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The total entropy production is the sum of two contributions, the so-called adiabatic and nonadiabatic

entropy productions, each of which is non-negative. We derive their explicit expressions for continuous Mar-

kovian processes, discuss their properties, and illustrate their behavior on two exactly solvable models.

DOI: 10.1103/PhysRevE.82.011144 PACS number�s�: 05.70.Ln, 05.40.�a

I. INTRODUCTION

The second law stipulates that the entropy of an isolated

system cannot decrease. In a recent development �1� �see

also �2–6��, it was suggested that the second law can in fact

be split in two. The total entropy production �EP� Ṡtot is the

sum of two constitutive parts, namely, a so-called adiabatic

Ṡa and a nonadiabatic Ṡna contribution. These separate con-

tributions arise from the fact that there are two mechanisms

that lead to the time-symmetry breaking characteristic of a

dissipative process, namely, the application of steady non-

equilibrium constraints �adiabatic contribution� or the pres-

ence of driving �nonadiabatic contribution�. The crucial point

is to note that each of these contributions is separately non-

negative. We can thus identify “three faces” to the second

law: the positive rate of production of the total EP, of the

adiabatic EP, and of the nonadiabatic EP,

Ṡtot � 0, Ṡna � 0, Ṡa � 0. �1�

Explicit expressions for Ṡtot, Ṡa, and Ṡna, including a detailed

mathematical and physical discussion, were given at the

level of a master equation description in the preceding com-

panion paper �7�. However, in many applications, a descrip-

tion on the basis of a Langevin or a Fokker-Planck equation

is more appropriate. The purpose of this paper is to provide a

detailed discussion of the adiabatic Ṡa and nonadiabatic Ṡna

EPs for such a description. It should be noted that the master

equation description is the more general one, including the

Langevin and Fokker-Planck cases as special limits. The

rather technical transition between both descriptions based

on such a limiting procedure is given in the Appendix of this

paper. In order to be both self-contained and physically mo-

tivated, we derive the same expressions for the adiabatic and

nonadiabatic EPs directly from the Fokker-Planck equation

itself in the main text. The application to Langevin equations

driven by Gaussian white noise is immediate since there is a

mathematical equivalence between Fokker-Planck and

Langevin descriptions �8�. Note finally that we focus here on

the EP rates for which we provide explicit expressions. We

have previously obtained the results for the time-integrated

trajectory-dependent versions of the various EP contributions

�1�. The latter can be expressed in terms of relative entropies

between probabilities for paths in a direct and various types

of reverse experiments. While these results have a profound

meaning by revealing the temporal-symmetry breaking asso-

ciated to each contribution, the expressions for the EP rates

given here do not refer to any reverse experiment and are

thus much easier to measure or calculate.

II. FOKKER-PLANCK EQUATION

A. Total entropy balance

Our starting point is the Fokker-Planck equation describ-

ing the time evolution of the probability density pt= pt�x� for

the variable x,

ṗt = − �xJt, �2�

with

Jt = �
�

Jt
��� = utpt − Dt�xpt, �3�

Jt
��� = ut

���pt − Dt
���

�xpt, �4�

ut = �
�

ut
���, Dt = �

�

Dt
���. �5�

The quantities pt , Jt , Jt
��� , ut

��� , Dt
���, etc. are all functions

of the state x of the system, although this is not written

explicitly for simplicity of notation. The probability density

changes in time due to different processes �. As a result a

probability flux Jt
��� is associated to each process. We also

assume general time-dependent drift and diffusion coeffi-

cients ut
��� and Dt

���.

We now proceed with the identification of various EP

contributions, whose positivity can be guaranteed on a purely

mathematical basis. As we will see in the next section, these

terms can be interpreted as genuine forms of EP when the

proper physical content is taken into account. We focus on

the time evolution of the Shannon entropy for the system,

S�t� = −� dxpt ln pt. �6�

Note that we assume here and henceforth that the Boltzmann

constant kB is set equal to 1. Using Eq. �2� one finds
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Ṡ�t� = −� dxṗt ln pt

= − �
�

� dxJt
����xpt

pt

= �
�

� dxJt
���� Jt

���

Dt
���pt

−
ut

Dt
���� . �7�

We used partial integration �assuming that the boundary con-

tributions cancel� and the definition of the probability flux

�4� to get the results on the second and third lines. One

identifies the following two parts:

Ṡ�t� = Ṡe�t� + Ṡi�t� . �8�

The first term corresponds to the entropy flow into the sys-

tem,

Ṡe�t� = − �
�

� dxJt
��� ut

���

Dt
��� . �9�

The second term is the non-negative irreversible EP,

Ṡi�t� = �
�

� dx
�Jt

����2

Dt
���pt

� 0. �10�

These expressions are in agreement with the results given

previously in the literature for the case of a single process �
�9–12�.

