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Three Early Papers on Efficient
Parametric Estimation
A. W. F. Edwards

Abstract. Three papers from the early history of efficient parametric
estimation are reprinted with commentary: (1) Fisher (1912), “On an
absolute criterion for fitting frequency curves”; (2) Engledow and Yule
(1914), “The determination of the best value of the coupling-ratio from
a given set of data”; and (3) Fisher (1922), “The systematic location of
genes by means of crossover observations.”
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0. INTRODUCTION

Many of the concepts which underlie efficient
parametric estimation arose early in the history of
mathematical statistics, especially in the work of
Gauss and Laplace, but it was not until the time
of R. A. Fisher that a recognizably modern theory
emerged. His “On the mathematical foundations
of theoretical statistics” appeared in 1922 (Fisher,
1922a), and it is a measure of its influence that
among the words and phrases it introduced in their
modern technical senses were efficiency, parame-
ter, consistency, statistic and method of maximum
likelihood (David, 1995), and probably estimation
too. Fisher himself later wrote “This is the first
large-scale attack on the problem of estimation”
(Fisher, 1950). A recent introduction to this famous
paper has been provided by Geisser (1992), and the
paper itself has been reprinted in Fisher (1950) and
Fisher (1971) as well.

We here reproduce three short papers from the
decade 1912–1922 which provide some background
to the development of efficient estimation. The first
paper, “On an absolute criterion for fitting frequency
curves” (Fisher, 1912), was not regarded by the au-
thor himself as worth reproducing in his Contribu-
tions to Mathematical Statistics (Fisher, 1950), nor
did he refer to it in the first edition of Statistical
Methods for Research Workers (Fisher, 1925). It did,
however, receive mentions in 1915 and 1921 (Fisher,
1915, 1921), and also in the 1922 paper, as contain-

A. W. F. Edwards is Reader in Biometry, University
of Cambridge, Department of Community Medicine,
Forvie, Robinson Way, Cambridge CB2 2SR, United
Kingdom (e-mail: awfe@medschl.cam.ak.uk).

ing “My original statement of the Method of Maxi-
mum Likelihood,” and it is of signal interest for that
reason.

The second paper, “The determination of the best
value of the coupling-ratio from a given set of data”
(Engledow and Yule, 1914), is remarkable not only
for having introduced the method of minimum χ2

but for never once having been referred to, other
than by Yates (1952) in his obituary of Yule. It
should have had an honored place in the history
of genetic linkage estimation (Edwards, 1996), but
it was no more noticed in genetics than it was in
statistics.

The third paper, “The systematic location of genes
by means of crossover observations” (Fisher, 1922b),
is of interest because it contains the first applica-
tion of the method of maximum likelihood and was
clearly intended by its author as a companion to
the theoretical paper of that year. It applies the
method to the same field as Engledow and Yule
(1914), namely, genetic linkage, the practical area
most closely associated with contemporary develop-
ments in estimation theory.

1. ON AN ABSOLUTE CRITERION FOR FITTING
FREQUENCY CURVES (FISHER, 1912)

This, Fisher’s first paper, was written and pub-
lished while he was still an undergraduate (see Ed-
wards, 1974, for a more extensive account than that
given here). Very little is known about the original
impetus for the paper other than what is provided
by internal evidence. F. J. M. Stratton, whom Fisher
thanks (though with his initials in the wrong order)
was a young Fellow of Fisher’s Cambridge College,
Gonville and Caius, teaching the students mathe-
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matics and working as an Assistant in the Univer-
sity Observatory. In the Easter Term 1911 he had
lectured at the Observatory on Calculation of Or-
bits from Observations, and during the next aca-
demic year on Combination of Observations in the
Michaelmas Term (1911), the first term of Fisher’s
third and final undergraduate year. It is very likely
that Fisher attended Stratton’s lectures and sub-
sequently discussed statistical questions with him
during mathematics supervisions in College, and
that he wrote the 1912 paper as a result.

The paper advocates the method of maximum
likelihood, though not under that name. Fisher
defined likelihood nine years later (Fisher, 1921)
and coined the phrase method of maximum like-
lihood the year after (Fisher, 1922a); later on he
sometimes preferred maximal to maximum (e.g.,
Fisher, 1937). In Section 1 Fisher points out that
the multiplicity of different criteria for estimating
parameters (to use the modern terms) is theoreti-
cally unsatisfactory. In Section 2 he mentions least
squares and the method of moments, and in the
first half of Section 3 he disposes of the former be-
cause of the arbitrariness in the choice of measure
for the variate, and the latter because of the arbi-
trariness in the choice of the moments to equate.
He then introduces his criterion of maximum likeli-
hood, apparently basing it on an implied Bayesian
uniform prior for the parameters, since he writes of
the method as leading to “the most probable set of
values” for the parameters.

In Section 4 Fisher applies the criterion to the
parameters of the normal distribution and in Sec-
tion 5 he investigates the likelihood surface (“in-
verse probability system”) for the two parameters,
adding a figure notable for the omission of the con-
tours of the surface to which it refers. He remarks,
in effect, that the maximum-likelihood estimate of
the reciprocal of the variance (a word not coined by
Fisher until 1918) and the mean jointly does not
give the same result for the reciprocal of the vari-
ance as when the mean is integrated out—the dif-
ference being the well-known factor n/�n− 1�—but
he adds the all-important rider “that the integration
with respect to m [the mean] is illegitimate and has
no definite meaning with respect to inverse proba-
bility.” This point of view is elaborated in the final
Section 6, where Fisher insists that the likelihood
“is a relative probability only, suitable to compare
point with point, but incapable of being interpreted
as a probability distribution over a region, or of giv-
ing any estimate of absolute probability.”

