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ABSTRACT

A 3-dimensional variational data assimilation (3D-Var) scheme for the HIgh Resolution Limited
Area Model (HIRLAM) forecasting system is described. The HIRLAM 3D-Var is based on the
minimisation of a cost function that consists of one term, Jy,, which measures the distance
between the resulting analysis and a background field, in general a short-range forecast, and
another term, J,, which measures the distance between the analysis and the observations. This
paper is concerned with J, and the handling of observations, while the companion paper by
Gustafsson et al. (2001) is concerned with the general 3D-Var formulation and with the J,
term. Individual system components, such as the screening of observations and the observation
operators, and other issues, such as the parallelisation strategy for the computer code, are
described. The functionality of the observation quality control is investigated and the 3D-Var
system is validated through data assimilation and forecast experiments. Results from assimila-
tion and forecast experiments indicate that the 3D-Var assimilation system performs significantly
better than two currently used HIRLAM systems, which are based on statistical interpolation.
The use of all significant level data from multilevel observation reports is shown to be one
factor contributing to the superiority of the 3D-Var system. Other contributing factors are most
probably the formulation of the analysis as a single global problem, the use of non-separable
structure functions and the variational quality control, which accounts for non-Gaussian obser-
vation errors.

1. Introduction

The aim of this paper is to give a description of
the treatment of observations in the HIRLAM
3D-Var. In addition, results from parallel data
assimilation and forecast experiments are
described. In the parallel experiments the perform-
ance of the 3D-Var scheme is compared with data
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assimilation based on statistical interpolation (or
OI, Optimum Interpolation) of observed devi-
ations from a short range forecast (Lorenc, 1981).
The general formulation of the HIRLAM 3D-Var
and the treatment of the background field are the
subjects of a companion paper by Gustafsson
et al. (2001).

All observation values to be used in the
HIRLAM 3D-Var are subject to data screening
with the main emphasis on rejecting crude obser-
vation errors and on removing redundant informa-
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tion. In addition, the observation error constraint
J, has been modified to include a variational
quality control (Andersson and Jirvinen, 1999).
This variational quality control is based on a
maximum likelihood formulation, where observa-
tion errors are assumed to consist of a gross error,
with a rectangular probability distribution, in
addition to an error with a Gaussian probability
distribution.

The observation handling, with emphasis on
observation screening, is described in Section 2 of
this paper together with a brief discussion on the
parallelisation of the computer code. The observa-
tion operators (i.e., the J, formulation and the
variational quality control) are the subject of
Section 3. Results from the parallel data assimila-
tion and forecast experiments are given in
Section 4. The effects of using all significant level
data from multilevel observation reports are exam-
ined in Section 5, followed by an investigation of
the functionality of the observation quality control
in Section 6. A discussion and some concluding
remarks are presented in Section 7.

2. The observation handling system

2.1. Data handling

Due to increased data volumes, new data types
and more advanced computer architectures an
advanced data handling system is required.
An overview of the system is given in Fig. 1.
Observations (p) in binary universal form for the
representation of meteorological data (BUFR) are
processed and an observation data file in the
central memory array (CMA) format, which is
designed to be suitable for use in variational data
assimilation, is prepared. While the CMA is being
prepared, necessary information is crudely checked
and, if necessary, observed variables are trans-
formed into those used directly by the variational
assimilation. Observation error standard devi-
ations are assigned during this step. The main
functions of the screening are quality control using
various algorithms, including a comparison with
the background field, data rejections and data
thinning to select only those observed values that
actually will be used by the variational data
assimilation. The HIRLAM 3D-Var produces the
analysis (x) file and a CMA file updated with
information, such as the deviations between the
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Fig. 1. Overview of the main modules (boxes) and files
(barrels) in the observation handling system.

observations and the analysis in the positions of
the observations. During the feedback of observa-
tions the updated CMA file is read and informa-
tion added by the HIRLAM 3D-Var is inserted
into the original observation data file in BUFR
format. Finally, the updated data are read and
various diagnostics, needed for validation of the
performance of the variational data assimilation,
are produced.

Parts of the software package for observation
handling, including the programs for preparing
the CMA and feeding information back to the
original observation data file, are shared with the
European Centre for Medium-Range Weather
Forecasts (ECMWF).

2.2. Screening

Observations are rejected by the screening for
several reasons. Some of the screening algorithms
are simple logical checks verifying that observa-
tions are situated within the analysis area and
that SHIP reports originate from ocean areas.
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There are also representativity checks; for example
stations situated too far away from the model
orography are rejected. The most important check
is the first guess check, to be described in more
detail below. The blacklisting, finally, makes it
possible to reject observations that are coming
from stations situated in particular geographical
areas or observations that come from particular
stations that are considered to be of poor quality.

After the individual screening checks, a sequence
of combination checks is carried out. A multilevel
check is applied to multilevel report data. If more
than four consecutive levels are flagged as suspi-
cious by the screening, all of these data are rejected.
For land surface stations the observed station
altitude pressure and the corresponding geopoten-
tial height are selected rather than the mean sea
level pressure and the corresponding zero height.
Finally, a data redundancy check is applied. All
land surface observations located at the same
horizontal position that have passed the former
tests are compared. Only the observation closest
to the time of analysis is accepted. Radiosondes
and PILOT balloon reports are simultaneously
checked. If both types of reports exist from the
same station the radiosonde report is selected by
preference. Furthermore, in the case of multiple
reports of the same type, the one closest to analysis
time is chosen. For the moving platforms, a thin-
ning is applied. The minimum horizontal distance
allowed between observations from the same sta-
tion identifier has initially been set to half a grid
distance. For observations from the same station
identifier closer than half a grid distance, only the
observation closest to the time of the analysis is
retained. For aircraft observations, however, the
thinning is not applied if the vertical pressure
difference exceeds S0 hPa.

