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The wake of a rotating circular cylinder in a free stream is investigated for Reynolds
numbers Re 6 400 and non-dimensional rotation rates of α 6 2.5. Two aspects are
considered. The first is the transition from a steady flow to unsteady flow characterized
by periodic vortex shedding. The two-dimensional computations show that the onset
of unsteady flow is delayed to higher Reynolds numbers as the rotation rate is
increased, and vortex shedding is suppressed for α > 2.1 for all Reynolds numbers
in the parameter space investigated. The second aspect investigated is the transition
from two-dimensional to three-dimensional flow using linear stability analysis. It is
shown that at low rotation rates of α 6 1, the three-dimensional transition scenario is
similar to that of the non-rotating cylinder. However, at higher rotation rates, the three-
dimensional scenario becomes increasingly complex, with three new modes identified
that bifurcate from the unsteady flow, and two modes that bifurcate from the steady
flow. Curves of marginal stability for all of the modes are presented in a parameter
space map, the defining characteristics for each mode presented, and the physical
mechanisms of instability are discussed.
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1. Introduction

The flow past a rotating cylinder is a function of two non-dimensional parameters.
These are the Reynolds number, Re = UD/ν, where U is the free-stream velocity, D

is the cylinder diameter, and ν is the kinematic viscosity, and the non-dimensional
rotation rate α = ωD/2U, where ω is the rotational speed of the cylinder. This
latter parameter is therefore the ratio of the surface velocity of the cylinder to the
free-stream velocity.

Flow past a non-rotating circular cylinder in the low-Reynolds-number range and
the bifurcations from one state to another have been extensively studied, and several
regimes of flow have been identified. Experimental work on the transition between
the steady and unsteady regimes has been discussed by Williamson (1996b) and
others. Numerical investigations have also contributed to the understanding of the
flow. Several research groups, e.g. Barkley & Henderson (1996), Karniadakis &
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Triantafyllou (1992) and Thompson, Hourigan & Sheridan (1996), have investigated
the transition from two-dimensional vortex shedding to three-dimensional flow at
Re ≃ 190, where the wake vortices develop a waviness in the spanwise direction at
a wavelength of around 4D. This wake instability is known as mode A (Williamson
1988), which has also been shown to be the saturated form of a linear mode growing
on the two-dimensional periodic base flow (Barkley & Henderson 1996). Further
increasing Re sees a second type of three-dimensional flow develop, with fine-scale (a
wavelength of around 0.8D in the spanwise direction) streamwise vortices developing
in the braid shear layers between wake vortices. This instability is known as mode
B (Williamson 1988). Even though in reality this flow develops from the already
three-dimensional mode A wake, it is also well described by a linear mode growing
on the two-dimensional base flow (Barkley & Henderson 1996). The linear modes
corresponding to modes A and B are commensurate with the base flow, introducing no
new frequencies. However, modes which are incommensurate with the base flow has
also been observed in the wakes of cylinders. Owing to the introduction of a second
frequency, this mode is expected to be quasi-periodic, and so is designated mode QP
(Blackburn, Marques & Lopez 2005). Such modes have also been observed in wakes
of square cylinders (Blackburn & Lopez 2003) and transversely oscillating cylinders
(Leontini, Thompson & Hourigan 2007).

The effect of rotation is to cause opposing viscous effects on either side of the
cylinder centreline. Depending on the rotation rate, the flow may remain attached
on one side of the cylinder while separating from the other, causing a net lift
force directed away from the side where the flow remains attached. This is known
as the Magnus effect (Prandtl 1926). Some of the earliest numerical investigations
(Ingham 1983; Badr, Dennis & Young 1989) were primarily used for comparison
with experimental work, and were performed for Re 6 100. The classifications were
primarily aimed at differentiating the steady and unsteady regimes of flow by varying
the rotation rate and Reynolds numbers. Vortex shedding was found to be suppressed
for α > 2 at Re = 1000 (Badr et al. 1990; Chew, Cheng & Luo 1995), while a single-
sided vortex shedding regime was observed by Chen, Ou & Pearlstein (1993) over a
short time history. Similar findings were also observed for α 6 2.5 and Re 6 200 by
Kang, Choi & Lee (1999), who distinguished regions of flow stability. They further
quantified the lift and drag coefficients over this regime.

When the parameter range was further increased to higher rotation rates of α < 12,
a secondary shedding regime was observed by Stojković, Breuer & Durst (2002).
On increasing the rotation rate at Re = 100, the Kármán-type shedding ceased at
α = 1.8 until higher rotation rates when shedding reappeared over a narrow range of
4.8 6 α 6 5.15. The boundaries of this secondary shedding regime were later identified
in a subsequent investigation (Stojković et al. 2003). This shedding was first observed
around α ≃ 4.3 (Mittal & Kumar 2003) at Re = 200; the Reynolds number range
of occurrence decreased as the rotation rate was increased to higher values. Recent
numerical simulations by Akoury et al. (2008) showed that the secondary shedding
regime occurred over a broader range at higher Reynolds number. The vortex shedding
in this regime was single sided and the shedding frequency was observed to be
much lower compared with the two-sided Kármán shedding at lower rotation rates.
Beyond α ≃ 5.5, steady flow was observed (Pralits, Brandt & Giannetti 2010). Recent
experimental visualizations by Kumar, Cantu & Gonzalez (2011) confirmed the two
shedding regimes and the shedding frequencies observed in the two shedding regimes
were in good agreement with previous numerical work. However, little is known about
the three-dimensional structure of the wake at these rotation rates.
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The cylinder rotation not only alters the two-dimensional flow structure, the
three-dimensional modes present in the wake are also altered. The onset of three-
dimensionality for rotation rates of α > 0 had not been investigated until recently,
although it has been generally stated that the flow is three-dimensional for Re & 200.
Direct numerical simulations were performed by Akoury et al. (2008) for α 6 1.5
and Re 6 300. When the rotation rate was increased to α = 0.5, the onset of three-
dimensionality occurred at Re ≃ 220, with the appearance of mode A type structures
in the wake. This mode was found to persist up to Re = 300, with a spanwise
wavelength of approximately 4D. The onset of three-dimensional flow is delayed to
higher Reynolds numbers on increasing the rotation rate. At α = 1.5 and Re = 200, the
flow was found to be two-dimensional.

The effect of three-dimensional instabilities at higher rotation rates has been
investigated by Mittal (2004) for α = 5 at Re = 200. The two-dimensional flow field
is steady while the three-dimensional simulations show the growth of centrifugal
instabilities along the span of the cylinder. They also tested the effect of various
boundary conditions for cylinders of different aspect ratios (the ratio of the cylinder
diameter to its length). For aspect ratios of 5, 10 and 15 with slip walls, the
time history of the drag coefficient showed oscillatory behaviour. The flow around
the cylinder with lower aspect ratio and slip walls resembled two-dimensional flow
(which was steady). However, larger-aspect-ratio cylinders with no-slip walls showed
fluctuations, primarily because of the interaction of the boundary layer of the wall
and the rotating cylinder. The three-dimensional flow was associated with centrifugal
instabilities of around 1D spanwise wavelength. This instability was predicted to cause
a reduction in lift and increase in drag coefficient.