We mention two additional properties of the total EP.

First, we note the following inequality:

Ṡi�t� �� dx
�Jt�

2

Dtpt

� 0, �11�

which shows that the total EP is underestimated if the con-

stituent processes � are not properly identified. The above

result follows from the following inequality, valid for any set

of numbers yi�0:

�
i

xi
2

yi

�

��
i

xi�2

�
i

yi

. �12�

To prove this inequality, consider first the case with all xi

�0. The above inequality is identical to Jensen’s inequality

	x /y
	y /x
�1, where the averages are over the variables

xi /yi and yi /xi with respect to the probability distribution pi

=xi /�ixi. The above inequality will hold a fortiori if not all

xi�0, since the left-hand side is insensitive to a change of

sign of the variables xi, while the right-hand side can only

become smaller. Second, the irreversible total EP has the

familiar form of a sum over fluxes times forces,

Ṡi�t� = �
�

� dxJt
���Xt

���, �13�

with the force associated to process � given by

Xt
��� = Xt

����x� =
Jt

����x�

Dt
����x�pt�x�

. �14�

B. Thermodynamic interpretation

The above description can be postulated on a purely phe-

nomenological or mathematical basis, as it corresponds to

the general equation of evolution for a continuous Markov-

ian process. We now make a number of comments that vali-

date the model and the derived expressions for the various

types of EPs, from a physical point of view.

A Markovian stochastic evolution for the degree of free-

dom of interest, the system, originates from the elimination

of fast degrees of freedom, the reservoir, that do not need to

be described because they are at instantaneous equilibrium

for any given state of the relevant variables. Furthermore, it

is assumed that the different processes � corresponding to

groups of fast eliminated variables �reservoirs� at different

equilibrium values do not directly interfere which each other.

Otherwise, this interaction would need to be described and

the set of variables describing completely the physical pro-

cess would need to be enlarged. The correct identification of

the reservoirs � is a crucial step since we have seen in in-

equality �11� that failure to do so will typically lead to an

underestimation of the EP. At constant �in time� drift and

diffusion coefficient, when all reservoirs but one is switched

off, say �, the system should reach an equilibrium steady-

state distribution corresponding to the thermodynamic prop-

erties of the reservoir � and satisfying the condition of de-

tailed balance Xt
���=0. In the presence of different reservoirs

�, the steady state is out of equilibrium because it will break

detailed balance. Indeed, all the reservoirs try unsuccessfully

to impose their equilibrium value on the system. The essen-

tial step to connect the stochastic description to the present

thermodynamics discussion is the local detail balance condi-

tion

ut
���

Dt
��� = ����Ft. �15�

This relation implies to identify the energy Et of the system,

because the force Ft is the negative derivative of the energy:

Ft=−�xEt �for more details, see also the Appendix and Eq.

�22� in �7� for the corresponding relation for the master equa-

tion�. It is also mathematically guaranteed that in the pres-

ence of a single reservoir � and of a time-independent exter-

nal force F, the probability distribution of the Fokker-Planck

equation �2� will eventually reach the equilibrium distribu-

tion peq�exp�−�E. Since Eq. �15� translates the fact that

each of the reservoirs remains at equilibrium, the EP �10� is

also the total EP since no irreversible processes take place in

the reservoirs: Ṡi�t�= Ṡtot�t�. For the same reason, the entropy

flow �9� into the system corresponds to minus of the entropy

change into the reservoirs: Ṡe�t�=−Ṡr�t�.
By introducing the generalized mobility �t

��� of process �

as ut
���=�t

���Ft, we see that Eq. �15� is in fact the generalized

fluctuation-dissipation Einstein relation �t
���=����Dt

���. This

clarifies the thermodynamic meaning of force �14� since
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Jt
���

/ pt can be identified as the local speed v
��� of process �,

so that Xt
���=v

���
/ �����T���� corresponds to the usual thermo-

dynamic expression of a force, speed divided by mobility,

over the temperature. Furthermore, using Eq. �15� in Eq. �9�,
we find that the entropy flow takes the familiar thermody-

namic form

Ṡe�t� = �
�

����Q̇����t� , �16�

where heat flowing into the system is given by

Q̇����t� = −� dxJt
���Ft. �17�

Introducing the system energy

E�t� =� dxptEt, �18�

we find �using integration by parts and neglecting the bound-

ary terms� that the first law of thermodynamics assumes the

familiar form

Ė�t� = Ẇ�t� + �
�

Q̇����t� , �19�

where the work is given by

Ẇ�t� =� dxptĖt. �20�

We have thus shown that the local detail balance condition

�15� provides an explicit connection to thermodynamics and

justifies the names used for the various entropies in the pre-

vious section.