In the first guess check the background model
state x® is projected on the observed quantity y;
with the observation operator H (see
Subsection 3.1). The squared background depar-
ture from the observation i is calculated and
normalised with the sum of the observation error
variance, ¢2 ;, and the background error variance,
6% ;. The observation, y;, is rejected if it does not
satisfy the following inequality:

Ly <([H(®)]: = y)(TH()]: — y)l ot + 02.)
<Ly, (1)
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where L, and L, are the upper and lower rejection
limits and [H(x®)]; denotes the projection of the
model state on observation i. The rejection limits
currently used are obtained from historical rejec-
tion series of the OI system, and are dependent
on type of variable. Since satellite cloud track
wind (SATOB) observations are systematically too
weak, —L, is smaller than L, for this particular
observation type. For all other data — L, is equal
to L,. The coefficients L, and L, will later on be
re-tuned, based on rejection series from the
3D-Var system.

In the case of wind, both components are
checked jointly. For high level winds with wind
speed greater than 15 m/s, a wind direction check
is applied.

Spatially varying first guess error standard devi-
ations are used to represent the differences in
background error statistics resulting from different
flow characteristics in different geographical areas,
as well as from variations in the station density.
These standard deviations have been estimated
for data from the observation types presented in
Subsection 3.2 by applying the NMC method
(Parrish and Derber, 1992) to 3 months of
ECMWF +24 and +48h forecasts. ECMWF
forecasts were chosen in order to obtain a global
coverage, which is desired since HIRLAM coun-
tries apply the assimilation system over different
geographical areas, having different spatial back-
ground error distributions. A total of 15 standard
pressure levels were used in the vertical together
with a low horizontal resolution (5° x 5°) grid, in
order to avoid noisy variances. The representat-
iveness of the ECMWF statistics with respect to
the HIRLAM model errors was verified by com-
paring the ECMWF statistics with HIRLAM stat-
istics, obtained with the NMC method over a
limited area.

2.3. Parallelisation

The calculations in the screening and the
HIRLAM 3D-Var require that all observations
are kept in the computer memory simultaneously.
The observation handling includes a calculation
work load that is irregular in space as well as in
time due to the spatial and temporal distributions
of the observations. The calculation work load for
the observation operators is dominated by calcula-
tions in data-dense areas like continental North
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America, continental Europe, and along satellite
tracks. In order to achieve an even work load
distribution among the processors of a parallel
computer, a parallelisation strategy that takes the
actual observation distribution into account is
applied.

The parallelisation of the J, grid point space
calculations, as well as the corresponding spectral
model calculations, builds on a sub-division of the
model domain into equally sized sub-areas and a
distribution of one such sub-area to each processor
of the parallel computer. The main parallelisation
strategy, as proposed by Rantakokko (1997), for
the treatment of observations in the HIRLAM
3D-Var is a combination of the following two
extreme strategies:

(A) Distribute all the observations in accord-
ance with the horizontal position of the observa-
tions to the processors on which the corresponding
sub-area of the grid point fields resides. Carry out
all the observation operator calculations on the
same processor.

(B) Distribute the observations, independent of
their horizontal positions, to the available pro-
cessors in such a way that each processor will
have the same amount of computational work for
the observation operators. One possibility is to
distribute an equal number of observations of
each type to each processor. Fetch the grid point
values needed for observation operator calcula-
tions by message passing.

Strategy A is simple and identical to the paral-
lelisation of the forecast models. The disadvantage
is a poor load balance of the observation operator
calculations. Strategy B has a good load balance
in the observation operator calculations, the disad-
vantage being the need to communicate grid point
information between the processors; the efficiency
of this may depend on the speed of the commun-
ication network between the processors. For the
HIRLAM 3D-Var the horizontal interpolation
part of the observation operator is carried out in
accordance with strategy A, and the remaining
parts of the observation operator calculations are
carried out in accordance with strategy B. This
“main” parallelisation strategy is memory consum-
ing, since the horizontally interpolated grid point
fields need to be calculated in advance and stored
in the computer memory for all observation posi-
tions. Therefore the parallelisation strategy A is
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available as an option, for computers with too
small memory for the main strategy.

The parallelisation of the HIRLAM variational
data assimilation is based on explicit message
passing, ie., intermediate calculation results are
communicated between the computer processors
by means of messages.

3. The observation error constraint

The observation error constraint J, measures
the distance between the model state x and the
observations y. The observation operator H pro-
vides a link between the model state vector x and
the observation vector y through the model
equivalent of the observed quantities Hx at the
positions of the observations. The observation
operator H may be (weakly) non-linear. This non-
linearity may be important to utilize, for example
with regard to the connection between model
temperature and humidity profiles and radiances
at the top of the atmosphere to be compared with
measured satellite radiances. Also for conventional
observations, for example temperatures and winds
observed with pressure as the vertical coordinate,
the observation operator is weakly non-linear
since the pressures of the model levels depend on
the model state variable surface pressure.

We have chosen to simplify the vertical inter-
polation part of the observation operator by
applying the full non-linear vertical interpolation
to the background field x° while the-tangent-
linear vertical interpolation is applied to the ana-
lysis increment dx =x —x® The linearisation is
carried out with reference to the background field
x®. We have also chosen to carry out the tangent-
linear approximation for the other parts of the
observation operator, for example calculation of
geopotential heights at model levels and extrapola-
tion of geopotential height below the model oro-
graphy. This means that the observation error
constraint may be written as follows:

Jo =2(Hx® + Hox — y)"R™'(Hx" + Hox — y),

(2)
where H denotes the tangent-linear observation
operator, linearised around the background field

x®. Since H is linear, the gradient of the observa-
tion error constraint J, with regard to the model
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state increment vector dx is readily obtained:
Viedo = (H)'R™(Hx® + Héx — ). (3)

The observation errors are assumed to be
un-correlated. This is considered to be appropriate
with regard to the current scheme for selection of
observations. With this assumption, the covari-
ance matrix R for the observation errors becomes
a diagonal matrix and only the observation error
standard deviations need to be specified. To
account for non-Gaussian observation errors
a variational quality control is applied (see
Subsection 3.3).