When the spatio-temporal symmetry of the vortex street is broken (as occurs when
the cylinder is rotating), further modes become possible. In particular, subharmonic
modes which repeat over two cycles of the two-dimensional base flow can occur.
Such a mode is termed subharmonic and has been detected in the wake of a circular
cylinder with a control wire (Zhang et al. 1995), in the wake of an inclined square
cylinder (Sheard, Fitzgerald & Ryan 2009; Sheard 2011), in oscillating cylinder wakes
Leontini et al. (2007), and in the wakes of rings (Sheard, Thompson & Hourigan
2003, 2005a; Sheard et al. 2005b). It is expected that similar modes should occur for
rotating cylinders.

Recent linear stability investigations were undertaken by Meena et al. (2011), at
Re = 200 for 3 6 α 6 5. They observed three-dimensional modes with a purely real
growth rate for α 6 4.3, while a complex three-dimensional mode was observed for
α > 4.5. Their three-dimensional investigations showed what appear to be centrifugal
instabilities near the cylinder and the time histories of the force coefficients indicated
that this flow is aperiodic.

All of these previous studies indicate that the flow is a function of both Re and α,
with a wide variety of vortex shedding regimes and three-dimensional modes occurring.
The current study therefore considers systematically the wakes of rotating cylinders
as a function of both these variables. The remainder of this article is organized as
follows. After a brief problem definition in § 2 the numerical method employed in our
investigations is detailed in § 3, supplemented by validation studies. This is followed
by the presentation of results. In that section, first the two-dimensional flow structures
observed as a function of Re and α are described in § 4. Particular attention is paid
to the transition from steady to unsteady flow. This is followed by the results of a
linear stability analysis in § 5, investigating the transition to three-dimensional flow
from the established two-dimensional flows. Curves of marginal stability of each of
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FIGURE 1. Schematic representation of the spinning cylinder in a free stream.

these three-dimensional modes are presented in the Re–α plane, and the characteristics
of each of these modes are described. Physical mechanisms of instability are proposed
for a number of these modes. This is followed by some concluding remarks.

2. Problem definition

A schematic diagram of the problem under consideration is shown in figure 1. The
cylinder of diameter D spins in an anticlockwise sense at a constant angular velocity,
ω. The oncoming uniform flow velocity is represented by U. Results for 0 6 Re 6 400
and 0 6 α 6 2.5 are presented.

3. Numerical formulation

3.1. Fluid flow equations

For the base flow, the incompressible Navier–Stokes equations are solved in
two dimensions using a spectral-element approach. The computational domain
consists of quadrilateral elements which are concentrated in the regions of high
velocity gradients to accurately capture the flow dynamics. The boundaries of
these quadrilateral elements are straight except in the vicinity of the cylinder,
where curved edges are used to accurately represent the circular cylinder. These
elements are further subdivided with internal node points distributed according to
the Gauss–Legendre–Lobatto quadrature points, with the velocity and pressure fields
represented by tensor products of Lagrangian polynomial interpolants. Despite being
only formally C0-continuous across element boundaries, these methods are known
to provide spectral convergence as the polynomial order is increased (Karniadakis
& Sherwin 2005). The number of node points within each element (N × N) can
be specified at runtime with the interpolating polynomial order in each direction
being N − 1. A second-order fractional time-stepping technique is used to sequentially
integrate the advection, pressure and diffusion terms of the Navier–Stokes equations
forward in time. The unsteady solver is used to investigate the parameter range
covering both the steady and unsteady regimes of flow.

More details of the solver can be found in Thompson et al. (2006a); and the solver
has been previously used in studies of bluff-body flows (Thompson et al. 1996, 2006b;
Leontini et al. 2007) and of flows over rolling cylinders near a wall (Stewart et al.
2006, 2010; Rao et al. 2011).

It may be recalled that the critical parameters for transition are sensitive to the
placement of boundaries and the resolution of the wake. In order to reduce blockage
effects to acceptable levels, the boundaries of the domain have been placed at 100D

from the cylinder in all directions.

3.2. Linear stability analysis

The focus of this investigation is to determine the three-dimensional stability of the
two-dimensional base flows to perturbations with an imposed spanwise wavelength.
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Equations for the evolution of perturbations are formed by first decomposing

the velocity and pressure fields into base and perturbation components. This

decomposition is then substituted into the governing Navier–Stokes equations, and the

terms for the base flow subtracted out. The resulting equations are then linearized by

removing the quadratic perturbation term. Because the coefficients do not depend on z,

the perturbation fields can be decomposed into a set of Fourier modes in the spanwise

direction, and the perturbation equations then reduce to a set of decoupled equations

describing the different spanwise modes. The process of forming these equations is

well described in Barkley & Henderson (1996). The result is that perturbation fields

for an imposed spanwise wavelength can be solved for.

The eventual perturbation equations can be viewed as a linear operator that takes the

perturbation solution from one time to another. If the base flow is periodic, this results

in an operator that takes the perturbation from one period to the next. This operator is

never explicitly formed; application of the operator is obtained by simply integrating

the perturbation equations forward in time. Eigenvalues µ of this operator indicate

whether the base flow is steady to perturbations of a prescribed wavelength: |µ| < 1

indicates that the flow is stable as perturbations decrease in size from one period to the

next; |µ| > 1 indicates that the base flow is unstable as perturbations grow from one

period to the next. For periodic problems, µ is referred to as the Floquet multiplier.

Marginal stability occurs when |µ| = 1.

Of interest are the eigenmodes (Floquet modes or linear instability modes) with

the largest eigenvalues, as these are the modes which grow the fastest (or decay the

slowest). As the linear operator is never explicitly formed, these leading eigenmodes

and eigenvalues are found through indirect iterative methods. Here, an Arnoldi method

is employed (e.g. Mamun & Tuckerman 1995) that can resolve the leading eigenmodes

and the complex component of the eigenvalues of µ. When µ is purely real and

positive, the periodicity of the three-dimensional mode is synchronous with the

base flow; e.g. modes A and B, which are observed in the wake of a non-rotating

cylinder, are purely real modes (Barkley & Henderson 1996). When µ is complex, the

eigenmode introduces a new frequency. If the base flow is steady, this predicts that the

three-dimensional flow will be periodic; if the base flow is periodic, the introduction

of this second frequency predicts that the three-dimensional flow will be quasi-periodic.

Finally, if the Floquet multiplier is purely real but negative, subharmonic modes are

predicted. Further details of this method and its implementation can be found in

Leontini et al. (2007) and Stewart et al. (2010).

Linear stability analysis has been widely used to predict critical Reynolds numbers

and wavelengths of three-dimensional modes that become unstable based on a periodic

or steady two-dimensional base flow. The spatial structure of the modes is also

predicted. For a non-rotating cylinder, the predictions of the linear (Floquet) instability

modes (modes A and B) by Barkley & Henderson (1996) agree well with the fully

saturated instability modes observed in the experiments of Williamson (1988), both in

terms of the observed wavelengths and spatio-temporal symmetries. In terms of the

general mode structure, the fully saturated mode A structure appears to maintain a

higher amplitude further downstream relative to the linear mode, but the overall mode

structure is similar, especially near the cylinder. Naturally, the fully saturated mode

states are of interest since the existence of one mode may alter the occurrence or

onset of another mode. For example, in practice, mode B becomes unstable at a lower

Reynolds number (Re ∼ 230–240) than predicted by the Floquet stability analysis

based on the two-dimensional periodic base flow (Re = 260), while mode A is also
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FIGURE 2. Verification of the spectral-element code and the domain used. Comparisons with
previous results of the vortex shedding frequency for a fixed cylinder in two-dimensional flow.
The solid line is the three-term fit for St–Re variation below Re < 1000 from Williamson &
Brown (1998).

found to become chaotic in its fully saturated state (Williamson 1988). These issues
require analysis using direct numerical simulations and experiments, and are beyond
the scope of this paper.