The paper is thus paradoxical in its attitude
to “inverse probability.” Fisher appears to base
his maximizing method on inverse probability as-

suming an implicit uniform prior, but then denies
that the resulting “surface” for two parameters
can be manipulated as if it were a probability dis-
tribution. He himself later drew attention to the
apparent conflict (Fisher, 1922a). Forthcoming pa-
pers by J. Aldrich and me in Statistical Science will
examine this question in more detail.

2. THE DETERMINATION OF THE BEST VALUE
OF THE COUPLING-RATIO FROM A GIVEN

SET OF DATA (ENGLEDOW AND YULE, 1914)

The estimation procedure known as the method
of minimum χ2, according to which the parameter
values of a discrete distribution are chosen so as
to minimize the value of goodness-of-fit χ2, became
well-known through its inclusion in the chapter,
“The principles of statistical estimation,” in the
second and subsequent editions of Fisher’s book,
Statistical Methods for Research Workers (Fisher,
1928; see also Fisher and Balmukand, 1928). Fisher
first discussed it in 1922 (Fisher, 1922a), when he
pointed out that if the log-likelihood was expanded
in a Taylor’s series in x (the difference between
the observed and expected values), then the first
nonzero term in the expansion was equal to − 1

2 χ
2:

This well-known result was probably inspired
by some rather cryptic mathematics by Haldane
(1919a). Fisher mentioned that the method of
minimum χ2, of which he was critical, had been
discussed by K. Smith (1916).

Kirstine Smith was a graduate student in Karl
Pearson’s Biometric Laboratory at University Col-
lege London from 1915 (E. S. Pearson, 1990). Her
paper does not give any earlier reference to the
method, but it ends with the acknowledgment “The
present paper was worked out in the Biometric Lab-
oratory and I have to thank Professor Pearson for
his aid throughout the work.” Smith discussed the
use of the method both with discrete distributions
and grouped data from continuous distributions, a
circumstance which prompted Fisher, in 1916, to
send Pearson a note for Biometrika commenting on
the unsatisfactory property that the operation of
the method would be sensitive to the fineness with
which the data were grouped (an echo of the sim-
ilar point in the 1912 paper). Pearson declined to
publish the note (E. S. Pearson, 1968).

In fact the method of minimum χ2 had already
been advocated by Engledow and Yule in 1914 in
the paper here reprinted. They had invented it for
the estimation of the recombination fraction in ge-
netic linkage, an application in which the data are
in the form of frequencies and thus discrete. Their
parameter is p = 1

2 �1 − θ�; where θ is the modern
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recombination fraction. The coupling-ratio to which
they refer is then p x 1

2−p; or equivalently 1−θ x θ :
In the original announcement of their paper in the
Cambridge University Reporter (which I came across
serendipitously) the order of the authors is Yule
and Engledow (1914), as indeed it is also when re-
ferred to by Engledow (1914). Yule, who had been
appointed University Lecturer in Statistics at Cam-
bridge in 1912, had previously been in London and
closely associated with Pearson. This fact, coupled
with the original order of the authors and the fact
that Engledow (later Sir Frank Engledow, Drapers
Professor of Agriculture) was a plant physiologist,
makes it probable that Yule was the originator. In
the only comment on the paper of which I am aware,
Yates (1952), in his Royal Society obituary of Yule,
stated “Yule was also, in conjunction with Engledow,
the first to put forward the use of minimum χ2 for
the estimation of linkage.”

Engledow and Yule write simply that “the method
suggested seems much better than any now in use”
because it gives the best fit on the χ2 criterion. Inter-
estingly enough, the original announcement (Yule
and Engledow, 1914) carries a summary in which
the authors say “A method is given for determin-
ing the best value, i.e., the value that will make the
probability of the observations a maximum on ‘Pro-
fessor Pearson’s test’.” Had they not added the words
in (my) italics, they would have been describing the
method of maximum likelihood; as it is, they con-
fusingly imply that the “P-value” in Pearson’s test
gives the probability of the observations.

The estimating equation is of the fourth degree,
which the authors solve by Newton’s method using
data of Engledow’s (1914). Two other sets of data
are similarly treated, and the paper ends with a
note on errors.

This paper has never appeared in the linkage lit-
erature (which is commonly taken to start with Hal-
dane, 1919a, b, who did not refer to it; see Edwards,
1996) nor in the statistical literature. It was not in-
cluded in The Statistical Papers of George Udny Yule
(Yule, 1971), nor is it mentioned in An Introduc-
tion to the Theory of Statistics by Yule and Kendall
(1937) or in the section on minimum χ2 in Kendall
(1955). The books on linkage estimation by Mather
(1938) and Bailey (1961) are similarly silent, as is
the literature on human linkage estimation (see Ott,
1991, and C. A. B. Smith, 1986). A summary was
published in The American Naturalist (Engledow
and Yule, 1915) but went unremarked.