3.1. The observation operators

The observation operator H and the tangent-
linear observation operator H are sub-divided into
a sequence of sub-operators. Formally, we may
write:

H=HspecIvPcachhF‘la (4)

where F~! is an inverse Fourier transform, I
denotes horizontal interpolation of model level
data from grid points to the horizontal positions
of the observations, P, calculation of pressures
and geopotentials at model full and half levels, I,
vertical interpolation to the levels of the observed
data values and H,,. any other specialised oper-
ators for each type of observation. The inverse
Fourier transform is described in the companion
paper by Gustafsson et al. (2001) and for the non-
linear observation operator, H, it will only be
applied in the case of a spectral forecast model.

The background field x® as well as the increment
field éx at the positions of the observations are
calculated by bi-linear horizontal interpolation.

Starting from model state variables interpolated
to the observation positions, the pressures at the
model levels are calculated according to the
definition of pressure at model full and half levels.
Geopotentials at model half levels are obtained
by integration of the hydrostatic equation. For
the treatment of PILOT wind reports, reporting
at height levels, the model full level geopotentials
are also needed. These are obtained by a simple
linear vertical interpolation, with respect to the
logarithm of the pressure, from the model half
level geopotentials.

The vertical interpolation of model background
fields from model levels to observation levels is in
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general carried out linearly in logarithm of pres-
sure. For PILOT wind observations reporting at
height levels, the vertical interpolation is carried
out linearly with the geopotential as the vertical
coordinate.

With regard to the conventional observations,
only a few special types of sub-operators are
applied at present: the extrapolation of geopoten-
tial below the model lower boundary surface and
the calculation of wind, temperature and humidity
at the reporting levels of SYNOP, SHIP and
DRIBU reports.

Geleyn (1988) describes a method to calculate
the wvertical interpolation between the lowest
model level and the surface. We use this method
to interpolate model values for the observed 10 m
wind (U;om, V1om) @S well as the 2 m temperature
(T,,m) and relative humidity (RH ) from SYNOP,
SHIP and DRIBU reports. This highly non-linear
operator based on the Monin-Obukhov similarity
theory for the surface layer takes turbulence and
terrain characteristics into account. The following
two modifications of the method introduced by
Geleyn (1988) are made. The roughness length
over open sea is iteratively determined from the
surface friction velocity (u* in the Charnock for-
mula). In addition, the formula is improved with
an additional term dependent on “gustiness
stability”, to ensure that in low wind and unstable
conditions the heat fluxes do not drop to zero
because of a vanishing roughness.

Taking into account that the horizontal inter-
polation and the inverse Fourier transform are
linear, the tangent-linear observation operator
may formally be written as follows:

H=H,=(Hspec)l(lv),(Pcalc)/IhF~1’ (5)

where (H,..) and (P.,.) are the tangent-linear
versions of Hp,. and P, respectively. Here (1, )’
denotes a simplified tangent-linear version of I,.
It has been developed to make the calculations
more efficient by ignoring the surface pressure
increment dependencies in the vertical interpola-
tion of temperature, wind and specific humidity.

3.2. Data usage and observation errors

Important features of the variational data assim-
ilation are the global usage of data, ie., all data
in the model domain are used at once to solve a
single global problem (Parrish and Derber, 1992),
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and the rational use of observations that are non-
linearly coupled to the forecast model variables
(Gustafsson et al., 1997). The latter potential
advantage is not yet fully realised in the present
version of the HIRLAM 3D-Var system, in which
the following observed values are utilised.

e For TEMP reports, all significant level data of
temperature, wind and specific humidity are
utilised.

¢ For SYNOP, SHIP and DRIBU reports, the
station level height, multiplied by the gravita-
tional acceleration, g, is utilised as a geopoten-
tial observation at the observed station level
pressure. The observed 10 m wind (430, V10m)
as well as 2 m temperature (7},) and relative
humidity (RH,,,) may also be utilised. At pre-
sent only 10 m winds from SHIP reports are
used.

e For AIREP reports, wind and temperature
observations are utilised.

¢ For PILOT wind reports, all significant level
wind data, observed at pressure or height levels,
are utilised.

¢ For SATOB reports, wind observations are
utilised.

The standard deviations of observation errors
utilised in the HIRLAM 3D-Var were originally
obtained from the ECMWF 3D-Var (Courtier
et al., 1998). These were based on statistical evalu-
ation of observing systems over long periods. An
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examination of the amplitude of the innovation
vectors (which are departures between +6h
forecasts and observations) and a comparison with
error statistics applied at the United Kingdom
Meteorological Office (Parrett, 1992) led to a
revision of the original observation error standard
deviations. The resulting observation error stand-
ard deviations are presented in Table 1 for upper
air observation types and in Table 2 for surface
observation types. The observation errors include
both instrumental and representativeness errors.
For continuity reasons the standard deviations are
interpolated in the logarithm of the pressure to
the observed pressure. Above 10 hPa and below
1000 hPa the errors are assumed constant.

An empirical regression relation is used to spe-
cify the relative humidity observation error stand-
ard deviations, o,. The relation, which is obtained
through a statistical analysis of the dependence of
the errors on temperature, yields:

g,=—0.0015T+0.54 for 240K < T < 320K.

(6)

For temperatures below 240 K, o, takes the value
0.18 and for temperatures above 320 K it takes
the value 0.06. The observation error standard
deviation for specific humidity is derived from the
tangent-linear relationship that relates specific and
relative humidities.