3.3. Comparisons with previous studies

Shown in figure 2 is a comparison of the Strouhal number St variation with Re for
the non-rotating cylinder in a free stream, with values of St from the current study
and those from Williamson (1996a). Here, St = fD/U, where f is the frequency of
vortex shedding. The comparison is excellent. The solid line in the figure is from the
three-term fit by Williamson & Brown (1998), where St is given by

St =
(

0.2731 −
1.1129
√
Re

+
0.4821

Re

)

. (3.1)

Spatial resolution studies were carried out for the rotating cylinder at α = 2 and
Re = 400 to investigate the accuracy of the predictions. This study was performed at
the highest rotation rate for which the unsteady flow was observed. The solutions
at N × N = 49 converge to within 0.2 % of the maximum tested resolution at
N × N = 81. Furthermore, the values of the time-averaged force coefficients for a
resolution of N × N = 36 are well within 1 % of the maximum tested values. A
resolution of N × N = 49 was therefore determined to be sufficient to capture the
forces accurately up to α 6 2.5; however a resolution of N × N = 64 was used to
accurately capture the forces for all rotation rates beyond α > 2. Shown in figure 3 is
a comparison of the variation of time-averaged lift and drag coefficients with rotation
rate. Shown in figure 4 is the variation of St on increasing the number of internal node
points. The figures show that the selected resolution is adequate to resolve the flow
accurately.

A linear stability analysis validation study was also performed for the non-rotating
cylinder at Re = 280, and the growth rates obtained were compared with the results of
Barkley & Henderson (1996). The growth rates of the two primary modes (modes A
and B) from Barkley & Henderson (1996) match closely with the results of the present
study, as shown in figure 5. The very slight differences can be attributed to difference
between the domain sizes of the computational domains used.
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FIGURE 3. Comparison of the time-averaged force coefficients with the results from Mittal &
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FIGURE 4. Spatial resolution study at α = 2 and Re = 400. Variation of the shedding
frequency (St) with increasing internal node points (N) is shown.

4. Flow structures

Over the range of the parameters tested, three two-dimensional flow regimes have
been identified. Instantaneous snapshots of vorticity providing examples of each of
these regimes are presented in figure 6, all at α = 1.9. Shown are the steady regime
(figure 6a,b,d), the low-frequency regime (figure 6c,g,h) and the high-frequency
regime (figure 6e,f ). As for the limiting case of a stationary cylinder, at low Reynolds
numbers the flow is steady. For α . 1.95, periodic vortex shedding is found to occur
above a critical Reynolds number, which is a function of α. For α & 1.95, the two-
dimensional flow was found to remain steady up to at least Re = 400.

However, as the sequence of images of figure 6 shows, increases in Re restabilize
the two-dimensional flow, for a narrow band of α centred around α = 1.9. This
indicates that the value of Re at the steady–unsteady transition is not a monotonic
function of α. This finding is further expanded upon in § 5.

The periodic vortex shedding can be further divided into two regimes, based upon
the frequency of the oscillation. The variation of the shedding frequency as a function
of Re, for 1.8 6 α 6 2.0, is shown in figure 7. Clearly discernible is the development
of two ‘branches’, with a ‘high’-frequency and ‘low’-frequency branch appearing for
Re > 260. At α = 1.8, the St–Re curve is continuous. For α > 1.9, the behaviour is
much more complex. Taking α = 1.9 as an example, for Re < 190, the frequency
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of oscillation remains on the low-frequency branch. For 190 < Re < 260, the flow is
stabilized, and no vortex shedding occurs (figure 6d). Then for 260 . Re . 340, the
vortex shedding moves to the high-frequency branch (figure 6e), before dropping back
again to the low-frequency branch for Re > 340 (figure 6h).

Shown in figure 8 are force-coefficient phase diagrams for α = 1.9 at the specified
Reynolds numbers. The variation of the drag coefficient with lift coefficient is shown
over one complete period of shedding. The flow states in the steady regimes are
represented by singular points, while those in the periodic states are characterized by
closed orbits. These phase diagrams also provide an indication of the amplitude of
shedding. The amplitude of force (and wake) oscillations is small at low Reynolds
numbers, and remains so on the ‘high’-frequency branch. In comparison, larger
amplitudes are observed at high Reynolds numbers, when the flow returns to the
‘low’-frequency branch.

5. Stability analysis

The results presented in § 4 show that, over the parameter space investigated, all
of the two-dimensional flows are either steady or periodic. This means that all
are amenable to either linear stability analysis (for the steady flows) or Floquet
stability analysis (for the periodic flows). In fact, the two techniques are effectively
identical in practice, if the steady flow is treated as a flow with arbitrary period.
Stability analysis was performed on the flows over the parameter space (Re 6 350,
0 6 α 6 2.5) to determine the critical transitional values for the onset of a number of
three-dimensional modes, which govern the transition to three-dimensional flow.

For the limiting case of a non-rotating cylinder (α = 0), the transition to three-
dimensionality has been well documented by various numerical studies (Barkley &
Henderson 1996; Thompson et al. 1996) and is found to occur at Re = 188.5 ± 1
for a spanwise wavelength of λ/D = 3.96. For a cylinder rotating at α = 0.5, a
more recent study by Akoury et al. (2008) found the critical value of transition to
three-dimensionality to occur at Re = 220. They report that the wake structure was
similar to the mode A structure obtained for the flow past a non-rotating cylinder,
and it remained unchanged at Re = 300. At much higher rotation rates of α = 5,
and at Re = 200, the primary cause of three-dimensionality has been attributed to
centrifugal instabilities (Mittal 2004). The variation of the critical Reynolds number
at other rotation rates has not been investigated. Therefore, a systematic study of the
three-dimensional modes present in the (Re,α) plane is presented in § 5.1.

5.1. Transition diagram

Figure 9(a) shows curves of marginal stability for seven separate three-dimensional
modes growing on the two-dimensional base flows outlined in § 4. Also shown is
the boundary for the steady–unsteady transition. The results compare well with the
predictions of Pralits et al. (2010) for α 6 2. The points on each of the curves
denote a point at which the marginal stability of the mode in question has been
established; the curves have then been fitted to these points. As the majority of
the modes’ marginal stability curves occur in the top-right corner of the figure, an
enlarged version of this region is presented in figure 9(b). These curves have been
found by first resolving the two-dimensional flows over a grid of points in the (Re, α)
plane, then performing the stability analysis over a spectrum of wavelengths at each
of these points, and then refining this grid in the region of marginal stability for each
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mode. This process was very computationally intensive; the data for the current study
consumed the order of 105 CPU hours.

There are a number of features of figure 9 that are examined in some detail in the
following sections. First, the variation of the steady–unsteady transition is described.
Following this, descriptions of each of the three-dimensional modes are presented,
including the mode structure, critical wavelengths, spatio-temporal symmetries, and
some further analysis and interpretation of the physical mechanisms of instability.

5.2. The steady–unsteady transition

For lower rotation rates (α 6 1), the transition to the unsteady regime occurs at a value
of Re close to that of the non-rotating cylinder. However, for α & 1.3, small changes in
the rotation rate rapidly shift the transition to higher Reynolds numbers. For α > 2.1,
the two-dimensional base flow is seen to remain steady up to at least Re = 400.