Like Kirstine Smith, Engledow and Yule gave
no reference for the method, but it is not unlikely
that they will have seen an earlier paper by Harris
(1912) which suggested employing Pearson’s χ2 test

on genetical data and which went so far as to test
two different hypotheses on the same data, indi-
cating that the one with the lower value of χ2 was
to be preferred: “[χ2’s] applicability to the problem
of testing the goodness of fit of Mendelian ratios
seems obvious, but since, as far as I can ascertain,
it has nowhere been applied to this problem, it
seems worth while to call the attention of students
of genetics to its usefulness.” Harris was not quite
correct, however, for Weldon (1902) had actually
applied χ2 to Mendel’s three-factor data only two
years after Pearson (1900) had invented the test.
Yule might well have been familiar with this.

3. THE SYSTEMATIC LOCATION OF GENES BY
MEANS OF CROSSOVER OBSERVATIONS

(FISHER, 1922b)

This paper, the first application of the method
of maximum likelihood under that name, can be
viewed as the complement to Fisher (1922a). As
Fisher himself wrote to his old biology teacher in
1929, “The fact is that nearly all my statistical
work is based on biological material and much of it
has been undertaken merely to clear up difficulties
in experimental technique” (quoted by Box, 1978).
Biological problems inspired his development of ef-
ficient estimation, and the estimation of genetic
linkage, in particular, was a fertile proving-ground.

Section 1 of the paper discusses the nature of the
linkage estimation problem and reminds readers
that “It has been shown that the whole of the infor-
mation supplied by the data (Fisher, 1922a) is made
use of by the method of maximum likelihood.” In
Section 2 Fisher shows how to write down the like-
lihood function for the case of three loci on the sex
chromosome of the fruit-fly Drosophila willistoni,
the two parameters being the recombination frac-
tions between adjacent loci. He assumes these are
additive (on the grounds that the loci are close and
crossing-over rare) and that the order of the loci is
given. He then finds the maximum-likelihood equa-
tions by differentiating the log-likelihood (though
without the explanation) and shows how they can
be approximately linearized. Without solving these,
Fisher turns immediately to a fuller example involv-
ing eight loci and thus seven parameters (Section
3), for which he achieves a complete approximate
solution. J. H. Edwards (1989) has reworked this
example and derived the exact maximum-likelihood
estimates of the parameters. Fisher ends by noting
that in another 1922 paper (Fisher, 1922c) he has
shown how to find the correct number of degrees of
freedom for goodness-of-fit χ2, and he applies this
test to the seven-parameter example.
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It is remarkable that the first worked example of
the use of the method of maximum likelihood should
involve not one or two, but seven parameters. This
paper is the only one that Fisher ever published in
the American Naturalist and was clearly designed
to introduce workers in genetic linkage, for whom
the American Naturalist was the principal journal
at the time, to efficient parametric estimation.

The year 1925 saw the publication of the first
edition of Fisher’s famous book Statistical Methods
for Research Workers. In the Introductory chapter,
Fisher discussed the need for efficient estimation
procedures, and gave as an example of the method
of maximum likelihood the estimation of the recom-
bination fraction from F2 data. For the second edi-
ton (Fisher, 1928), this section was expanded into
a new chapter, “The principles of statistical esti-
mation.” The same material, treated more expan-
sively, appeared in a joint paper in the same year
(Fisher and Balmukand, 1928). Further details may
be found in Edwards (1996).
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On an Absolute Criterion for Fitting
Frequency Curves1

R. A. Fisher
Gonville and Caius College, Cambridge

1. If we set ourselves the problem, in its essence
one of frequent occurrence, of finding the arbitrary
elements in a function of known form, which best
suit a set of actual observations, we are met at the
outset by an arbitrariness which appears to inval-
idate any results we may obtain. In the general
problem of fitting a theoretical curve, either to an
observed curve, or to an observed series of ordi-
nates, it is, indeed, possible to specify a number
of different standards of conformity between the
observations and the theoretical curve, which def-
initely lead to different though mutually approxi-
mate results. This mutual approximation, though
convenient in practice in that it allows a computer
to make a legitimate choice of the method which is
arithmetically simplest, is harmful from the theo-
retical standpoint as tending to obscure the practi-
cal discrepancies, and the theoretical indefiniteness
which actually exist.

2. Two methods of curve fitting may first be
noted, in which we shall use a sign of summation
when the observations comprise a finite number of
ordinates only, and an integral sign when the curve
itself is observed, even though the integrals may in
practice be estimated by a process of summation.

Consider f a function of known form, involving ar-
bitrary elements, θ1, θ2; : : : ; θr and x the abscissa;
let y be the observed ordinate corresponding to a
given x: Then a natural method of getting suitable
values for θ1, θ2; : : : ; θr, that is of fitting the obser-
vations, is to make

∫ +∞
−∞ �f − y�2 dx a minimum for

variations of any θy or if the ordinate is observed at
finite and equal intervals of the abscissa, we should
substitute

��f− y�2 for the integral.
This method will obviously give a good result to

the eye in cases where a good result is possible; the
equations to which it gives rise are, however, often
practically insoluble, a difficulty which renders the
method less useful than the simplicity of its princi-
ple would suggest.

1Reprinted from Messenger of Mathematics 41 155–160 (1912).

The method of moments is possibly of more value,
though its arbitrary nature is more apparent. If we
solve the first r equations of the type

∫ +∞
−∞

fdx =
∫ +∞
−∞

ydx

or
∑
f =

∑
y;

∫ +∞
−∞

xfdx =
∫ +∞
−∞

xydx

or
∑
xf =

∑
x;

∫ +∞
−∞

x2fdx =
∫ +∞
−∞

x2ydx; etc.

or
∑
x2f =

∑
x2y; etc.,

we may obtain values for the r unknowns, which
will give a curve to the eye about as good as that of
least squares, by a method which for some purposes
is found to be more convenient.