We should note however that for systems subjected to

nonconservative forces, the local detail balance condition

�15� will not be satisfied. Even in the presence of a single

reservoir �, the steady state will break detailed balance and

will thus be a nonequilibrium steady state.

C. Adiabatic and nonadiabatic entropy balance

To identify a component related to the relaxation of the

system, we introduce the instantaneous steady-state solution

pt
st, being the normalized �supposedly unique� solution of the

following equation:

�xJt
st = 0, �21�

with

Jt
st = �

�

Jt
st��� = utpt

st − Dt�xpt
st,

Jt
st��� = ut

���pt
st − Dt

���
�xpt

st. �22�

It corresponds to the steady-state solution of the Fokker-

Planck equation �2�, if the drift and diffusion coefficients are

frozen at their instantaneous values. We can now rewrite the

flux Jt
��� �cf. Eq. �4�� as follows:

Jt
���

pt

−
Jt

st���

pt
st

= − Dt
���

�x�ln
pt

pt
st� . �23�

As a result, the following expression is identically zero:

�
�

� dxJt
st��� pt

Dt
���pt

st� Jt
���

pt

−
Jt

st���

pt
st � = −� dxJt

st
�x� pt

pt
st� = 0.

�24�

The last step in Eq. �24� follows from Eq. �21� by partial

integration, assuming that the boundary term is zero �infinite

system or system with periodic boundary condition�. The

separation of total EP �10� in two contributions that are sepa-

rately positive is now straightforward. We write the integrand

in Eq. �10� as follows:

pt

Dt
���� Jt

���

pt

�2

=
pt

Dt
���� Jt

���

pt

−
Jt

st���

pt
st

+
Jt

st���

pt
st �2

. �25�

From Eqs. �24� and �25�, we conclude that the total EP �10�
can be written as follows:

Ṡtot�t� = Ṡna�t� + Ṡa�t� , �26�

with the following explicit expressions for the nonadiabatic

and adiabatic rates of EP:

Ṡna�t� = �
�

� dx
pt

Dt
���� Jt

���

pt

−
Jt

st���

pt
st �2

� 0, �27�

Ṡa�t� = �
�

� dx
pt

Dt
���� Jt

st���

pt
st �2

� 0. �28�

These quantities are clearly non-negative. The nonadiabatic

EP is zero for an infinitely fast relaxing system being all the

time in the instantaneous steady state. The expression for the

adiabatic EP is similar to the total EP, but with the steady-

state contributions Jt
st���

/ pt
st rather than the actual Jt

���
/ pt

singled out. Both expressions can also be obtained as the

limits of the corresponding expressions for the nonadiabatic

and adiabatic EPs for a master equation �cf. the Appendix�.
In the case of a system in contact with a single reservoir and

subjected to a nonconservative force �the steady state breaks

detailed balance�, the adiabatic EP is the housekeeping heat

divided by the reservoir temperature �3,4,13–15�.
We now make a number of further comments including

alternative expressions for the adiabatic and nonadiabatic

EPs. First, from

1

Dt

� Jt

pt

−
Jt

st

pt
st� =

1

Dt
���� Jt

���

pt

−
Jt

st���

pt
st � = − �x�ln

pt

pt
st� , �29�

which is valid for any �, it follows that the nonadiabatic EP

can be written in terms of compound quantities �obtained by

summation over the processes �� only,
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Ṡna�t� =� dx
pt

Dt

� Jt

pt

−
Jt

st

pt
st�2

� 0. �30�

We conclude that the nonadiabatic EP is not sensitive to the

identification of the various separate processes describing the

exchange with different reservoirs. The rationale is that this

EP reflects relaxation EP within the system itself. We recall

furthermore that the total EP, which is the sum of the adia-

batic and nonadiabatic contributions, can only decrease upon

coarse graining the processes �. Hence, we conclude that the

adiabatic EP is underestimated in exactly the same way as

the total EP, when the constituting processes � are not prop-

erly identified.