As was shown in figure 6, for a small band of α centred around α = 1.9,
further increases in Re can restabilize the flow. This is shown particularly clearly in
figure 9(b), where the solid line marking this transition is shown to descend over the
range 180 < Re . 220, and then ascend for Re & 220. The cause of this complicated
behaviour is not clear. The onset of the high-frequency regime shown in figure 7
roughly coincides with the point at which the curve begins to ascend; it is therefore
possible that this high-frequency regime is due to an instability of the stabilized flow;
however further work is required to fully understand this phenomenon.

5.3. Properties of the three-dimensional modes

5.3.1. The mode A instability
For a non-rotating cylinder in a free stream, the onset of three-dimensional

flow is observed around Re = 180 in experiments, with a spanwise wavelength
of approximately 4D (Williamson 1996b). This same mode has been observed
numerically by the three-dimensional simulations of Thompson et al. (1996), and
the linear stability analysis (Barkley & Henderson 1996) explained the basis of the
transition. This mode is referred to as mode A and for a non-rotating cylinder has been
shown to be the fastest-growing linear mode up to Re = 280 (also see figure 5). The
physical mechanism of this mode has been associated with an elliptic instability of the
forming vortex cores (Leweke & Williamson 1998; Thompson, Leweke & Williamson
2001).

From the stability analysis of this paper, mode A is found to persist for α 6 1.9,
over the entire range where the two-dimensional base flow is unsteady. As shown in
figure 9, the critical Reynolds number with respect to the marginal stability of mode
A is a strong function of α. For α 6 1.25, the critical Reynolds number increases on
increasing the rotation rate. Over this range, mode A is also the first mode that occurs
with increasing Re, and so will lead the transition to three-dimensionality. The Floquet
multiplier obtained is positive and real.

Previous studies using fully three-dimensional direct numerical simulations (DNS)
(Akoury et al. 2008) have found that, for α = 0.5, the critical Reynolds number for
the transition to three-dimensional flow occurred at Re ≃ 220. This result matches well
with the curve of marginal stability for mode A in figure 9(a).

The critical wavelength at the onset of this instability was approximately 4D. At a
higher rotation rate of α = 1.5, the transition occurs at Rec ≃ 288, and occurs at higher
Reynolds numbers as the rotation rate is increased (figure 9).

Figure 10(a–c) shows the spanwise perturbation vorticity contours in two
dimensions just beyond the critical Reynolds number for a series of rotation rates.
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FIGURE 5. Validation of the stability analysis at higher Reynolds numbers for a non-rotating
cylinder: comparison of the growth rate at different spanwise wavelengths at Re = 280
between results from Barkley & Henderson (1996), and from the present study. The neutral
stability line at σ = 0 is marked by a solid line.
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FIGURE 6. (Colour online) Flow structures at α = 1.9 at Reynolds numbers: (a) Re = 50;
(b) Re = 100; (c) Re = 180; (d) Re = 250; (e) Re = 325; (f ) Re = 340; (g) Re = 350;
(h) Re = 400. Vorticity contour levels between ±5D/U. The flow is from left to right.

These images are all shown at a similar phase in the vortex shedding process. The
spatial structure of this mode is preserved at higher rotation rates, regardless of the
fact that the vortex shedding becomes increasingly asymmetric about the centreline
with increasing α. The shaded region in figure 10(d) shows the occurrence of the
mode A instability in the parameter space. A three-dimensional reconstruction of the
spanwise perturbation vorticity contours is shown in figure 10(e). The perturbation
field was added to the two-dimensional base flow to obtain these images in a
perspective view. The perturbation isosurfaces (red (dark grey) and yellow (light
grey)) are visualized for the cylinder spinning at α = 1 at Re = 280. Two spanwise
wavelengths are shown.
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FIGURE 8. (Colour online) Phase diagrams of the force coefficients at the specified Reynolds
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5.3.2. The mode B instability
For a non-rotating cylinder, mode B is observed to become unstable at Reynolds

numbers higher than that observed for mode A. In the experimental visualizations
of Williamson (1988), this mode was observed intermittently alongside mode A for
Re ≃ 230 with a spanwise wavelength of approximately 1D. The numerical simulations
of Barkley & Henderson (1996) predicted the onset of this linear mode from the
two-dimensional base flow at Re = 259 with a spanwise wavelength of λ ≃ 0.8D. The
contrast to the experimental findings is due to the fact, in experiments, the flow is
already three-dimensional due to the presence of mode A. Barkley, Tuckerman &
Golubitsky (2000) showed that the presence of mode A is destabilizing for the mode
B instability, leading to mode B occurring at lower Reynolds numbers in experiments.
The linear mode associated with mode B is the fastest growing mode for Re > 300
(Barkley & Henderson 1996; Blackburn et al. 2005) for the non-rotating cylinder.

The simulations of this paper recover mode B, and show that it continues to exist up
to at least α = 1. Similar to the non-rotating cylinder, the Floquet multiplier for this
mode remains purely real and positive. As shown on figure 9(a), the value or Re at
marginal stability is a strong function of α, increasing as α is increased. However, the
characteristic wavelength is relatively unaffected by α, remaining close to λ = 0.8D.
Over the range of the parameter space tested, mode B is always found to become
unstable at Re higher than that at which mode A becomes unstable.
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FIGURE 9. (a) Diagram showing the lines of marginal stability in the parameter space
investigated. (b) Enlarged view of (a) between 1.25 6 α 6 2.5, 175 6 Re 6 350. In both
images, the steady–unsteady transition is shown by a continuous line, while the boundaries
of the stability of the three-dimensional modes are shown by broken lines. To further
differentiate the modes, the following symbols have been used. ©, Mode A; �, Mode B;
�, Mode C; △, Mode D; N, Mode E; and ▽, Mode F. Mode G occurs over a narrow region
and is represented as a shaded region.

Figure 11 shows the perturbation vorticity contours of mode B at rotation rates of
α = 0, 0.5 and 1. Note that for the case at α = 0.5 (figure 11b), the base flow is
approximately half a period out of phase with respect to the other images; however
the similarity in the structure of the mode is evident. For all α, the perturbations grow
strongly in the braid regions between the shed vortices, similar to what is observed for
a non-rotating cylinder (shown as α = 0 in figure 11a). The occurrence of the mode B
instability in the parameter space is shown by the shaded region in figure 11(d) and
the three-dimensional reconstruction of the perturbation field in figure 11(c) is shown
in figure 11(e).

5.3.3. The mode C instability

The previous modes described, A and B, are basically extensions of the modes
found in the wake of a non-rotating cylinder. However, there are a number of other
modes presented on figure 9 that occur only for the rotating cylinder. The first of these
is mode C.

The mode C instability occurs in an apparently closed region of the (Re, α) plane,
centred around Re = 260, α = 1.7. The Floquet multiplier for mode C is purely real
but negative, indicating that this mode is subharmonic, repeating over two cycles
of the base flow. The critical spanwise wavelength for this mode is marginally
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FIGURE 10. (Colour online) (a–c) Spanwise perturbation vorticity contours of mode A in
the wake of the rotating cylinder between levels ±0.1U/D at the specified rotation rates
and Reynolds numbers, for a spanwise wavelength of λ/D = 4, at an arbitrary time in the
shedding cycle. Base-flow vorticity contours at levels ±1U/D are overlaid as dashed lines. A
centreline line is drawn in the streamwise direction behind the cylinder. (d) The occurrence of
the mode A instability in the parameter space is highlighted in the parameter space diagram.
(e) Perspective view showing the isosurfaces of the spanwise perturbation vorticity contours
(in red (dark) and yellow (light grey)) of the mode A instability shown in (b). Two spanwise
wavelengths are shown. Flow is from left to right in all images.

higher than for mode B, but lower than for mode A, and encompasses the range
0.8 < λc/D < 1.2.