3. The first of the above methods is obviously in-
applicable to frequency curves, even if we wished to
accept its standard of “goodness of fit.” If we sup-
pose that the observations comprise a complete and
continuous curve, an arbitrariness arises in the scal-
ing of the abscissa line, for if ξ ; any function of x;
were substituted for x; the criterion would be mod-
ified. While, if a finite number of observations are
grouped about a series of ordinates, there is an addi-
tional arbitrariness in choosing the positions of the
ordinates and the distances between them.

For a finite number, n; of observations the method
of moments really gives the equations

∑
f = n;

∑
xf =

n∑
1

x;

∑
x2f =

n∑
1

x2; etc.,

against which the above objections cannot be urged;
still a choice has been made without theoretical
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justification in selecting this set of r equations of the
general form

∑
xpf =

n∑
1

xp :

But we may solve the real problem directly.
If f is an ordinate of the theoretical curve of unit

area, then p = fδx is the chance of an observation
falling within the range δxy and if

log P′ =
n∑
1

log p ;

then P′ is proportional to the chance of a given set of
observations occurring. The factors δx are indepen-
dent of the theoretical curve, so the probability of
any particular set of θ’s is proportional to P; where

log P =
n∑
1

log f:

The most probable set of values for the θ’s will
make P a maximum.

If a continuous curve is observed—e.g., the period
during which a barometer is above any level during
the year is a continuous function from which may be
derived the relative frequency with which it stands
at any height—we should use the expression

logP =
∫ ∞
−∞

y log fdx:

4. For example, let us take the normal curve of
frequency of errors

f = h√
π
− exp�−h2�x−m�2�;

where h and m are to be determined to fit a set
of n observations. Our criterion gives, neglecting a
constant term,

logP = n log h− h2∑�x−m�2

= n log h− h2n�m− x̄�2 − h2∑�x− x̄�2;

where nx̄ = �x:
Differentiating with respect to m; we get

−2h2n�m− x̄� = 0;

and with respect to h

n

h
= 2h

{
n�m− x̄�2 +

∑
�x− x̄�2

}
y

giving m = x̄ 2h2 = n/6v2, where v is written for
x− x̄y neglecting the solution h = 0; m = ∞; when

P is a minimum. Since the value usually accepted is

2h2 = n− 1�
v2
;

it will be necessary to examine one or two of the
methods by which this answer is obtained.

5. Corresponding to any pair of values, m and h;
we can find the value of P; and the inverse prob-
ability system may be represented by the surface
traced out by a point at a height P above the point
on a plane, of which m and h are the coordinates.

The actual maximum of P occurs, as we have
shown, at the point

m = x̄;
2h2 = n�

v2
:

�a� In an interesting investigation∗ Mr. T. L. Ben-
nett takes the maximum value of

∫ +∞
−∞

Pdm;

for variations of h; i.e., of

hn exp�−h2��x− x̄�2�

·
∫ +∞
−∞

exp�−h2n�m− x̄�2�dm;

or of
√
π

h
√
n
hn exp

[
�−h2�

∑
v2];

whence

�n− 1�hn−2 = 2hn
∑
v2;

2h2 = n− 1�
v2
;

∗Errors of Observation, Technical Lecture, No. 4, 1907–08, Sur-
vey Department, Egypt.
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a determination which gives the section perpendic-
ular to the axis of h; the area of which is a max-
imum, though it does not pass through the actual
maximum point.

We shall see (in §6) that the integration with re-
spect to m is illegitimate and has no definite mean-
ing with respect to inverse probability.

(b) The usual text-book discussion∗ of the relation
between h2 and µ2; where nµ2 = �

v2; assumes
that the observed value of µ2 is the same as the
average value for a large number of sets of n ob-
servations each; thus the average value of �x−m�2
being 1/�2h2�; the average value of �x̄ −m�2—that
is of

1
n2
�x1 −m+ x2 −m · · ·xn −m�2

equals the average value of �1/n2�61
n�x−m�2; since

the product terms go out—is

1
n2

n

2h2
= 1

2nh2
;

and the average value of nµ2 = ��x̄− x�2 is that of

∑
�m− x�2 − n�x̄−m�2;

that is,

n

2h2
− 1

2h2
= n− 1

2h2
y

and if the most probable value for h was such as to
make the observed quantity µ2 take up its average
value we should have

h2 = n− 1
2nµ2

:

The basis of the above method becomes less con-
vincing when we consider that the frequencies with
which different values of µ2 occur, for a given value
of h; cannot give a normal distribution, since µ2 can
only vary from 0 to +∞; and that a frequency dis-
tribution might easily be constructed to have a zero
at its mean, in which case the above basis would
give us perhaps the only value for h; which could
not possibly have given rise to the observed value
of µ2:

The distinction between the most probable value
of h; and the value which makes µ2 take up its
average value, is illustrated by our treatment of the
quantity �x̄ − m�2; the average value of which is

∗Chauvenet, Spherical Astronomy, Note II., Appendix §17.