Table 1. Observation error standard deviations for upper air data

TEMP SATOB AIREP PILOT TEMP AIREP

Pressure ufv ufv ufv ufv T T
(hPa) {m/s) (m/s) (m/s) {m/s) (K) (K}
1000 2.1 20 2.5 23 1.1 14
850 20 2.0 2.5 23 0.9 1.3
700 2.0 2.0 30 2.5 0.8 1.2
500 2.5 35 35 3.0 0.8 12
400 3.1 43 40 35 0.8 12
300 3.6 5.0 4.0 37 1.0 1.3
250 3.8 5.0 4.0 3.5 1.1 13
200 35 5.0 4.0 35 1.1 i4
150 3.1 5.0 4.0 34 11 1.4
100 29 5.0 40 33 1.0 1.4
70 2.5 5.0 4.0 32 0.9 1.5

50 23 5.0 4.0 32 1.0 1.6

30 2.3 5.0 7 40 33 1.1 1.8
20 22 5.0 4.0 36 1.1 2.0

10 22 5.7 4.0 4.5 1.1 22
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Table 2. Observation error standard deviations for surface data

DRIBU SYNOP SHIP DRIBU SYNOP SHIP DRIBU SYNOP SHIP
Pressure z z VA ufv ufv u/v T T T
(hPa) (m) (m) (m) (m/s) (m/s) (m/s) (K) (K) (K)
1000 115 7.0 14.0 2.4 3.0 30 1.8 20 1.8
850 8.0 3.0 L5
700 8.6 3.0 13
500 12.1 34 1.2
400 149 3.6 1.3
300 18.8 38 1.5
3.3. Variational quality control weight, r, is less than 0.75:
The variational assimilation algorithm is formu- v, Joc
lated on the basis of Bayes theorem (Lorenc, r= —Vz—f—', (8)

1986), identifying the cost function J with the
logarithm of a probability density function (p.d.f.).
The variational quality control (VarQC) accounts
for the possibility of gross errors, represented by
a flat p.df, in the data presented to the variational
analysis (Lorenc and Hammon, 1988; Ingleby and
Lorenc, 1993; Andersson and Jarvinen, 1999), in
addition to random errors, represented by a
Gaussian p.df. For an individual observation
value, y;, given the state vector x, the p.d.f. is given
by:

—Pl+(1—P) ! g~ 055 (7)
pi= D \/ZO‘,- ;

where P stands for the a priori probability of
observation i having a gross error.
i [Hx];

i o,

is the departure between the observed value, y;,
and the model state projected on observation i,
normalised by the observation error standard
deviation (o;). The factor D represents the range
of possible values, all with the same probability
in the case of gross error. It is assumed that the
data presented to the variational analysis have
been previously checked, in order to keep the
absolute value of z; less than D/(20;) (D needs to
be consistent with the parameters L, and L,
mentioned in Subsection 2.2). The effect of the
VarQC is to scale the magnitude of the gradient
of the observation part of the cost function
obtained assuming a Gaussian error distribution
only. An observation is considered rejected when
the following scaling factor, or the a posteriori
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where JI and J,; are the contributions from
observation i to the observation part of the cost
function with and without VarQC, respectively.
These are given by identifying the observation
part of the cost function with the logarithm of p;
according to (7), with P larger than zero and
equal to zero, respectively. The value of r depends
on the a priori parameters P and D as well as on
the normalised departure z;. Following the proced-
ure used at ECMWF (Andersson and Jirvinen,
1999) for this purpose, P and D have been estim-
ated from the historical rejections series of opera-
tional HIRLAM OI analyses, for the different
variables of all kind of observation reports. The
values obtained clearly show a dependence on
observation system and variable, as well as on
observation density. The latter dependence has
not yet been taken into account in the HIRLAM
3D-Var.

For wind data, it is assumed that gross errors
affect both of the wind components and these are
checked jointly.

Because of the global data usage in 3D-Var, all
observations are used in VarQC to support or
reject an observation. Due to the iterative nature
of the variational procedure, the a posteriori
weight, r, evolves with the number of cost function
evaluations. Observations are not definitively
rejected or accepted at a fixed calculation step. At
present, since a spatially varying P has not yet
been introduced, there is no direct dependence on
the first guess error or the analysis error. However,
we have chosen to switch on the VarQC only after
a number of iterations has been performed (20 in
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the assimilation experiments presented here). One
iteration consists of one or more cost function
evaluations. In our assimilation experiments 70
iterations in general corresponded to roughly 75
cost function evaluations. This prevents the rejec-
tion of observations located in poor first guess
zones, by allowing the initial guess (i.e., the initial
field when the VarQC is switched on) to be closer
to observations than the first guess. It may further-
more be added that the cost function including
VarQC is not strictly quadratic and relative
minima may occur. The final analysis therefore
depends on the starting initial guess and it may
be beneficial to have an improved initial guess
before adding this non-quadratic feature of the
cost function. Furthermore, after a number of
iterations (70 in the assimilation experiments pre-
sented here) the VarQC is again switched off. To
improve the convergence the last cost function
evaluations are performed only with observations
accepted in the VarQC.

It should be added that, although the use of
VarQC implies a non-quadratic cost function, it
has a smoothing effect on the minimisation. If two
observations that are not fully consistent with
each other are presented to the minimisation
problem, an oscillation between two very distinct
solutions may occur at different cost function
evaluation steps. Since VarQC reduces the weights
given to less consistent observations, these oscilla-
tions are reduced and the two originally very
distinct solutions converge.

4. Assimilation experiments

Two sets of assimilation experiments, using
different versions of the HIRLAM system, were
performed over an area covering Northern Europe
and the Northern Atlantic to evaluate the perform-
ance of the variational data assimilation. One
experiment was for a late summer period and
another for a winter period. The summer experi-
ment extended from 25 August to 24 September
1995 and the winter experiment from 10 February
1998 to 9 March 1998. Both of these periods were
characterised by several cyclones passing over the
Northern Atlantic and through the Baltic Sea area.

The two sets of assimilation experiments consist
of runs with three different combinations of ana-
lysis and forecast model formulations: (1) OI
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analysis together with the HIRLAM grid point
forecast model; (2) 3D-Var analysis with the
HIRLAM grid point forecast model; (3) 3D-Var
analysis with the HIRLAM spectral forecast
model.