Second, we mention the following alternative form of the

nonadiabatic EP:

Ṡna�t� = −� dxṗt ln
pt

pt
st

, �31�

obtained from Eq. �30� with Eq. �29�. This form is quite

convenient for a direct calculation of the nonadiabatic EP

when the probability distribution pt is known explicitly. We

also note that for constant in time drift and diffusion coeffi-

cients, one has Ḣ=−Ṡna�0, where H=�dxpt ln pt / pt
st�0 is

a Lyapunov function. This thus proves the convergence of pt

to the �supposedly unique� steady state pst �16�.
Third, we introduce another entropic contribution, the so-

called excess heat �13�,

Ṡex�t� =� dxJt�x ln pt
st. �32�

This expression allows us to complement the familiar EP

balance equation �8� with two other balance equations, lead-

ing to an alternative presentation of the three faces of the

second law. Indeed, one immediately verifies that

Ṡ�t� = − Ṡex�t� + Ṡna�t� , �33�

Ṡr�t� = Ṡex�t� + Ṡa�t� . �34�

Each of these balance equations features the sum of an ex-

change term, the excess entropy, which has no definite sign,

plus an irreversible non-negative EP term. The nonadiabatic

term is related to the system properties and is independent on

the constituting processes �. This is not the case of the adia-

batic term which represents the dissipation incurred via the

contacts with the various reservoirs. We note that when con-

sidering transitions between steady states, Eq. �33� becomes

the second law of steady-state thermodynamics �13,14�.
Fourth, upon introducing the following thermodynamic

forces:

Xt
��� =

Jt
���

Dt
���pt

= At
��� + Nt, �35�

At
��� =

Jt
st���

Dt
���pt

st
, Nt =

�xpt
st

pt
st

−
�xpt

pt

, �36�

each of the irreversible EP terms can be written under the

familiar form of a sum over fluxes times forces,

Ṡa�t� = �
�

� dxJt
���At

���, �37�

Ṡna�t� =� dxJtNt. �38�

III. APPLICATIONS

A. Brownian particle in contact with two thermal reservoirs

We consider an underdamped Brownian particle in con-

tact with two separate heat baths at temperatures T�1� and

T�2�. Such a model has been studied in the context of an

analysis of the Feynman ratchet �17�. It corresponds to the

simplest model for thermal conduction by a single degree of

freedom. The more suggestive presentation is via an equation

of motion written under the form of a Langevin equation,

v̇ = − ��t
�1� + �t

�2��v + �2�t
�1�

T�1���1� + �2�t
�2�

T�2���2�,

�39�

with ��1� and ��2� as independent Gaussian white noises of

intensity 1. The variable v plays the role of the “speed” of

the Brownian particle, while �t
�1� and �t

�2� are the friction

coefficients appearing due to the contact with the respective

reservoirs 1 and 2 which we assume externally controllable

�even if this might be physically not very realistic it serves to

illustrate our results�. The mass of the particle is taken equal

to unity. Note that we do not take into account a spatial

degree of freedom. This further simplification corresponds to

a thermal contact tightly bound to a specific location �in a

“delta function” potential�.
In the context of the Fokker-Planck description, we

identify the following two drift and diffusion coefficients

��=1,2�:

ut
��� = − �t

���
v, Dt

��� = �t
���T���. �40�

Note that we have incorporated the appropriate fluctuation-

dissipation theorem through the relation linking the diffusion

to the friction coefficient �here, E=v
2
/2 corresponds to the

kinetic energy�. We mention a further peculiarity of this

model. The Langevin equation can be rewritten as

v̇ = − �tv + �2Dt� , �41�

with

ut = �
�

u��� = − �tv ,

�t = �
�

�t
�, Dt = �

�

Dt
��� = �tTt. �42�

Consequently, if the distinction between the two processes �
is not made, this situation corresponds to Brownian particle

in contact with a single heat bath at temperature
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Tt =
�t

�1�
T�1� + �t

�2�
T�2�

�t
�1� + �t

�2� , �43�

and the steady state corresponds to equilibrium �zero EP,

with equipartition 	v2
t=Tt; see also below�. This point illus-

trates our discussion concerning the physical input needed to

validate the expression for EP, and in particular the correct

identification of the basic processes that are taking place. As

mentioned before, the nonadiabatic EP will be correctly re-

produced, but both total and adiabatic EPs will be underes-

timated. In the present case, the underestimation is dramatic

since the stationary distribution of the reduced description

corresponds to thermal equilibrium, so that the coarse-

grained adiabatic EP will be identically zero.