The group-theory analysis of the symmetries of bluff-body wakes of Blackburn et al.

(2005) shows that for flows with the spatio-temporal symmetry of the wake of a
non-rotating cylinder (reflection about the wake centreline plus evolution in time of
half a period), subharmonic instabilities are not generic, and are therefore not likely to
be discovered. However, once this spatio-temporal symmetry is broken, subharmonic
modes become possible. Here, the spatio-temporal symmetry is broken by the rotation
of the cylinder, hence the presence of the subharmonic mode C. In structure, mode
C appears very similar to the subharmonic mode C found in the wakes behind rings
(Sheard et al. 2003, 2005a,b). In both of these flows, the symmetry is broken by a
local acceleration of the flow on one side of the body; here the acceleration is due to
the rotation of the cylinder, in ring wakes it is caused by the acceleration of the flow
through the constriction of the centre of the ring. Similar subharmonic modes have
be found in other wake flows, such as cylinders with trip wires (Zhang et al. 1995),
and in the wakes of transversely oscillating cylinders after undergoing spontaneous
transition to a P + S base state (Leontini et al. 2007), and more recently in the wakes
of inclined square cylinders (Sheard et al. 2009; Sheard 2011).
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FIGURE 11. (Colour online) (a–c) Spanwise perturbation vorticity contours of mode B in
the wake of the rotating cylinder between levels ±0.1U/D at the specified rotation rates and
Reynolds number at an arbitrary time in the shedding cycle. Base-flow vorticity contours
at levels ±1U/D are overlaid as dashed lines. A centreline line is drawn in the streamwise
direction behind the cylinder. (d) The occurrence of the mode B instability in the parameter
space is highlighted by the shaded region. (e) A three-dimensional reconstruction of the
spanwise perturbation vorticity contours of (c) over a spanwise distance z/D = 9.6. Flow is
from left to right in all images.

Shown in figure 12 are the perturbation vorticity contours of the mode C instability
at α = 1.5, Re = 250. The perturbation field reverses in sign every period, indicating
that this mode is periodic over 2T , where T is the period of the two-dimensional
periodic base flow. Figure 12(a–f ) shows the spanwise perturbation field over a
period 2.5T . The occurrence of the mode C instability is shown by the shaded
region in figure 12(g). The three-dimensional reconstruction of this mode is shown
in figure 12(h) over a spanwise distance of z/D = 9.6.

The growth rates of mode C are highest in the centre of the region over which it is
unstable. Unlike mode A or mode B, the magnitude of the Floquet multiplier does not
show a monotonic increase with rotation rate. Shown in figure 13 are the variation of
growth rate at constant rotation rate (figure 13a), and at a constant Reynolds number
(figure 13b). These values have been chosen to traverse the region where mode C is
unstable. The figure shows that the maximum amplification of this mode occurs at
(Re, α) ≃ (260, 1.80).

5.3.4. The mode D instability
The mode D instability develops on the unsteady base flow, becoming unstable in a

narrow region of the parameter space, for values of α just below those at which the
base flow is stabilized, as shown on figure 9. The Floquet multiplier for this mode
is real and positive. The mode grows with a characteristic spanwise wavelength of
approximately 2D.

Of particular interest is the region of occurrence of this instability; it occurs in
essentially the same region of the parameter space as the high-frequency shedding
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FIGURE 12. (Colour online) (a–f ) Spanwise perturbation vorticity contours of mode C at
α = 1.5, Re = 250, λ/D = 1.2 between levels ±0.1U/D over a period of 2.5T . Base-flow
vorticity contours at levels ±1U/D are overlaid as dashed lines. The perturbation vorticity
contours are identical after two periods of the base flow. (g) The occurrence of the mode C
instability in the parameter space is highlighted by the shaded region. (h) A three-dimensional
rendering of the spanwise perturbation vorticity contours of the mode C instability over a
spanwise distance z/D = 9.6. Flow is from left to right in all images.
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FIGURE 13. Variation of the maximum growth rate (σmax) with respect to wavelength (λ/D),
for the mode C instability: (a) at constant rotation rate of α = 1.65; and (b) constant Reynolds
number Re = 260. These indicate the closed region of instability for mode C.

regime (figures 7 and 9). This high-frequency shedding regime consists of two highly
strained vortices trailing the cylinder, and small vortices are emitted from the end of
these (see, for example, figure 6).

This instability grows in the region between these two strained vortices. Shown
in figure 14(a,b) are the spanwise and streamwise perturbation vorticity contours
at α = 1.9 and Re = 300. This structure is very similar to mode E, described
next, which grows on the steady base flow. In particular, disregarding the steady or
unsteady nature of the base flow, the perturbation field structures appear similar. It is
therefore hypothesized that modes D and E occur due to the same physical instability
mechanism. The occurrence of the mode D instability is shown by the shaded region
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FIGURE 14. (Colour online) Perturbation vorticity contours in the wake of the rotating
cylinder at α = 1.9, Re = 300, λ/D = 1.9, highlighting the perturbation field structure for
Mode D: (a) spanwise vorticity, (b) streamwise vorticity. The perturbation contour levels are
between 0.1U/D with the base-flow vorticity contours at levels ±1U/D overlaid as dashed
lines. (c) The occurrence of the mode D instability in the parameter space is highlighted by
the shaded region. (d) A three-dimensional rendering of the perturbation vorticity contours of
the mode D instability over a spanwise distance z/D = 9.6. Flow is from left to right in all
images.

in figure 14(c) and the three-dimensional reconstruction of the perturbation field is
shown in figure 14(d).

5.3.5. The mode E instability
The first three-dimensional mode to become unstable as α is increased on the steady

base flow is mode E. The multipliers, or growth rates, for this mode are purely
real, indicating that when this mode becomes unstable, it triggers a transition from
a two-dimensional steady state to a three-dimensional steady state. The characteristic
wavelength for this mode is approximately 2D, again consistent with mode D. The
spanwise wavelength at which the maximum growth rate occurs decreases as the
Reynolds number is increased.

Shown in figure 15(a,b) are the spanwise and streamwise perturbation vorticity
contours for α = 2 and Re = 220, showing an example of the mode E instability.
The occurrence of this mode is shown by the shaded region in the parameter space
(figure 15c). As already discussed above, this mode has similar characteristics to those
of the mode D instability. The regions of high perturbation amplitude are similar
to those of mode D in the near wake, while the instability extends in the flattened
wake far downstream of the cylinder, which is more evident in the three-dimensional
reconstruction of the perturbation field (figure 15d).

5.3.6. Physical nature of the mode D and E instability
Figure 16 shows the spanwise and streamwise perturbation vorticity as colour

contours, overlaid with the streamlines of the base flow, for α = 2, Re = 220. The
base-flow vorticity contours of figure 15 for the same case show regions of positive
and negative vorticity in the wake. However, the streamlines of figure 16 show that
only a single recirculation region exists.
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FIGURE 15. (Colour online) Perturbation vorticity contours in the wake of the rotating
cylinder for mode E at α = 2, Re = 220, λ/D = 2.0: (a) spanwise vorticity, (b) streamwise
vorticity. The perturbation contour levels are between 0.1U/D with the base-flow vorticity
contours at levels ±1U/D overlaid as dashed lines. (c) The occurrence of the mode E
instability in the parameter space is highlighted by the shaded region. (d) A three-dimensional
rendering of the perturbation vorticity contours of the mode E instability over a spanwise
distance z/D = 9.6. Flow is from left to right in all images.
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FIGURE 16. (Colour online) Perturbation vorticity contours, overlaid with streamlines, in
the wake of the rotating cylinder for mode E at α = 2, Re = 220, λ/D = 2.0: (a) spanwise
vorticity, (b) streamwise vorticity. Contours range between ±0.6 for spanwise vorticity, ±0.4
for streamwise vorticity. The figure shows that the mode is focused in the extensional regions
emanating from the hyperbolic point at the rear of the recirculation region.