The main reason for using these three different
experimental combinations is that the OI based
HIRLAM system, currently used operationally by
several weather services, includes the grid point
forecast model, while the HIRLAM 3D-Var was
developed from the spectral version of the
HIRLAM forecast model (Gustafsson, 1999;
Gustafsson et al.,, 2001). Thus, in the experiments,
both the grid point and the spectral models were
used together with the 3D-Var.

For each of the configurations described above,
data was assimilated in a 6 h assimilation cycle.
The observations were retrieved from the
ECMWEF archive. After each analysis, a non-linear
normal mode initialisation was  applied
(Machenhauer, 1977), followed by a +48h
forecast. For the lateral boundary conditions,
6-hourly ECMWF analyses were used.

The parallel experiments for the summer period
were conducted on a Fujitsu VPP700 vector com-
puter at ECMWF using a single processor. The
model grid mesh consisted of 162 x 142 horizontal
grid points at 0.5° resolution, and 31 vertical
levels. The winter case experiments were run on a
CRAY T3E parallel computer using 36 processors;
202 x 178 horizontal grid points with a resolution
of 0.4° and 31 vertical levels were used for these
runs.

The spectral and grid point forecast models
used for the summer case experiments were based
on the current HIRLAM reference forecast model
physics (version 4.3, 1999), while the spectral and
grid point forecast models used for the winter case
were based on the forecast model physics used
operationally at SMHI (version 2.7.15, 1999). The
main differences between these physics packages
are related to parameterisations of turbulence,
clouds and condensation. The HIRLAM reference
model physics uses a first-order non-local turbu-
lence closure scheme by Holtslag and Bovine
(1993). For the clouds and condensation para-
meterisation, the STRACO scheme is applied (Sass
et al, 1999). The main features of this scheme
include sub-grid scale condensation with a statist-
ical distribution of cloud condensate, a smooth
transition between stratiform and convective
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regimes and microphysics of condensation accord-
ing to Sundqvist (1993). The operational version
at SMHI uses a first order local vertical diffusion
scheme (Louis, 1979) and a cloud and condensa-
tion scheme based on explicit forecasts of cloud
water (Sundqvist et al., 1989). Both the reference
and the SMHI models use a radiation scheme
based on ideas of Savijarvi (1989).

Eulerian time integration and a fourth order
implicit horizontal diffusion scheme were used in
all model integrations. The summer case forecasts
were run with a 240 s time step and for the grid
point formulation the horizontal diffusion coeffi-
cient in the troposphere was set to 3.5 x 10** m*/s,
while for the spectral formulation it was set to
1.75 x 10" m*s in the troposphere. The smaller
horizontal diffusion coefficients for the spectral
model may be motivated by its inherent smoothing
due to spectral truncation and by its more com-
plete diffusion operator. Based on earlier experi-
ences, a slight increase in the coefficient was
introduced in the stratosphere, for both forecast
model formulations and for both the summer case
and the winter case. The winter case experiments
with the grid point formulation of the fore-
cast model were run with a 120 s time step and
the horizontal diffusion coefficient set to
1.5 x 10'* m*/s. Due to the filtering effect of the
spectral truncation it was possible to increase the
time step used for the spectral forecast model to
200s. For the spectral model the horizontal
diffusion coefficient was set to 3.0 x 10'* m#/s.

For the winter case OI and 3D-Var assimilation
experiments, only conventional types of observa-
tions were assimilated. These included SYNOP,
SHIP, DRIBU, AIREP, PILOT and TEMP
observation reports. For the summer case experi-
ments satellite cloud track wind (SATOB) observa-
tions were also used in both the OI and 3D-Var
system. A few differences between data usage in
the OI and 3D-Var systems should be pointed
out: (1) Wind observations from DRIBU reports
and SYNOP coastal station reports are used only
by OI, whereas temperature observations from
AIREP reports are used only by 3D-Var. (2) The
3D-Var system assimilates TEMP and PILOT
winds, as well as TEMP temperatures and mois-
ture, from all significant levels, whereas the OI
system assimilates TEMP and PILOT winds, as
well as TEMP geopotential heights and moisture,
at standard pressure levels only, in addition to
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geopotential height at the observed surface pres-
sure. (3) The 3D-Var system assimilates specific
humidity whereas the OI system assimilates relat-
ive humidity. The minimisation of the cost func-
tion of the 3D-Var system was performed until a
quadratic norm of the cost function gradient had
decreased by a factor 20 as compared with the
first gradient evaluation. Further decrease of the
norm of the gradient gives very minor reduction
in the cost function and very small changes to the
assimilation increments. A simple analysis of sea
surface temperature (SST) and ice cover, based on
the successive correction method, initially intro-
duced by Bergthorsson and Do66s (1955), comple-
mented the OI and 3D-Var analyses.

To evaluate the relative quality of the OI and
3D-Var analyses and subsequent forecasts, we
verified them against observations in the list of
(radiosonde and SYNOP) stations established by
the European Working Group on Limited Area
Models (EWGLAM). The verification was done
for key weather parameters, at the surface level,
and at the vertical levels of 850, 500 and 300 hPa.
The model data used in the statistics were the
analyses and the +6, + 12, + 18, +24, + 30, + 36,
+42 and +48 h forecasts.

4.1. Summer period observation verification results

Fig. 2 illustrates the time-averaged summer
period bias and root mean square error (rms)
scores for mean sea level pressure (P,) analyses
and forecasts and 2 m temperature (7T,,,) forecasts,
in comparison to the observations. The HIRLAM
forecasts tend to have an increasingly larger nega-
tive bias in the P, field with increasing forecast
length. However, the bias in P, forecasts based
on 3D-Var analyses are smaller than those with
Ol analyses. Better performance with 3D-Var
based forecasts are also seen in terms of rms
values. Among the forecasts initiated with 3D-Var
analyses, the spectral model forecasts are seen to
be slightly better than those of the grid point
model. For T,,, all the forecast results showed a
trend of gradual warming with increasing forecast
length, in particular for the 3D-Var based ones. It
seems that the grid point model 3D-Var T,
forecasts are more biased than the spectral model
3D-Var forecasts. The rms scores of the Ol T,
forecasts are rather similar to the scores of 3D-Var
spectral model forecast, whereas the scores of the
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Fig. 2. Average bias and rms scores for summer period (25 August-24 September 1995) P, (left) and T, (right)
forecasts as functions of forecast length (h). The P, (hPa) and T, (m/s) scores are for OI (full), 3D-Var with grid
point forecast model (dashed with dots) and 3D-Var with spectral forecast model (dashed with crosses).

