 951.6 12.94 530 207 866
1005.0 2050.3 27.84 1,159 406 1,800
1571.8 3192.7 45.74 1,836 670 2,920
2145.4 4351.4 65.63 2,481 907 4,005
2701.9 5461.3 82.08 3,158 1,119 5,011

4 to 12, it can be seen that for TRMMSA1, a smaller percentage of the tests for
transformability (local optimality) result in an application of the local transformation
procedure and much larger percentage result in a nontransformable face. (This relatively
large number of nontransformable faces explains why MSAi can sometimes be much
smaller than MSADel.) Also, for TRMMSA1, there are much fewer tests for trans-
formability in the random problems and problem Plln than there are for TRSPHi,
and about the same number of tests for P12n. Hence, the CPU time required for
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3-D TRIANGULATIONS FROM LOCAL TRANSFORMATIONS 739

TABLE 15
Problem P11n, algorithm TRMMSAI" number of tetrahedrons, faces, tests for transformability,

and CPU times.

100
200
300
400
5OO

NTET1 NFAC1 TIM1 LOP1 LTP1 NTF1

267 614 20.70 707 244 554
672 1,488 37.33 1,125 319 804

1,080 2,362 69.43 1,929 555 1,308
1,512 3,278 101.87 2,599 611 1,565
1,938 4,182 154.95 3,854 845 2,215

TABLE 16
Problem P12,, algorithm TRMMSAI" number of tetrahedrons, faces, tests for transformability,

and CPU times.

5O
100
150
200
250

NTET1 NFAC1 TIM1 LOP1 LTP1 NTF1

532 1,089 20.47 761 199 648
2,122 4,294 86.60 3,079 857 2,755
4,760 9,595 188.80 6,738 1,891 6,379
8,457 17,014 335.58 11,810 3,324 11,522

13,201 26,527 528.35 18,644 5,285 18,036

TRMMSA1 is smaller than that for TRSPHi for the random problems and P11,, and
is greater for P12, since a test involving computation of solid angles takes more time
than a test for determining whether a point is in a sphere. From calculations similar
to Tables 6, 9, and 12, the number of faces in the triangulation produced by TRMMSA1
is O(n) for the random problems, and the time complexity of TRMMSA1 appears to
be approximately O(nL) for the random problems, O(n LS) for Pll,, and O(n 2) for
P12,.

Finally, to compare the CPU times for the three different types of problems and
the two different types of local optimality criteria, the graphs of n versus TIM1 are
given in Fig. 7.

8. Concluding remarks. We have presented an algorithm called TRSPH1 for
constructing a triangulation of a set of n three-dimensional points that is pseudo-locally
optimal with respect to the sphere criterion. Experimental results show that TRSPH1
always constructs a Delaunay triangulation (so far), although variations of TRSPH1
can sometimes fail to construct a Delaunay triangulation. The Delaunay triangulation
of n three-dimensional random points (from the uniform distribution) is shown experi-
mentally to contain O(n) tetrahedrons and faces, and the empirical time complexity
of TRSPH1 is O(n4/3) for sets of random points, which compares well with existing
algorithms for constructing a three-dimensional Delaunay triangulation (Bowyer [2],
Watson [14], Avis and Bhattacharya [1]). The Delaunay triangulation of n three-
dimensional points contains O(n 2) tetrahedrons and faces in the worst case, and we
have presented two families of problems for which TRSPH1 requires an empirical
time complexity of O(n2). We have not yet found any problems for which TRSPH1
requires more than O(n 2) time, so O(n 2) appears to be the worst-case time complexity.
This is better than the worst-case time complexity of O(n 3) for Avis and Bhattacharya’s
algorithm (Bowyer and Watson do not discuss the worst case in their papers).

An open problem is to prove that TRSPH1 always constructs a Delaunay triangula-
tion (Conjecture 2), or to find an example for which TRSPH1 fails to construct a
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FIG. 7. Graphs ofn versus TIM1 (in seconds). Left graph isfor TRSPH1; right graph isfor TRMMSA1.
(C)" average of Pln to P10n’ [2]" Pll." +" P12n.

Delaunay triangulation. If the latter case occurs, then open problems are to determine
sufficient conditions for TRSPH1 to be successful and to determine whether the local
transformation procedure can be used in a modified algorithm that always produces
a Delaunay triangulation (this may involve applying the local transformation procedure
to locally optimal faces, and may be related to Conjecture 1).

We believe that the approach of using the local transformation procedure to
improve a triangulation, as in the TRSPHi algorithms, is especially useful if an initial
triangulation that is nearly Delaunay can be constructed quickly, say in linear time.
This may be possible in an application such as finite-element mesh generation in which
the vertices as well as the tetrahedrons are generated. Information about the location
of the generated vertices can be used to construct a "good" initial triangulation, and
then it may be possible to improve this triangulation to a Delaunay triangulation in
linear time. This is done in two dimensions in Joe [7] and is a subject of further
research in three dimensions.

We have also introduced the max-min solid angle criterion in this paper. This
criterion does not seem to have been used before, although Nguyen 11] tries to avoid
small solid angles in his three-dimensional triangulation algorithm. Experimental
results show that, unlike the case of the sphere criterion, a SA-locally optimal triangula-
tion may be far from being SA-globally optimal due to many nontransformable faces.
An approach to constructing a SA-locally optimal triangulation with a "satisfactory"
minimum solid angle is to improve the Delaunay triangulation by applying the local
transformation procedure to nonlocally optimal faces. A further research problem is
to derive more theoretical results for SA-globally optimal triangulations such as
determining whether the local transformation procedure can be used in their construc-
tion or whether the problem of constructing a SA-globally optimal triangulation is
NP-hard.
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Finally, we discuss the possibility of extending the local transformation approach
to triangulations of higher dimensions. Lawson [10] has recently proved that an
arbitrary dimensional version of Theorem 1 is true, shown that a set of k/ 2 points in
k-dimensional space may be triangulated in at most two different ways, and character-
ized the different configurations of k/ 2 points from the point of view of their possible
triangulations (the number of configurations increases as k increases). Hence the local
transformation procedure can be defined in any dimension, but the number of different
cases increases as the dimension k increases. However, we suspect that the use of the
local transformation procedure to construct k-dimensional Delaunay triangulations
for k_-> 4 will be more difficult than the three-dimensional case (and maybe even not
possible), since the configuration containing a facet may have four or more simplices
so more facets are likely to be nonlocally optimal and nontransformable.

Acknowledgment. The author would like to thank the referees for their helpful
comments.

Note added in lroof. The author has now proved that Conjecture 2 is true.
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