Figure 16 shows that the perturbation vorticity is mostly focused in a thin region
emanating both upstream and downstream of the hyperbolic stagnation point at the
rear of this recirculation region. This region of the base flow is characterized by
a stretching in the flow direction (along the streamlines); fluid particles increase in
speed as they leave the hyperbolic point in this direction. Lagnado, Phan-Thien &
Leal (1983) showed, in an inviscid setting, that simple extensional flows lead to an
amplification of perturbation vorticity. Leblanc & Godeferd (1999) showed that in
Taylor–Green cells (a square geometry containing four rotating cells of fluid, creating
a hyperbolic point at the centre), the perturbation vorticity was most amplified along
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FIGURE 17. (Colour online) Perturbation vorticity contours in the wake of the rotating
cylinder for mode F at α = 2.5, Re = 280, λ/D = 0.45: (a) spanwise vorticity, (b) streamwise
vorticity. The perturbation contour levels are between 0.1U/D with the base-flow vorticity
contours at levels ±1U/D overlaid as dashed lines. (c) The occurrence of the mode F
instability in the parameter space is highlighted by the shaded region. (d) A three-dimensional
rendering of the perturbation vorticity contours of the mode F instability over a spanwise
distance z/D = 9.6. Flow is from left to right in all images.

the streamlines leaving the hyperbolic point, forming rib vortices in between the
rotating cells. A similar amplification mechanism has been proposed by Leweke &
Williamson (1998) as the cause of the mode B instability.

Owing to the clear amplification of perturbation vorticity along the streamlines
leaving the hyperbolic point in figure 16, it is therefore proposed that this is the
amplification mechanism that leads to mode E becoming unstable. The similarity in
structure of the perturbation vorticity for modes D and E (albeit that mode D is
periodic, with vortex shedding occurring downstream of the recirculation region as
shown in figure 14) suggests that it is this same stretching mechanism that leads to the
instability of mode D.

5.3.7. The mode F instability
A second three-dimensional mode is found to grow on the steady base flow,

designated as mode F. This mode typically occurs at higher rotation rates (α > 2.25)
than mode E. The characteristic wavelength of this mode is approximately 0.45D,
much shorter than mode E which grows in region between the highly strained standing
vortices in the wake.

Shown in figure 17(a,b) are the spanwise and streamwise vorticity contours at
α = 2.5 and Re = 280. The figure shows that mode F grows primarily in the
boundary layer of the spinning cylinder, and in the near wake. Figure 17(c) shows
the occurrence of the mode F instability in the parameter space. The three-dimensional
reconstruction of the mode F instability is shown in figure 17(d) over a spanwise
distance of z/D = 9.6.

The Floquet multipliers for this mode occur in complex-conjugate pairs. This
indicates that while the two-dimensional base flow is steady, transition to this mode
marks a transition to three-dimensional flow and the onset of time dependence.
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FIGURE 18. Variation of St3D for the three rotation rates (•, α = 2.25; ©, 2.4; �, 2.5) at a
Reynolds number just beyond the onset of instability for mode F.

The frequency of this time dependence can be ascertained from the complex
component of the Floquet multiplier. This was done for values of 2.25 6 α 6 2.5
and the results are presented in figure 18. The three-dimensional shedding frequency
at the onset of the instability is computed as follows: St3D = tan−1(Im(µ)/Re(µ))/2πT ,
where St3D is the three-dimensional shedding frequency and T is the period of
sampling. This frequency was also determined independently by directly measuring
the perturbation-field period to ensure that the choice of T had not caused aliasing
to a different frequency. For all rotation rates at which this mode is unstable, the
three-dimensional frequencies are low, considerably lower than those of the unsteady
two-dimensional base flows at lower values of α. Fully three-dimensional DNS, or
experiments, are required to see if this predicted frequency corresponds to that found
in the fully saturated three-dimensional flow, and what saturated spatial wake structure
this three-dimensional flow will take.

5.3.8. Physical nature of the mode F instability
As discussed in the introduction, it has already been speculated that the higher-

rotation-rate flows are subject to a centrifugal instability (e.g. Mittal 2004; Meena
et al. 2011). The generalized centrifugal theory of Bayly (1988) has therefore been
applied to investigate the nature of this instability mode. That work extends the
classical analysis of Rayleigh (1917) to non-axisymmetric inviscid flows with closed
streamlines. More recently it has been applied to analyse the recirculating flow
downstream of a bump (Gallaire, Marquille & Ehrenstein 2007) and a semicircular
hill (Griffith et al. 2007). In addition, there have been extensions of the theory to other
cases such as to non-zero azimuthal wavenumbers (Billant & Gallaire 2005), and to
rotating systems (Sipp & Jacquin 2000).

Physical evidence of centrifugal instability
Figure 19(a) displays streamlines for the mode F base flow for Re = 280 and

α = 2.4. The closed streamlines in the neighbourhood of the surface of the cylinder
are clearly apparent. Figure 19(b) shows the evolution of the perturbation streamwise
vorticity field over one half of a period (the period being 1/St3D defined in figure 18).
After a half-period the perturbation field is identical but of opposite sign. The period
therefore corresponds to the time it takes for a fluid element at the mean radial
position of the instability to travel twice around the cylinder, hence in some sense the
instability can be considered a subharmonic.
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FIGURE 19. (Colour online) Physical evidence of centrifugal instability leading to mode F
at Re = 280, α = 2.4, for a wavelength λ/D = 0.45. (a) Streamlines of the base flow in
the neighbourhood of the cylinder showing that the streamlines are closed in the vicinity
of the cylinder. (b) Evolution of the perturbation streamwise vorticity field over half a period:
(i) τ−τ0 = 0T/10; (ii) T/10; (iii) 2T/10; (iv) 3T/10; (v) 4T/10; (vi) 5T/10; where τ = tU/D,
t is time, τ0 is τ at some arbitrary time and T is the period of the global instability. This
progression shows that the period of the instability corresponds to the time taken for the
perturbation to orbit the cylinder twice. (c) Instantaneous growth rate of the instability as a
function of time. The times/growth rates corresponding to the set of images in (b) are marked.

The development and evolution of the instability involves the development
of streamwise perturbation vorticity at the north–west position on the cylinder,
approximately at the point where the incoming fluid separates to move either over
the top or the bottom of the cylinder. This is shown in figure 19(b i) at t = 0T/10.
Subsequently, the instability grows as it is advected anticlockwise, following close to
the cylinder surface, as shown in the next two images. Figure 19(b iv) shows that
some vorticity moves into the wake but some continues along the surface towards the
dividing streamline, as shown in figures 19(b v) and 19(b vi). This last image shows
that the process starts again, but this time the development begins from vorticity of
opposite sign. This image sequence confirms that the perturbation field remains strong
predominantly near the cylinder surface, where the streamlines are closed, as would be
expected for a centrifugal instability.