3D-Var grid point model forecasts are somewhat
Worse.

For all the bias and rms scores with various
configurations, as described above, large temporal
variability in observation verification scores is
seen for different model variables. As an example,
Fig. 3 shows the bias and rms values of the +24 h
P, forecasts, in comparison to verifying observa-
tions, for the entire summer period. Since the
variability of the spectral and grid point model
forecasts launched from 3D-Var analyses show
strong agreement, only the grid point model
3D-Var forecasts and the OI forecasts are shown.
The OI and 3D-Var results are seen to outperform
each other during different periods, although most
often the 3D-Var scores are better.

The time-averaged bias and rms scores for the
summer period analyses and forecasts of geopoten-
tial height, temperature and wind speed at the

850, 500 and 300 hPa levels are shown in Fig. 4.
The better initial time rms scores for the OI
geopotential height and for the 3D-Var temper-
ature are consequences of the fact that the OI
system assimilates geopotential heights, whereas
the 3D-Var system assimilates temperatures. In
terms of rms, the scores for the 3D-Var based
forecasts are better than the OI forecasts, for all
variables and vertical levels, except for the 300 hPa
level temperatures, for which the rms scores are
rather similar. In general the 3D-Var spectral
model forecasts are slightly better than the 3D-Var
grid point model forecasts. In terms of bias, the
scores of the geopotential height and wind
forecasts based on the 3D-Var are better than the
scores of the OI based forecasts. Again, the scores
of the 3D-Var spectral model forecasts are better
than those for the grid point model. For temper-
atures, the bias of the OI and 3D-Var forecasts

Tellus S3A (2001), 4
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Fig. 3. Time variability of the +24 h P, forecast bias and rms scores (hPa) during the assimilation cycles of the
summer period (25 August-24 September 1995). The scores are for OI (full) and 3D-Var with grid point forecast

model (dashed with dots).

are rather similar, except for the 500 hPa level,
where the spectral model forecasts are more
biased.

4.2. Winter period observation verification results

Fig. 5 shows the time-averaged winter period
bias and rms scores for the P, analyses and
forecasts and T, forecasts, in comparison to the
observations. The 3D-Var based P, forecasts
using the spectral forecast model are less biased
than the OI and 3D-Var forecasts using the grid
point forecast model. The OI based forecasts of
T,, are more biased than the 3D-Var based
forecasts. Better performance of forecasts launched
from 3D-Var analyses, as compared to the
forecasts launched from OI analyses, are clearly
seen in terms of the rms scores. The rms scores of
the forecasts started from 3D-Var analyses are
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relatively independent on whether a grid point or
a spectral forecast model is used. As was the case
for the summer period, a large temporal variability
in observation verification scores is evident for the
winter period (figures not shown).

Fig. 6 illustrates the time-averaged bias and rms
scores for winter period analyses and forecasts of
geopotential heights, temperatures and wind
speeds at the 850, 500 and 300 hPa levels. The OI
and 3D-Var wind forecasts are relatively unbiased,
at all vertical levels. The 3D-Var spectral forecasts
of 850 and 500 hPa temperatures, as well as of
500 and 300 hPa geopotential heights are less
biased than the corresponding OI and 3D-Var
grid point forecasts. On the other hand the 3D-Var
spectral forecasts of 850 hPa geopotential heights
are more biased than the corresponding OI and
3D-Var grid point forecasts. In terms of rms, the
3D-Var scores are seen to be clearly better for all
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Fig. 5. Average bias and rms scores for winter period (10 February-9 March 1998) P_, (left) and T,,, (right) forecasts
as functions of forecast length (h). The P, (hPa) and T,,, (m/s) scores are for OI (full), 3D-Var with grid point
forecast model (dashed with dots) and 3D-Var with spectral forecast model (dashed with crosses).

variables and vertical levels. The 3D-Var forecast
rms scores are relatively independent of whether
a grid point or spectral model has been used.

4.3. Case study and verification against analyses

Observation verification gives just one measure
of the forecast quality. As most observations used
in the verification package are located over contin-
ental Europe, the conclusions drawn from the
observation verification are only valid over land.
Even in the area where observations are dense
and the observation verification scores are useful,
analysis verification (using analyses to verify
forecasts) and subjective verification may still be
useful. To give an idea of how much difference in
the forecasts one can expect from a large difference
in the observation verification score, two cases are
selected on the basis of Fig. 3. For the first case,
started from 2 September 1995 1§ UTC, the OI
based +24 h P, forecast has a much smaller rms

Tellus 53A (2001), 4

observation verification score than the 3D-Var
based grid point model forecast. For the second
case, started at 6 September 1995 00 UTC, the
3D-Var based +24h grid point model forecast
have much smaller rms observation verification
score.

In Fig. 7, the two P forecasts (middle) look
rather similar to each other. Comparing the
forecasts with the verifying analyses (upper), we
may conclude that the OI and 3D-Var systems
both failed to predict the position and the depth
of the low. The depth of the low is somewhat
better in the 3D-Var forecast while the position is
slightly better in the OI forecast. Over continental
Europe, the ridge is predicted better by the OI
system. To quantify this comparison, the difference
maps between forecasts and verifying analyses are
shown at the bottom of the figure. From these
two difference maps, our subjective evaluations
are confirmed. The better observation verification
score for this OI forecast is due to the slightly
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Fig. 7. Forecasts at 24 h (middle) of P, valid on 3 September 1995 at 18 UTC, and corresponding verification
analyses (upper). The contour interval is 4 hPa. Also shown (lower) are the differences between the +24h Py
forecasts and their corresponding verification analyses. The contour interval for the difference plots is 2 hPa and the
zero-lines are suppressed. The results are for 3D-Var with grid point forecast model (left) and OI (right).