1/�2nh2�; but the most probable value being zero,
we say that the most probable value of m is x̄; not

x̄± 1

h
√
�2n�

:

If a frequency curve of unit area were drawn,
showing the frequencies with which different val-
ues of µ2 occur, for a given h; and if b were the
ordinate corresponding to the observed µ2; then we
should expect the equation

∂b

∂h
= 0

to give the most probable value of h: It is sufficient
here, however, to point out the incorrectness of the
assumption upon which some writers on the Theory
of Errors have based their results.

6. We have now obtained an absolute criterion
for finding the relative probabilities of different sets
of values for the elements of a probability system
of known form. It would now seem natural to ob-
tain an expression for the probability that the true
values of the elements should lie within any given
range. Unfortunately we cannot do so. The quantity
P must be considered as the relative probability of
the set of values θ1, θ2; : : : ; θry but it would be ille-
gitimate to multiply this quantity by the variations
dθ1, dθ2; : : : ; dθr and integrate through a region,
and to compare the integral over this region with
the integral over all possible values of the θ’s. P is
a relative probability only, suitable to compare point
with point, but incapable of being interpreted as a
probability distribution over a region, or of giving
any estimate of absolute probability.

This may be easily seen, since the same frequency
curve might equally be specified by any r indepen-
dent functions of the θ’s, say φ1, φ2; : : : ; φr; and the
relative values of P would be unchanged by such
a transformation; but the probability that the true
values lie within a region must be the same whether
it is expressed in terms of θ or φ; so that we should
have for all values

∂� θ1; θ2; : : : ; θr�
/
∂�φ1; φ2; : : : ; φr� = 1

a condition which is manifestly not satisfied by the
general transformation.

In conclusion I should like to acknowledge the
great kindness of Mr. J. F. M. Stratton, to whose crit-
icism and encouragement the present form of this
note is due.
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The Determination of the Best Value of the
Coupling-Ratio from a Given set of Data1

F. L. Engledow and G. Udny Yule
St. John’s College

Many workers in Mendelism who have come
across cases in which coupling or repulsion oc-
curred must have felt the necessity for some gen-
eral method by which to determine from their data
the best value to assign to the coupling-ratio, apart
from any theory as to the ratios that are possible.
Mr. G. N. Collins (Am. Nat. vol. XLVI., 1912) is, so
far as we are aware, the only writer who has sug-
gested any such method. He worked out the value
of a coefficient of association for the whole series of
possible ratios, 1 x 1 x 1 x 1, 2 x 1 x 1 x 2, etc., and
then used the observed value of the same coeffi-
cient to decide which ratio gave the best agreement
with the facts. While this method is very simple
and convenient, it does not seem to lead to the most
advantageous value for the ratio.

The test to be used for the closeness of agree-
ment between the theoretical and observed frequen-
cies seems clearly to be that developed by Professor
Pearson (Phil. Mag., vol. L., 1900). If F1F2F3F4 etc.
are a set of theoretical or expected frequencies, and
F′1F

′
2F
′
3F
′
4 etc. are those observed, and if

χ2 =
∑ �F′ −F�2

F
;

the probability P that in random sampling
deviation-systems of equal or greater improba-
bility will arise is a function of χ2 which decreases
continuously as χ2 increases. The values of this
function for any number of frequencies from 3
to 30 have been tabulated by Mr. Palin Elderson
(Biometrika, vol I.). In order to measure the close-
ness of agreement between an observed set of the
four frequencies for any pair of characters, and the
expectation based on any assumed ratio, it is only
necessary to work out the value of χ2 and turn up
in Mr. Elderton’s table the column headed n′ = 4;
where the probability that an equally bad or worse
set of deviations might arise in sampling will be
found. If P is high, the agreement is good; if low, it
is bad. That value of the ratio, then, which gives the
most satisfactory agreement with the data is the

1Reprinted from Proc. Cambridge Philos. Soc. 17 436–440.

value which makes the probability P a maximum
or χ2 a minimum. The value of P is not accurate
if any frequencies are small, as a normal distribu-
tion of errors is assumed in the calculation of the
tables, but even from the empirical point of view
the method suggested seems much better than any
now in use.

Suppose the two factors to be A and B; and let
the gametes be produced by the heterozygote in the
following proportions:

AB Ab aB ab
p �0:5− p� �0:5− p� p

then, assuming random mating, zygotic forms will
be produced in the following proportions:

AB Ab aB ab
�p2 + 0:5� �0:25− p2� �0:25− p2� p2:

Let the observed proportions of zygotes be
f1f2f3f4; where f1 + f2 + f3 + f4 = 1: Then
we have to make a minimum the quantity

�p2 + 0:5− f1�2
p2 + 0:5

+ �0:25− p2 − f2�2
0:25− p2

+ �0:25− p2 − f3�2
0:25− p2

+ �p
2 − f4�2
p2

:

Differentiating with respect to p and equating to
zero, we find

�f2
2+f2

3−f2
1−f2

4�p8+�0:5f2
1+f2

2+f2
3−0:5f2

4�p6

+ �0:25f2
2 + 0:25f2

3 + 0:1875f2
4 − 0:0625f2

1�p4(1)

+ 0:0625f2
4 p

2 − 0:015625f2
4 = 0:

This is an equation of the fourth degree for p2: A
first approximation to the root required may be ob-
tained by Collins’ method or from the formula

p2 = 0:25
(
f1 + f4 − f2 − f3

)
(2)