Figure 19(c) shows the instantaneous temporal growth rate as the instability
evolves. This is obtained directly from integrating the perturbation field over a period
and determining the amplitude of the instability field as a function of time. For



Three-dimensionality in the wake of a rotating cylinder in a uniform flow 21

7

6

5

8

4
–0.28 –0.24 –0.20 –0.16

(a) (b)

10

8

6

4

12

2
–0.28 –0.24 –0.20 –0.16

Positive local

Floquet multiplier

Negative local

Floquet multiplier

FIGURE 20. (a) Circulation (Γ (Ψ )) as a function of streamfunction (Ψ ) moving from
the cylinder surface (dashed line at Ψ ≃ −0.29) to the last closed streamline (dotted line).
This clearly shows the circulation decreasing outwards as required for centrifugal instability.
(b) Magnitude of the growth rate as a function of the streamfunction. The local Floquet
multiplier is positive close to the cylinder, but becomes negative further away.

figure 19(b i–iii), growth is positive as the instability advects anticlockwise around the
cylinder. For figures 19(b iv) and 19(b v), growth is negative as it traverses across
the wake region, before becoming positive again for figure 19(b vi). The Floquet
multiplier for a single orbital period of T = 4.513 is 1.240, hence the growth rate is
σ = log(1.240)/4.513 = 0.021.

Application of inviscid centrifugal instability theory
The analysis of Bayly (1988) requires the existence of closed streamlines and the

circulation to decrease outwards. Figure 19(a) shows that the condition of closed
streamlines is satisfied. Figure 20(a) shows the circulation, Γ (Ψ ), as a function
of the streamfunction (Ψ ), moving outwards from the cylinder surface. Clearly,
the variation with increasing streamfunction, which also corresponds to increasing
radius, is monotonically decreasing. The inviscid analysis of Bayly (1988) is used
to determine the eigenvalues of the local Floquet matrix on integrating around an
entire orbit for each closed streamline. The eigenvalues correspond to local Floquet
multipliers, which can be reduced to Floquet exponents, i.e. growth rates, by taking the
natural logarithm of the modulus and dividing by the orbital period. Thus the inviscid
growth rate (σ∞) can be determined as a function of streamfunction. Figure 20(b)
shows this variation. The local Floquet multiplier is real and positive close to the
cylinder, before it becomes real and negative out to the last closed streamline.

Bayly (1988) assumes that the actual instability mode is centred about the quadratic
maximum of the growth rate curve, and uses an asymptotic expansion to determine
an expression for the growth rate as a function of the wavenumber. In terms of the
findings here, there is no quadratic maximum where the Floquet multiplier is positive
real, although there is one in the streamfunction range where it is negative real. A
negative real Floquet multiplier corresponds to the instability changing sign after each
orbit, which figure 19(b) shows is the case here. The actual instability shown in the
images of figure 19 is not centred at the streamline position of the streamfunction
maximum of figure 20(b), but rather it appears to be centred near the streamline which
has an orbital period equal to the measured period of the global instability mode, as
would be expected for a centrifugal instability. The value of the streamfunction on this
streamline is Ψ ≃ −0.173, i.e. close to the outer edge on the recirculation region (see
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FIGURE 21. Computed growth rate curves as a function of wavelength from global stability
analysis. The viscosity (Reynolds number) was varied only for the stability analysis of the
base flow at Re = 280.

figure 20b). The inviscid growth rate is close to σ∞ ≃ 3.5 for that trajectory, which
represents substantial positive growth.

Expanding about the quadratic maximum indicates that the growth rate should
fall off linearly with wavelength (λ) (or inversely with wavenumber (k)) from the
inviscid prediction corresponding to the k → ∞ case. Also assuming that the effect of
viscosity is mainly to damp the instability rather than change its character, the viscous
correction to the growth rate should be proportional to the reciprocal of the square of
the wavelength. That is,

σ(λ,Re) ≃ σ∞ − A(λ/D) −
4π2B

Re (λ/D)2
, (5.1)

with B a constant of order one. As indicated above, it appears that the instability is
not centred about either the absolute maximum or the local quadratic maximum of
the inviscid growth curve, but rather about the streamline with the orbital period equal
to the global mode period. This is perhaps not surprising given the strong forcing on
the fluid from the rapidly spinning cylinder and subsequently stronger viscous effects
towards the surface.

To investigate further, the variation of the global mode growth rate with wavelength
is plotted in figure 21. The different curves correspond to different Reynolds numbers.
The Reynolds number for the steady flow was fixed at 280; it was only varied for the
linear stability equations, using the same steady frozen base flow. A similar procedure
was used by Gallaire et al. (2007) to explore the centrifugal nature of the instability
for flow over a bump. According to the proposed variation given by (5.1), the curves
should fall inside an envelope curve, with the curves for increasing Reynolds number
peaking at progressively smaller wavelengths. The y intercept of the envelope curve
should correspond to the predicted inviscid growth rate σ∞. In practice the situation
is a little more complex. Increasing the Reynolds number causes the global instability
mode to be centred closer to the cylinder and the period to reduce. Table 1 shows this
behaviour. Here, λpref is the wavelength with the maximum growth rate in figure 21,
Tλpref

is half the measured global instability mode period from the global analysis
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Re λpref Tλpref
Ψλpref

σinviscid

280 0.44 4.4 −0.172 3.5
560 0.30 3.0 −0.188 5.1
1120 0.22 2.5 −0.201 6.2

TABLE 1. Parameters for global stability analysis based on varying the Reynolds number
for the stability equations only.

(recall the mode repeats every two orbits), Ψλpref
is the value of the streamfunction

with this orbital period and σinviscid is the predicted growth rate from the inviscid theory
of Bayly (1988) shown in figure 20(b). In particular, this shows that as the effect of
viscosity is reduced, the instability mode moves inwards, centred on streamlines that
have smaller orbital periods and higher growth rates, as shown in figure 20(b). Thus, it
is consistent that the computed growth rate curves shown in figure 21 move upwards,
rather than asymptoting to an envelope curve.

Summary of the success of the inviscid theory

In summary, the mode F instability appears to be associated with a centrifugal
instability, in terms of primary localization to the region with both closed streamlines
and circulation decreasing outwards. The preferred wavelength of the instability also
appears to be related to, i.e. a small multiple of, the radial extent of the region with
closed streamlines. In addition, the evolution of the periodic instability mode as it
advects around the cylinder is consistent with the formation and growth of streamwise
rollers, transferring faster moving fluid to larger radii and vice versa, as expected
for a centrifugal instability. This growth happens as the perturbation moves from the
dividing streamline at the north–west position of the cylinder until it reaches the
wake region at the north–east position on the cylinder, perhaps reminiscent of Görtler
vortices (Görtler 1955) for flow on curved streamlines. Analysis using the inviscid
instability theory of Bayly (1988) to find the eigenvalues of the local Floquet matrix
associated with an orbital period on a streamline predicts substantial amplification
during the orbit. There is an inner region where the eigenvalues are positive, and an
outer region where they are negative. Negative eigenvalues indicate that the instability
changes sign each orbital period. This is precisely what happens with the global mode,
i.e. it repeats every two orbits. However, the global mode is not centred close to
the streamline at which there is a local maximum of the inviscid growth rate, but
rather close to the streamline with the same orbital period. For that streamline, the
inviscid growth rate is still strongly positive. Decreasing viscosity, for the global mode
calculation only, leads to a reduction in the global mode period, corresponding to the
instability being centred closer to the cylinder surface, where the inviscid growth rate
is higher. Thus, it does not seem that the generalized inviscid instability theory, even
adjusted for the first-order effects of viscosity, can supply quantitative estimates of the
growth rate or the preferred wavelength, although it certainly is qualitatively consistent
with many features of the inviscid predictions.