The probability distribution pt�v� for the speed v obeys

the following Fokker-Planck equation:

ṗt�v� = �t�v
�vpt�v� + Tt�v

pt�v�� . �44�

The solution to this equation is a Gaussian distribution, if it

is so initially,

pt�v� =
1

�2		v2
t

exp�−
�v − 	v
t�

2

2	v2
t

� . �45�

Its time evolution is completely determined by that of the

first and second moments, obeying the following set of equa-

tions:

�t	v
t = − �t	v
t, �46�

�t	v
2
t = − 2�t�	v

2
t − Tt� . �47�

The steady-state form is given by

pt
st�v� =

1

�2	Tt

exp�−
v

2

2Tt

� . �48�

One easily verifies that

Jt
��� =

Q����t�
	v2
t

ptv, Q����t� = �����T��� − 	v2
t� ,

At
��� = � 1

Tt

−
1

T����v, Nt = � 1

	v2
t

−
1

Tt

�v . �49�

It is also convenient to define Q�t�=Q�1��t�+Q�2��t�. Inserting

the above results in the expression for the various forms of

irreversible EP, we find

Ṡa�t� =
Q�t�
Tt

− �
�

Q����t�
T��� =

�1�2

�

	v2
t

Tt

�T1 − T2�2

T1T2

,

Ṡna�t� = Q�t�� 1

	v2
t

−
1

T
� =

Q2�t�
�T	v2
t

,

Ṡtot�t� = Ṡa�t� + Ṡna�t� . �50�

For the initial condition pt=0�v�=
�v� and in the absence of

external control of the friction coefficients, the result for the

second moment reads

	v2
t = T�1 − e−2�t� , �51�

which leads to the simplification

Ṡa�t� =
�1�2

�
�1 − e−2�t�

�T1 − T2�2

T1T2

,

Ṡna�t� = �
e−4�t

1 − e−2�t
,

Ṡtot�t� = Ṡa�t� + Ṡna�t� . �52�

These EPs reproduce expected properties. In the absence of

external driving the nonadiabatic EP decays to zero as the

steady state �where 	v2
=T� is approached. The adiabatic

contribution associated to the application of the nonequilib-

rium boundary conditions tends toward the usual thermody-

namic expression for the EP associated to a steady heat flux

between two reservoirs by a device with a thermal conduc-

tivity equal to �=�1�2 /� �17�. We finally note that Fourier

law is recovered in the steady state, Q̇1=−Q̇2=��T1−T2�.

B. Driven Brownian particle on a circle

We next consider an overdamped Brownian particle

ẋ = ut + �2D� , �53�

where ut and D are the �time-dependent� drift and �time-

independent� diffusion coefficient, both being position inde-

pendent. We furthermore assume x� �0,1� with periodic

boundary conditions. This model was discussed in stochastic

thermodynamics as a simple example of a particle driven by

a nonconservative force �18�. For simplicity, we consider the

special initial condition pt=0=
�x�. The exact time-dependent

solution of the Fokker-Planck equation is expressed in terms

of the well-known solution on the infinite line,

pt
��x� =

1

�4	Dt
exp�−

�x − �
0

t

d�u����2

4Dt
� , �54�

namely �x� �0,1��,

pt�x� = �
n=−

+

pt
��x + n� . �55�

It converges to the steady-state solution,

pt
st�x� = 1. �56�

This model has a peculiarity: the steady-state distribution is

identical to the equilibrium distribution pt
st�x�= peq�x�=1. As

a consequence one has Jt
st=ut. Furthermore, once pt has re-

laxed to this distribution, this remains the case even while a

time-dependent driving ut is still applied. We find that the

various EPs read

Ṡa�t� =
ut

2

D
, Ṡna�t� = D�

0

1

dx
��xpt�x��2

pt�x�
,
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Ṡtot�t� = Ṡa�t� + Ṡna�t� . �57�

The adiabatic EP is proportional to the square of the exter-

nally applied drift. The nonadiabatic EP is given by a more

complicated expression, but goes to zero as the probability

distribution relaxes to the uniform stationary distribution. It

remains zero once this distribution is reached, even if a time-

dependent driving ut persists. As an illustration, we repro-

duce the results for the various EP contributions in Fig. 1,

including the effect of a switch in the driving speed.