(which gives the value of p that makes the sum of
the squares of differences least), or by comparison
with various calculated series, and the solution is
then readily obtained by Newton’s method.
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To take the data of the preceding note as an illus-
tration, the values of the proportions f are 0.5634,
0.2207, 0.2019, and 0.0141; writing x for p2; this
gives the equation

−0:228147x4 + 0:248083x3 + 0:002566x2

+0:00001244x− 0:0000031094 = 0 :

The data suggested a gametic ratio 1 x 3 x 3 x 1,
which gives p = 0:125, p2 = 0:015625. Trial
shewed that 0.0156 was not a very close approxi-
mation to a root; 0.02 proved nearer to a solution,
and Newton’s method gave by two approximations
p2 = 0:019715 : : : : Hence p = 0:1404 and this gives
a ratio 1 x 2:56. The observed frequencies were then
compared with the frequencies to be expected from
this ratio, and from the ratio 1 x 3 x 3 x 1. The results
obtained were:

Ratio 1 x 3 χ2 = 2:0974 P = 0:554

Ratio 1 x 2:561 χ2 = 1:9918 P = 0:574

It will be observed that while the calculated ratio
does give the better agreement, the difference is
slight. In both cases results equally or more diver-
gent from expectation would occur nearly as often
as not owing to mere fluctuations of sampling. The
result is an illustration of the now recognized fact
that a considerable alteration in the coupling-ratio
may mean but a small alteration in the closeness
of fit.

Two other cases have been tried and gave the fol-
lowing results. Collins (loc. cit., p. 579) gives the
following data for the characters coloured aleurone
and horny endosperm in maize:

Coloured-horny 1774

Coloured-waxy 263

White-horny 279

White-waxy 420

We find p = 0:3891 or a ratio 3:509 x 1. For this
value of the ratio χ2 is 0.60435 or P = 0:947, the
calculated frequencies 1782, 270, 270, 414 being in
very close agreement with those observed. For the
3 x 1 ratio, χ2 is 9.106 or P = 0:028, and the diver-
gence is therefore one that would only be likely to
occur once in some 36 trials owing to the fluctua-
tions of random sampling.

Finally, we took the data given by Bateson, Saun-
ders and Punnett in the Fourth Report of the Evo-
lution Committee (p. 16) for coupling between dark
axils and fertility in sweet peas. Here we find p =
0:4745, which is equivalent to a ratio 18:608 x 1,

as compared with the ratio 15 x 1 suggested in the
Report and a value “about 20 x 1” by Collins. The rel-
ative merits of the ratios are apparent from the fol-
lowing:

Ratio 18:608 x 1 χ2 = 3:7539 P = 0:294

Ratio 15 x 1 χ2 = 5:9226 P = 0:116

Ratio 20 x 1 χ2 = 3:8975 P = 0:275

The ratio 15 x 1 is clearly much the poorest of these
three: a worse fit is only likely to occur, owing to fluc-
tuations of sampling, some 12 times in 100. A worse
fit than that given by 20 x 1 may occur some 27
times in 100, and a worse fit than that given by our
calculated ratio some 29 times in 100. The figures
again shew, however, how great differences may be
made in the coupling-ratio assumed without creat-
ing an impossible discordance between assumptions
and fact. The mere agreement of the data, within
the possible limits of fluctuations of sampling, with
the frequencies deduced from some assumed ratio—
as in the case of the above data for peas and the
ratio 15 x 1—is very slight evidence in favour of
the truth of the assumption, especially where the
coupling-ratio is high, at least with such moderate
numbers of observations as are at present available.
Some light might, however, be thrown on the the-
ory of reduplication by carrying out an examina-
tion of all the available cases, determining p or the
coupling-ratio for each by equation (1). Such an ex-
amination we hope to carry out.

As p is not expressed explicitly as a function of
the proportionate frequencies f by equation (1), we
do not see our way to give its probable error by
this method of determination. The value given by
(2), however, is in some cases close to the value
given by (1), viz. if no one of the frequencies is very
small (cf. the data below), and its standard error
can be determined without difficulty on the usual,
though hardly quite justifiable, assumption that de-
viations in the frequencies are small compared with
their mean values. As the standard errors by the
two methods of determination are likely to be of
the same order of magnitude, it seems worth while
stating the result as at least a rough guide to the
possible magnitude of fluctuations. Differentiating
both sides of equation (2), squaring and summing,
we have, utilising known results for the sums of
squares and product sums (cf., e.g., Yule, Jl. Stat.
Soc., 1912, p. 601),

ε2
p =

1
4N

�f1 + f4��f2 + f3�
�f1 + f4� − �f2 + f3�

;(3)
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where εp is the standard error of p (to be multi-
plied by 0.6745 to obtain the probable error) and N
is the number of observations. If there is coupling
�p > 0:25�; the coupling-ratio r = p/�0:5 − p�: Dif-
ferentiating, squaring and summing again, we have

ε2
r = ε2

p

1
4�0:5− p�4 :(4)

Standard error
No. of Value of of values

observations p from r from from (2)

Case (1) (2) (1) (2) p r

Wheat 213 0.1404 0.1968 2.56 1.54 0.0430 0.56
Maize 2736 0.3891 0.3885 3.51 3.48 0.0049 0.20
Peas 885 0.4745 0.4744 18.6 18.5 0.00385 2.94

If there is repulsion �p < 0:25�; the repulsion-ratio
is �0:5−p�/p and p4 must be read for �0:5−p�4 in
the denominator of the above expression. The table
shews for comparison the values of p and r given
by equation (1) and equation (2) respectively, and
the standard errors of p and of r as obtained by the
latter method.