5.3.9. The mode G instability

The last three-dimensional mode discovered for this parameter space is mode G.
This mode grows on the unsteady base flow, for rotation rates near the upper limit for
the existence of the unsteady flow, occurring over a narrow region around α = 1.85 for
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(a)

(d)

(e)

(b)
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FIGURE 22. (Colour online) Perturbation vorticity contours in the wake of the rotating
cylinder at α = 1.85 and Re = 330 at λ/D = 20, at an arbitrary time in the shedding cycle:
(a) spanwise vorticity, (b) streamwise vorticity. The streamwise contours of the mode A
instability occurring at λ/D = 3.75 at the same rotation rate and Reynolds number are shown
in (c). The perturbation contour levels are between 0.1U/D with the base-flow vorticity
contours at levels ±1U/D overlaid as dashed lines. The three-dimensional reconstruction of
the mode G and mode A instabilities at α = 1.85 and Re = 330 are shown in (d) and (e),
respectively. Flow is from left to right in all images.

Re > 280. This is a long-wavelength mode, with a characteristic wavelength λ/D ≃ 18.
This mode has a purely real Floquet multiplier.

Shown in figure 22(a,b) are the spanwise and streamwise perturbation vorticity
contours, respectively, at α = 1.85 and Re = 330. The spatial structure of this
instability is similar to that of the mode A instability, except for a small apparent
phase shift of the perturbation relative to the base flow in the downstream vortices.
The streamwise vorticity of the mode A instability at λ/D = 3.75 at the same rotation
rate and Reynolds number is shown in figure 22(c) for comparison. Figures 22(d) and
22(e) show the three-dimensional reconstruction of the spanwise perturbation vorticity
fields for mode G and mode A instabilities, respectively.

6. Discussion of the modes spanning the parameter space

A summary of the modes is shown in table 2. For the cylinder spinning at low
rotation rates, the onset of the three-dimensional modes is similar to that observed
for the non-rotating cylinder; that is, mode A occurs first with increasing Re, prior
to the onset of mode B instability. This is essentially due to the similarities in base
flow; the structure of the Bérnard–von Kármán vortex street is only changed slightly
by the body rotation at these values of α. However, for α & 1.3, the wake structure
becomes strongly asymmetric. Consistent with previous studies where the loss of wake
symmetry leads to a different three-dimensional mode being observed, a subharmonic
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FIGURE 23. Growth rate curves showing the three modes which are unstable to perturbations
at α = 1.85, Re = 330.

Mode λ/D Nature of µ Base
flow

Symmetry

A ≃4 Real and positive Unsteady u(x, y, z, t) = u(x, y, z + nλ, t + T)
B ≃0.8 Real and positive Unsteady u(x, y, z, t) = u(x, y, z + nλ, t + T)
C ≃1 Real and negative Unsteady u(x, y, z, t) = u(x, y, z + nλ, t + 2T)
D ≃1.9 Real and positive Unsteady u(x, y, z, t) = u(x, y, z + nλ, t + T)
E ≃1.8 Real and positive Steady u(x, y, z, t) = u(x, y, z + nλ)
F ≃0.4 Complex Steady u(x, y, z, t) = u(x, y, z + nλ, t + T3D)
G ≃18 Real and positive Unsteady u(x, y, z, t) = u(x, y, z + nλ, t + T)

TABLE 2. Summary of the modes showing the characteristic wavelength, nature of the
Floquet multiplier (µ), the periodicity of the two-dimensional base flow and the spatial
symmetries of these modes with respect to the streamwise velocity, u.

mode (mode C) is the first three-dimensional mode to become unstable to spanwise
perturbations at these higher α. A mode with these symmetries and characteristics has
been observed in earlier studies on flow past rings (Sheard et al. 2005a). At α = 1.5,
this mode is unstable for a small range of Reynolds numbers before decaying at
higher Reynolds numbers, following which the onset of mode A instability is observed.
However, at α > 1.75, mode C is found to persist over a larger range of Reynolds
numbers; for certain values of Re, multiple three-dimensional modes are predicted to
be unstable. An instance of this is shown in figure 23, where modes C, A and G are
observed at α = 1.85, Re = 330. The mode C instability is the fastest growing mode
followed by mode G and mode A.

The mode D instability occurs in the high-frequency shedding region at rotation
rates in excess of 1.9. Figure 9 shows that mode D exists in a region of the parameter
space very close to the steady–unsteady transition of the two-dimensional base flow; in
some senses, mode D can be viewed as the ‘periodic’ state of mode E. Figures 14 and
15 clearly show the similarities in the structure of these two modes.

For a given rotation rate, the spanwise wavelength at which the maximum growth
rate of the mode D and E instabilities occurs decreases as Reynolds number is
increased. For instance, the mode E instability at α = 2, Re = 220 (a case just past the
onset of three-dimensionality) has a peak wavelength of 1.96D, while at Re = 340 the
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FIGURE 24. Growth rate curves showing the mode E and mode F instabilities at α = 2.25,
Re = 320.

peak wavelength decreases to 1.8D. Further, as rotation rate is increased from α = 2 to
α = 2.25, the peak wavelength at Re = 300 decreases from 1.9D to 1.65D.

At α = 2.25, the mode E instability exists alongside the mode F instability (see
figure 24). The short-wavelength instability of mode F has a complex Floquet
multiplier, indicating it is periodic as it occurs in the steady regime of flow. The
spanwise wavelength is much smaller than that predicted by the DNS of Meena
et al. (2011) at slightly higher rotation rates. Further analysis of the nature of the
instability using the inviscid instability theory of Bayly (1988) is consistent with it
being primarily centrifugal in nature, although the influence of viscosity appears too
strong for the theory to provide realistic estimates for wavelengths or growth rates.

7. Conclusions

The results of a linear stability analysis for a spinning cylinder in a free
stream have been presented. These results build upon the existing knowledge of
the three-dimensional wake modes that were first observed in the wake of a non-
rotating cylinder by Williamson (1988). The non-dimensionalized rotation rate, α, and
Reynolds number, Re, were varied over a wide parameter space to first obtain the base
flow over which stability analysis was performed to determine the growth (or decay)
of perturbations. Furthermore, stability analysis was used to predict the characteristic
wavelength of each instability, and the spatio-temporal symmetries.

At low rotation rates, the change in the structure of the Kármań shedding is minimal,
and the onset of the three-dimensional modes resembles that of the non-rotating
cylinder, although the critical values for the onset of the mode A and mode B
instabilities are delayed to higher Reynolds numbers. At higher rotation rates, a
subharmonic mode, mode C, is unstable to the perturbations and is unstable in a
closed region of the parameter space. This mode is the first three-dimensional mode
which becomes unstable with increasing Re, followed by the onset of the mode A
type instability. At higher rotation rates of α = 1.85, a long-wavelength instability is
observed alongside mode C and mode A instabilities.

For high rotation rates (α > 2), the rotation stabilizes the vortex shedding, resulting
in a steady two-dimensional base flow. This class of steady base flows has been shown
to be unstable to at least two modes: mode E, which appears to be due to amplification
of perturbations in the high-strain regions of the near wake; and mode F, which
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appears to be consistent with a centrifugal instability of the closed region of flow near

the cylinder surface for high rotation rates.
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