IV. CONCLUSION

In this paper, we have identified the non-negative EP as

well as its two non-negative contributions, the adiabatic and

the nonadiabatic parts, for Fokker-Planck dynamics. This

parallels a similar identification for master equation dynam-

ics presented in the companion paper �7�. We have shown

that this identification allows us to “split the second law in

two parts.” It remains to be seen what are the implications of

this “doubling” of the second law. In particular, we speculate

that it should imply the impossibility of some physical phe-

nomena, being incompatible with the inequalities, that it may

provide novel limits, for example, on efficiencies of ma-

chines, or may be linked to novel symmetries, such as the

symmetry of Onsager coefficients. Finally, we reiterate that

the positivity of the adiabatic and the nonadiabatic EPs ob-

tained here follows by Jensen’s inequality from the detailed

fluctuation theorems derived in �1�. The latter deal with the

trajectory-dependent adiabatic and nonadiabatic EPs and

thus reveal a much more detailed and deeper statistical sym-

metry deriving from microreversibility.
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APPENDIX: FOKKER-PLANCK LIMIT

OF THE MASTER EQUATION

In the companion paper �7�, we derive the adiabatic and

nonadiabatic EPs for Markovian processes obeying a master

equation �cf. Eq. �7��. The results for the Fokker-Planck

equation given in the main text can be derived by applying

an appropriate limiting procedure, similar to that of Ref.

�19�. As a starting point it suffices to consider the case of a

tridiagonal transition matrix, i.e., the only nonzero nondiago-

nal elements of Wm�1,m
��� ��t� are those with m�=m�1. The

master equation thus has the following form:

ṗm = − �
�

�Jm+1,m
��� �t� − Jm,m−1

��� �t�� , �A1�

where

Jm,m−1
��� �t� = Wm,m−1

��� ��t�pm−1�t� − Wm−1,m
��� ��t�pm�t� .

We introduce

2Dm
�����t� = Wm,m−1

��� ��t� + Wm−1,m
��� ��t� , �A2�

um
�����t� = Wm,m−1

��� ��t� − Wm−1,m
��� ��t� . �A3�

The idea is that the �general� nearest-neighbor random walk

in the variable m goes over into a �general� diffusion process

for a continuous variable x=m�. We illustrate the procedure

for x� �−L ,L� with reflecting boundary conditions, covering

in the limit L→ the case of real variables. A similar pro-

cedure can be applied for periodic boundary conditions. We

consider m=−N ,−�N−1� , . . . ,0 ,1 ,2 , . . . ,N, with reflecting

boundary conditions, WN+1,N=W−N−1,−N=0. We take the lim-

its �→0 and N→, where N=L /� with L fixed, obtaining a

continuous variable x=m�� �−L ,L�. Using exp���mfm

= fm�1 and

pt � p�x,t� = pm�t�/� , �A4�

�x = �−1
�m, �A5�

Dt
��� � D����x,�t� = Dm

�����t��
2, �A6�

ut
��� � u����x,�t� = um

�����t�� , �A7�

we find that Eq. �A1� goes over into the Fokker-Planck equa-

tion,

ṗt = − �
�

�xJt
���, �A8�
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FIG. 1. �Color online� Probability distribution at different times

and total, nonadiabatic, and adiabatic EPs �D=0.02�. The initial

divergence of the nonadiabatic EP is due to the singular initial con-

dition pt=0=
�x�. As the uniform distribution is approached, the

nonadiabatic EP decreases. The application of a switch from the

initial value of 0.8 to the value of 1.2 of the drift �cf. inset� has no

effect on the nonadiabatic EP, but results in an additional adiabatic

EP.
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Jt
��� = ut

���pt − Dt
���

�xpt, �A9�

with zero-flux boundary conditions. Similarly forces �28�–
�30� in �7� become

Xt
��� =

Jt
���

Dt
���pt

= At
��� + Nt, �A10�

At
��� =

Jt
st���

Dt
���pt

st
, Nt =

�xpt
st

pt
st

−
�xpt

pt

. �A11�

Using these results, it is easy to verify that the various EPs

from Sec. II of �7� lead to the EP of Sec. II of the present

paper. Finally, we note that the local detailed balance condi-

tion with respect to the various processes � given by Eq. �22�
in �7� reduces in the Fokker-Planck limit to Eq. �15�.
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