462

better position of the low and an almost error-
free forecast over continental Europe, where
we have the most dense synoptic verification
observations.

In Fig. 8, the two P, forecasts (middle) also
look rather similar to each other. However, the
central pressures of the low differ by 3 hPa and
the positions of the low center differ by 100 km.
Comparing the forecasts (middle) with the verify-
ing analyses (upper), the 3D-Var forecast for the
low looks clearly better than the OI forecast. The
difference maps (lower) also show that the errors
of the 3D-Var forecast are significantly smaller. In
the observation-dense area, this is especially true,
which explains the large difference in the observa-
tion verification scores.

5. The effects of using all significant level data

One potential advantage of the HIRLAM
3D-Var, as compared to OI, is the use of all
significant level data from TEMP and PILOT
observation reports, rather than only standard
level data. The standard pressure levels of TEMP
reports are: 1000, 925, 850, 700, 500, 400, 300, 250,
200, 150, 100, 70, 50, 30, 20 and 10 hPa. The
standard pressure levels of PILOT pressure level
reports are: 850, 700, 500, 400, 300, 250, 200, 150,
100, 70, 50, 30, 20 and 10 hPa. To investigate the
effects of using all significant level data the refer-
ence 3D-Var spectral run was complemented with
a modified 3D-Var for the first week of the winter
period experiment (10-16 February 1998). In the
modified spectral run only standard pressure level
data from TEMP reports and PILOT pressure
level reports were assimilated.

The time averaged bias and rms scores for the
3D-Var reference and modified spectral runs are
illustrated in Fig. 9 for the 700 and 200 hPa tem-
perature and wind analyses and forecasts, in com-
parison to observations in the EWGLAM list. At
700 hPa, the differences in bias of the reference
and modified forecasts are small. The magnitude
of the bias is also small, both for temperatures
and wind speeds. On the other hand, the bias of
the 200 hPa temperatures and wind speeds are
relatively large. The 200 hPa temperatures are
positively biased and the 200 hPa wind speeds
show a negative bias. The magnitude of the bias
of the modified run is larger than for the reference
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run. The rms scores of the reference forecasts are
in general slightly better for the 700 and 200 hPa
temperatures, as compared to the scores of the
modified run. It seems that the use of all significant
level TEMP and PILOT pressure level data has
a positive impact on the 3D-Var based forecasts.

6. Investigation of observation screening and
variational quality control

To demonstrate the effects of the screening and
the variational quality control (VarQC), the same
randomly chosen assimilation cycle (5 March 1998
12 UTC) as is diagnosed in the companion paper
by Gustafsson et al. (2001) is investigated. For
this assimilation cycle the 3D-Var analysis system
was also run without VarQC.

Since the effects of observation screening and
VarQC are rather similar for the 3D-Var analyses
utilising the spectral and the grid point forecast
models, only results from the version with the
spectral model are shown. To highlight the effects
of VarQC the minimisations were performed until
the quadratic norm of the cost function gradient
had decreased by a factor 100, as compared to its
initial value.

Table 3 illustrates the number of observed
quantities of each observation type that are pre-
sented to the screening first guess check and the
VarQC. In the 3D-Var 165 TEMP and 15 PILOT
profiles are used. The table also shows the number
of quantities rejected by the respective quality
control algorithms and the rejection ratio, i.e., the
fraction (in %) of the total number of observed
quantities that are rejected in either the first guess
check or the VarQC. Here we consider an observa-
tion to be rejected by the VarQC if the weight
given to the observation in the analysis has been
reduced by a factor of 0.25 or more. The number
of observed quantities of each observation type
that are presented to the OI first guess and the
OI check are shown in Table 4, together with the
number of quantities rejected by the respective
quality control algorithms and the rejection ratios.
The OI check is the spatial consistency check in
the OI (Lorenc, 1981) that corresponds to the
VarQC. In the OI 166 TEMP and 23 PILOT
profiles were used.

The main difference between the VarQC and
the OI check is that all observations are used to

Tellus 53A (2001), 4
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Fig. 8. Forecasts at 24 h (middle) of P,g, valid on 7 September 1995 at 00 UTC, and corresponding verification
analyses (upper). The contour interval is 4 hPa. Also shown (lower) are the differences between the +24h P
forecasts and their corresponding verification analyses. The contour interval for the difference plots is 2 hPa and the
zero-lines are supressed. The results are for 3D-Var with grid point forecast model (left) and OI (right).
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Fig. 9. Average bias and rms scores for the first week of the winter period (10-16 February 1998), as functions of
forecast length (h). Temperature scores (K) at 700 hPa (lower left) and 200 hPa (upper left) as well as wind speed
scores (m/s) at 700 hPa (lower right) and 200 hPa (upper right). The scores are for the reference spectral 3D-Var
run (full) with all significant level data used and for the modified run (dashed) with only standard pressure level
data from TEMP and PILOT pressure level reports used.