In the first case the two equations give very di-
vergent results, the unsuitability of equation (2) for
general use being shewn by its failure to give a good
approximation to the best value of the ratio. In this
case, no doubt, we must also regard the standard
error of r �0:56� as of very uncertain validity. The
magnitude of the standard error of r in the last
case—nearly 3 units—again emphasises the caution
that must be used before attaching importance to
the precise values of these high coupling-ratios.

The Systematic Location of Genes by
Means of Crossover Observations1

R. A. Fisher
Rothamsted Experimental Station

1. INTRODUCTORY

In the construction of a chromosome map, the
distances between neighboring genes are equated
to the percentage of crossovers which have been
observed between them. Owing to errors of ran-
dom sampling, and some times to other disturb-
ing causes, inconsistencies always arise between the
distances so determined. For example, in the impor-
tant data given by Lancefield and Metz for the sex
chromosome of Drosophila willistoni [1, p. 241] we
have the following values:

Table i

Crossover Number of Number of
percentage observations crossovers

Scute to Beaded 1.43 279 4
Beaded to Rough 2.42 455 11
Scute to Rough 7.09 6388 453

Within such a small range, double crossing over
may be ignored; yet it would be wrong to use such
inconsistencies as an argument against the linear

1Reprinted from American Naturalist 56 406–411 (1922).

arrangement of the genes. For although the true
crossover values may be accurately additive, er-
rors of random sampling will certainly disturb the
observed percentages. The practical problem is to
assign to the distances between the genes values
which shall be as far as possible in accord with the
whole of the observations available. In other words,
we have to make use of as much as practicable,
ideally the whole, of the information supplied by
the data; giving due weight (i) to the greater accu-
racy of the values obtained from the larger number
of observations, (ii) to the greater accuracy of val-
ues obtained from closer pairs. In general, too, we
shall have to consider not three genes only, but a
large number, lying sufficiently close together for
double crossing over to be ignored, the percentage
observed between each pair of which gives indirect
information as to the position of all the others.

In its general character the problem resembles
those problems involving errors of observation,
where a smaller number of unknowns are de-
termined from a larger number of inconsistent
equations, and which are usually solved by the
method of least squares. The practical solution de-
pends on the construction of a number of “normal
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equations” for the unknowns, in which the incon-
sistencies of the data are properly weighted and
made to balance. To make the sum of the squares
of the errors of the crossover percentages a mini-
mum would, however, be wrong, and the method of
least squares is not directly applicable. It has been
shown that the whole of the information supplied
by the data (2) is made use of by the method of
maximum likelihood, and by a first approximation
the required normal equations may be constructed.

2. MATHEMATICAL THEORY

In the above example, if we write p1 and p2 for
the two adjacent crossover ratios, the probability of
the actual series of observations will be proportional
to

p4
1�1−p1�275p11

2 �1−p2�444�p1+p2�453�1−p1−p2�5935

and the likelihood of any given pair of values for
p1 and p2 will be proportional to the same quan-
tity. In order to make this quantity a maximum for
variations of p1 and p2; we have the equations

4
p1
− 275

1− p1
+ 453
p1 + p2

− 5935
1− p1 − p2

= 0;

453
p1 + p2

− 5935
1− p1 − p2

+ 11
p2
− 444

1− p2
= 0:

These equations are exact, but for practical pur-
poses we need equations linear in p1 and p2; and
a first approximation is sufficient; if p differs little
from x/�x+ y� = x/n; then

x

p
− y

1− p = 0−
(
x

p2
+ y

�1− p�2
)(
p− x

n

)
+ · · ·

= −n
3

xy
p+ n

2

y
:

So that we may rewrite equations (1) in the prac-
tical and approximate form

2793

4× 275
p1 +

63883

453× 5935
�p1 + p2�

= 2792

275
+ 63882

5935
;

63883

453× 5935
�p1 + p2� +

4553

11× 444
p2

= 63882

5935
+ 4552

444
:

For each percentage observation, therefore,
we have merely to calculate the two quantities
n3/xy and n2/yy then normal equations may be
constructed in the form

a11p1 + a12p2 + · · · = b1;

a12p1 + a22p2 + · · · = b2;

.........................................

where a12 is the sum of the quantities n3/xy for
which both p1 and p2 are involved, a11 the corre-
sponding sum for all in which p1 is involved, and
b1 the sum of the quantities n2/y for which p1 is
involved.

3. PRACTICAL EXAMPLE

In order to illustrate the practical application of
this method to a complex case, we will consider the
location of the 8 genes, from Reduced to Rimmed,
in the middle of the sex chromosome of Drosophila
willistoni. We have here 7 intervals to determine,
and fifteen crossover percentages are given [1].
Table II shows the data, and the series of weighting
quantities derived from them.
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Table ii

Percentage x n n2/y n3/xy Unknowns involved

Reduced–Scute .95 27 2,848 2,875.26 303,287 p1
Reduced–Rough 6.24 37 593 632.46 10,136 p1; p2; p3; p4
Scute–Peach 1.81 8 442 450.15 24,871 p2
Scute–Beaded 1.43 4 279 283.06 19,742 p2; p3
Scute–Rough 7.09 453 6,388 6,875.58 96,956 p2; p3; p4
Scute–Deformed 7.24 50 691 744.90 10,295 p2; p3; p4; p5; p6
Scute–Rimmed 9.91 189 1,908 2,117.78 21,379 p2; p3; p4; p5; p6; p7
Peach–Beaded 1.70 3 176 179.05 10,504 p3
Peach–Rough 5.05 33 654 688.75 13,650 p3; p4
Beaded–Rough 2.42 11 455 466.27 19,287 p4
Rough–Triple .49 4 809 813.02 164,433 p5
Rough–Deformed 2.39 12 503 515.29 21,599 p5; p6
Rough–Rimmed 2.26 62 2,742 2,805.43 124,072 p5; p6; p7
Triple–Rimmed 1.00 6 601 607.06 60,807 p6; p7
Deformed–Rimmed 4.17 2 48 50.09 1,202 p7

Table iii

Calculated Observed Difference d Standard error σ
d2

σ2

Reduced–Scute .90 p1 .95 +:05 .18 .08
Reduced–Rough 7.66 6.24 −1:42 1.09 1.70
Scute–Peach 1.67 p2 1.81 +:14 .61 .05
Scute–Beaded 2.98 1.43 −1:53 1.02 2.31
Scute–Rough 6.76 7.09 +:33 .31 1.13
Scute–Deformed 8.40 7.24 −1:16 1.06 1.20
Scute–Rimmed 8.97 9.91 +:94 .65 2.09
Peach–Beaded 1.31 p3 1.70 −:39 .86 .21
Peach–Rough 5.09 5.05 −:04 .86 .00
Beaded–Rough 3.78 p4 2.42 −1:36 .89 2.34
Rough–Triple .69 p5 .49 −:20 .29 .48
Rough–Deformed 1.64 2.39 +:75 .57 1.73
Rough–Rimmed 2.21 2.26 −:05 .28 .03
Triple–Rimmed 1.52 1.00 −:52 .50 1.08
Deformed–Rimmed .57 p7 4.17 +3:60 1.09 10.91

χ2 = 25:34

From this table we write down the normal equa-
tions

313;423p1 + 10;136�p2 + p3 + p4� = 3;507:72;

10;136p1 + 183;380p2 + 158;509p3 + 138;766p4

+31;674p5+31;674p6+21;379p7 = 11;103:93;

10;136p1 + 158;509p2 + 182;663p3 + 152;416p4

+31;674p5+31;674p6+21;379p7 = 11;521:58;

10;136p1 + 138;766p2 + 152;416p3 + 171;703p4

+31;674p5+31;674p6+21;379p7 = 11;525:74;

31;674�p2 + p3 + p4� + 341;778p5

+ 177;345p6 + 145;451p7 = 6;996:42;

31;674�p2 + p3 + p4� + 177;345p5

+ 238;152p6 + 206;258p7 = 6;790:46;

21;379�p2 + p3 + p4� + 145;451p5

+ 206;258p6 + 217;460p7 = 5;580:36:

Using a calculating machine, the work so far is
rapid and mechanical; the solution of the normal
equations may in this case be much simplified by
observing the uniformity of some of the sets of co-
efficients, a type of uniformity which is probably
characteristic of crossover data. Thus by consider-
ing �p2 + p3 + p4� as a single quantity, p1 is im-
mediately expressible in terms of it, and by solving
the last three equations we may do the same for p5,
p6 and p7y substituting finally in equations (2), (3),
(4) we solve them for p2, p3 and p4; and obtain the
values shown in Table III.

The seven values obtained give mutually consis-
tent values for the crossover percentages between
the fifteen pairs tested, and are therefore suitable
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for the construction of chromosome map. If the con-
ditions of Maximum Likelihood had been exactly
fulfilled they would agree better than any other
consistent series of values with the percentages ob-
served. As it is, it is only in the aberrant value of
p7 that the assumption that the observed values are
approximately correct breaks down, and it is prob-
able that such cases will only occur when the data
are admittedly insufficient.

Table III is arranged to compare the differences
between the calculated and the observed percent-
ages with the standard errors due to sampling;
except for p7 all the differences are less than twice
their standard errors; thus showing the general
agreement between the data and the theory of lin-
ear arrangement of the genes. The fit, however, is
not a close one, even if we omit p7y in the present
state of our knowledge this will not throw any
doubt on the scheme of linear arrangement, but
will suggest that the crossover ratios in this part of
the chromosome were not constant in all the strains
used to compile the data.

In estimating the Goodness of Fit of data of this
kind, χ2 may be calculated by summing the values
of d2/σ2; as in Table III. Attention should, how-
ever, be called to the fact that it has been recently
shown (3) that in entering Elderton’s Table we must

put n′equal to one more than the number of degrees
of freedom, remaining after we have fitted our un-
knowns to the data. In the present case we have
found 7 unknowns from 15 equations, leaving 8 de-
grees of freedom, so that n′ should be 9, and not 16.

In conclusion it should be noted that to be avail-
able for the use of this process the crossover data
should be stated in the form in which it is given by
Lancefield and Metz, in which the crossovers tabled
between any two genes do not include those experi-
ments in which an intermediate gene was under ob-
servation. The practice of throwing together all the
crossovers between two genes, in order to improve
the ratios between the more distant points, causes
the same crossover to appear repeatedly in different
entries. The data are no longer the product of inde-
pendent experiments, and must be re-summarized
before reduction.
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