Table 3. 3D-Var data usage and rejections for the analysis valid for 5 March 1998 12 UTC; the analysis
made use of 165 TEMP and 15 PILOT profiles

Observation Observed Obs. before Obs. rejected Obs. rejected Rejection
type quantity FG and VarQC in FG check in VarQC ratio (%)
SYNOP geopotential 2032 4 93 4.8
SHIP geopotential 221 0 5 23
10 m wind 217 2 4 2.8
DRIBU geopotential 58 0 0 0.0
AIREP temperature 1137 9 4 1.1
wind 1134 10 30 35
PILOT wind 114 0 2 1.8
TEMP temperature 5877 269 32 5.1
wind 5224 S1 151 39
spec. hum. 4380 168 2 3.9
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Table 4. OI data usage and rejections for the analysis valid for 5 March 1998 12 UTC; the analysis made

use of 166 TEMP and 23 PILOT profiles

Observation Observed Obs. before FG Obs. rejected Obs. rejected Rejection
type quantity and OI check in FG check in OI check ratio (%)
SYNOP geopotential 2024 39 11 2.5
10 m wind 963 15 1 1.7
SHIP geopotential 238 3 7 4.2
10 m wind 238 1 7 34
DRIBU geopotential 59 2 0 34
wind 14 0 0 0.0
AIREP wind 1135 17 5 1.9
PILOT wind 80 0 0 0.0
TEMP geopotential 2083 83 2 4.1
wind 1962 3 3 0.3
rel. hum. 938 29 12 44

support or reject an observation in the VarQC,
due to the global data usage in 3D-Var, while
the OI check only uses nearby observations.
Furthermore, at present there is no direct depend-
ence in VarQC on the first guess or analysis error
standard deviations, as in the OI check. Thus, the
OI check is less stringent over data-sparse areas,
where the analysis error standard deviations are
larger than over well observed regions. Finally,
due to the iterative nature of the variational
minimisation procedure, observations are not
definitively rejected or accepted at a fixed calcula-
tion step (until iteration 70) in VarQC, which is
the case with the OI check.

By comparing Table 3 with Table 4 the larger
amount of data from PILOT and TEMP reports
used in 3D-Var is evident. This is due to the use
of all significant level data in 3D-Var. The number
of rejections of an observed quantity in each of
the two types of checks in general differs substan-
tially between the OI and the 3D-Var systems.
However, the rejection ratios seem realistic and
are of the same order of magnitude for both
assimilation systems and for all quantities.

The effects of the VarQC rejections, in the case
of surface pressure, are illustrated by Fig. 10. The
upper part shows the surface pressure analysis
increments for a 3D-Var analysis when VarQC is
not applied. The lower part shows the difference
in analysed surface pressure between the analysis
when VarQC is not applied and the analysis when
VarQC is applied. From the lower part, the posi-
tions of rejected observations may be identified
and in combination with the upper part it can be
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seen that the effects of VarQC on the analysis are
most evident due to rejection of the observations
located over Northern Atlantic, North Africa and
Western Russia, respectively. Table 3 illustrates
that 93 land surface geopotential observations
and 5 sea surface geopotential observations are
rejected due to VarQC. On the other hand, from
the lower part of Fig. 10. it can be seen that large
differences appear mainly over less than 15 geo-
graphical locations.

Fig. 11 shows the cost function as a function of
the number of cost function evaluations, for a
minimisation when VarQC is not applied and for
a minimisation when VarQC is applied. It can be
seen that the cost functions start to deviate after
20 iterations, when VarQC is switched on and
reduces the contribution to the cost function from
some observations. The rapid decrease of the cost
function at evaluation 75, for the minimisation
when VarQC is applied, is due to the fact that
observations rejected in VarQC are now com-
pletely removed from the minimisation so that the
problem becomes completely quadratic.

7. Discussion and concluding remarks

A 3-dimensional variational data assimilation
for HIRLAM has been developed. It has been
given an incremental formulation for computation
economy reasons and to permit application
together with the spectral as well as the grid point
HIRLAM models. The general formulation of the
HIRLAM 3D-Var is described in a companion
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Fig. 10. Surface pressure analysis increments (upper), in tenths of hPa, for 3D-Var with spectral forecast model and
with VarQC not applied. Surface pressure analysis difference (lower), in tenths of hPa, between one 3D-Var analysis
with VarQC not applied and one with VarQC applied. The analyses are valid for 5 March 1998 12 UTC and the
contour interval for the upper and lower maps are 0.5 and 0.2 hPa, respectively.
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paper (Gustafsson et al., 2001). The 3D-Var system
includes an observation handling system, that is
designed to work efficiently on different kinds of
computer architectures and to meet future require-
ments regarding the increasing amount of observa-
tions and assimilation of new data types.

Results of two sets of data assimilation experi-
ments indicate that the 3D-Var analysis system
performs significantly better than the HIRLAM
systems based on statistical interpolation.

The observation handling is believed to be one
major contributing factor to the superiority of the
3D-Var scheme. One advantage of the HIRLAM
3D-Var, as compared to the OI system, that has
been demonstrated, is the use of all significant
level data from multilevel observation reports.
Other attractive features are the use of variational
quality control, which accounts for non-Gaussian
observation errors, and the elimination of data
selection. With regard to the background error
constraint, which is described in the companion
paper by Gustafsson et al. (2001), an important
advantage of the 3D-Var is the use of non-separ-
able structure functions.

The 3D-Var system has been proven to outper-
form the OI system, regardless of whether it is
used together with the spectral or the grid point
HIRLAM models. The summer case indicated
better forecast verification scores for the 3D-Var
based spectral model forecasts, as compared to
the grid point model forecasts, while the winter
case experiment indicated less conclusive verifica-
tion scores in this respect. It is not clear whether
the improved summer time forecasts with the
spectral model are related to an improved numer-
ical accuracy of the spectral model, as compared
to the grid point model. Another reason may be
a degrading effect of adding a lower resolution
increment, defined in spectral space, to a full
resolution background field in grid point space,
in case of using 3D-Var together with the grid
point model.

Further improvements regarding observation
handling include assimilation of new data types,
such as the Global Positioning System (GPS) total
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Fig. 11. Evolution of cost function for an analysis with
VarQC not applied (dashed line) and with VarQC
applied (full line) as a function of the number of cost
function evaluations.

atmospheric delays, radar radial winds (Lindskog
et al, 2000) and satellite radiances. The future
introduction of 4-dimensional variational data
assimilation (4D-Var), which is the natural exten-
sion of 3D-Var, will lead to an observation hand-
ling that is more consistent in the time dimension.
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